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Abstract— In this paper, it is presented a utilization of a novel 
tool for symbolic regression, which is analytic programming, for 
the purpose of the synthesis of a new feedback control law. This 
new synthesized chaotic controller secures the fully stabilization 
of selected discrete chaotic systems, which is the two-dimensional 
Lozi map. The paper consists of the descriptions of analytic 
programming as well as selected chaotic system, used heuristic 
and cost function design. For experimentation, Self-Organizing 
Migrating Algorithm (SOMA) and Differential evolution (DE) 
were used. Two selected experiments are detailed described. 
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Chaos control; Evolutionary algorithms; Lozi map 

I.  INTRODUCTION 
During the recent years, usage of new intelligent systems in 

engineering, technology, modeling, computing and simulations 
has attracted the attention of researchers worldwide. The most 
current methods are mostly based on soft computing, which is 
a discipline tightly bound to computers, representing a set of 
methods of special algorithms, belonging to the artificial 
intelligence paradigm. The most popular of these methods are 
neural networks, evolutionary algorithms, fuzzy logic and tools 
for symbolic regression like genetic programming. Currently, 
evolutionary algorithms are known as a powerful set of tools 
for almost any difficult and complex optimization problem. 

The interest about the interconnection between evolutionary 
techniques and control of chaotic systems is spread daily. First 
steps were done in [1] representing the utilization of 
differential evolution algorithm for the synchronization and 
control of chaotic systems. The papers [2], [3] were concerned 
to tune several parameters inside the original control technique 
for discrete chaotic systems. The evolutionary tuned control 
technique was based on Pyragas method: Extended delay 
feedback control – ETDAS [4]. Another example of 
interconnection between deterministic chaos and evolutionary 
algorithms represents the research focused on the embedding of 
chaotic dynamics into the evolutionary algorithms [5] - [7]. 

This paper shows a possibility how to generate the whole 

control law by means of analytic programming (AP) (not only 
to optimize several parameters) for the purpose of stabilization 
of the selected discrete chaotic system. The synthesis of control 
is inspired by the Pyragas’s delayed feedback control technique 
[8], [9].  

AP is a superstructure of EAs and is used for synthesis of 
analytic solution according to the required behaviour. Control 
law from the proposed system can be viewed as a symbolic 
structure, which can be synthesized according to the 
requirements for the stabilization of the chaotic system. 

Firstly, AP is explained, and then a problem design is 
proposed. The next sections are focused on the description of 
used soft-computing tools and the design of cost function. 
Results and conclusion follow afterwards. 

II. MOTIVATION 
This work is focused on the expansion of AP application 

for synthesis of a whole robust control law instead of 
parameters tuning for existing and commonly used control 
technique to stabilize desired Unstable Periodic Orbits (UPO) 
of selected discrete chaotic system. 

This work represents an extension of previous research 
[10], [11], with the application to the chaotic discrete Lozi map  

In general, this research is concerned to stabilize Lozi map 
chaotic system at p-1 UPO, which is a stable state, utilizing the 
synthesized control law. 

III. LOZI MAP 
Lozi map is the selected example of chaotic systems, which 

represents the simple discrete two-dimensional chaotic map. 
The x, y plot of the Lozi map is depicted in Fig. 1. The map 
equations are given in (1). The parameters are: a = 1.7 and 
b = 0.5 as suggested in [12], [13]. The chaotic behavior of the 
uncontrolled Lozi map is depicted in Fig. 2. 
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Fig. 1. x, y plot of the Lozi map 

 

 

Fig. 2. Iterations of the uncontrolled Lozi map (variable x) 

IV. ORIGINAL CHAOS CONTROL METHOD 
This work is focused on explanation of application of AP 

for synthesis of a whole control law instead of demanding 
tuning of any original method control law to stabilize desired 
Unstable Periodic Orbits (UPO). In this research desired UPO 
is only p-1 (the fixed point, which represents the stable state). 
Original Time-Delay-Auto-Synchronization (TDAS) delayed 
feedback control method was used in this research as an 
inspiration for synthesizing a new feedback control law by 
means of evolutionary techniques and for preparation of sets of 
basic functions and operators for AP. 

The original control method – TDAS has form (2) and its 
discrete form is given in (3). 

 ( )[ ])()( txtxKtF −−= τ  (2) 

 ( )nmnn xxKF −= −  (3) 

Where: K is adjustable constant, F is the perturbation, dτ is 
a time delay; and m is the period of m-periodic orbit to be 
stabilized. The perturbation nF  in equation (3) may have 
arbitrarily large value, which can cause diverging of the 
system. Therefore, nF  should have a value between maxF− , 

maxF . In this work a suitable maxF  value was taken from the 
previous research. 

V. USED SOFT-COMPUTING TOOLS 
This section gives the brief overview and the description of 

used soft-computing tools. This research utilized the symbolic 
regression tool, which is analytic programming and two 
evolutionary algorithms: Self-Organizing Migrating Algorithm 
[14]; and Differential Evolution [15]. 

Future simulations expect a usage of soft computing GAHC 
algorithm (modification of HC12) [16] and a CUDA 
implementation of HC12 algorithm [17]. 

A. Analytic Programming 
Basic principles of the AP were developed in 2001. Until 

that time only genetic programming (GP) and grammatical 
evolution (GE) had existed. GP uses genetic algorithms while 
AP can be used with any evolutionary algorithm, 
independently on individual representation. AP represents 
synthesis of analytical solution by means of evolutionary 
algorithms. Various applications of AP are described in [18] - 
[21]. 

The core of AP is based on a special set of mathematical 
objects and operations. The set of mathematical objects is set of 
functions, operators and so-called terminals (as well as in GP), 
which are usually constants or independent variables. This set 
of variables is usually mixed together and consists of functions 
with different number of arguments. Because of a variability of 
the content of this set, it is called here “general functional set” 
– GFS. The structure of GFS is created by subsets of functions 
according to the number of their arguments. For example 
GFSall is a set of all functions, operators and terminals, GFS3arg 
is a subset containing functions with only three arguments, 
GFS0arg represents only terminals, etc. The subset structure 
presence in GFS is vitally important for AP. It is used to avoid 
synthesis of pathological programs, i.e. programs containing 
functions without arguments, etc. The content of GFS is 
dependent only on the user. Various functions and terminals 
can be mixed together [20]. 

The second part of the AP core is a sequence of 
mathematical operations, which are used for the program 
synthesis. These operations are used to transform an individual 
of a population into a suitable program. Mathematically stated, 
it is a mapping from an individual domain into a program 
domain. This mapping consists of two main parts. The first part 
is called discrete set handling (DSH) [21] and the second one 
stands for security procedures which do not allow synthesizing 
pathological programs. The method of DSH, when used, allows 
handling arbitrary objects including nonnumeric objects like 
linguistic terms {hot, cold, dark…}, logic terms (True, False) 
or other user defined functions. In the AP DSH is used to map 
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an individual into GFS and together with security procedures 
creates the above mentioned mapping which transforms 
arbitrary individual into a program.  

AP needs some evolutionary algorithm that consists of 
population of individuals for its run. Individuals in the 
population consist of integer parameters, i.e. an individual is an 
integer index pointing into GFS. The individual contains 
numbers which are indices into GFS. The detailed description 
is represented in [20]. 

AP exists in 3 versions – basic without constant estimation, 
APnf – estimation by means of nonlinear fitting package in 
Mathematica environment and APmeta – constant estimation by 
means of another evolutionary algorithms; meta means meta-
evolution. 

B. Self-Organizing Migrating Algorithm (SOMA) 
Self-Organizing Migrating Algorithm is a stochastic 

optimization algorithm that is modeled on the basis of social 
behavior of cooperating individuals [14]. It was chosen 
because it has been proven that the algorithm has the ability to 
converge towards the global optimum [14] and due to the 
successful applications together with AP [22], [23]. 

SOMA works on a population of candidate solutions in 
loops called migration loops. The population is initialized 
randomly distributed over the search space at the beginning of 
the search. In each loop, the population is evaluated and the 
solution with the highest fitness becomes the leader L. Apart 
from the leader, in one migration loop, all individuals will 
traverse the input space in the direction of the leader. Mutation, 
the random perturbation of individuals, is an important 
operation for evolutionary strategies (ES). It ensures the 
diversity amongst the individuals and it also provides the 
means to restore lost information in a population. Mutation is 
different in SOMA compared with other ES strategies. SOMA 
uses a parameter called PRT to achieve perturbation. This 
parameter has the same effect for SOMA as mutation has for 
genetic algorithms. 

The novelty of this approach is that the PRT Vector is 
created before an individual starts its journey over the search 
space. The PRT Vector defines the final movement of an active 
individual in search space. 

The randomly generated binary perturbation vector controls 
the allowed dimensions for an individual. If an element of the 
perturbation vector is set to zero, then the individual is not 
allowed to change its position in the corresponding dimension. 

An individual will travel a certain distance (called the 
PathLength) towards the leader in n steps of defined length. If 
the PathLength is chosen to be greater than one, then the 
individual will overshoot the leader. This path is perturbed 
randomly. 

C. Differential evolution 
DE is a population-based optimization method that works 

on real-number-coded individuals [24] - [26]. DE is quite 
robust, fast, and effective, with global optimization ability. It 
does not require the objective function to be differentiable, and 

it works well even with noisy and time-dependent objective 
functions. Description of used DERand1Bin strategy is 
presented in (4). Please refer to [15], [26] for the description of 
all other strategies.  

 ( )GrGrGrGi xxFxu ,3,2,11, −⋅+=+  (4) 

VI. COST FUNCTION DESIGN 
The proposal of the basic cost function (CF) is in general 

based on the simplest CF, which could be used problem-free 
only for the stabilization of p-1 orbit. The idea was to minimize 
the area created by the difference between the required state 
and the real system output on the whole simulation interval – τi. 
This CF design is very convenient for the evolutionary 
searching process due to the relatively favorable CF surface. 
Nevertheless, this simple approach has one big disadvantage, 
which is the including of initial chaotic transient behavior of 
not stabilized system into the cost function value. As a result of 
this, the very tiny change of control method setting for 
extremely sensitive chaotic system causing very small change 
of CF value, can be suppressed by the above-mentioned 
including of initial chaotic transient behavior  

But another universal cost function had to be used for 
stabilizing of extremely sensitive chaotic system and for having 
the possibility of adding penalization rules. It was synthesized 
from the simple CF and other terms were added. 

This CF is in general based on searching for desired 
stabilized periodic orbit and thereafter calculation of the 
difference between desired and found actual periodic orbit on 
the short time interval - τs (40 iterations for higher order UPO) 
from the point, where the first minimal value of difference 
between desired and actual system output is found (i.e. floating 
window for minimization – see Fig. 3.).  

 

 

Fig. 3. “Floating window” for minimization 

Such a design of universal CF should secure the successful 
stabilization of either p-1 orbit (stable state) or higher periodic 
orbits anywise phase shifted. Furthermore, due to CF values 
converging towards zero, this CF also allows the using of 
decision rules, avoiding very time demanding simulations. This 
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rule stops EA immediately, when the first individual with good 
parameter structure is reached, thus the value of CF is lower 
then the acceptable (CFacc) one. Based on the numerous 
experiments, typically CFacc = 0.001 at time interval τs = 20 
iterations, thus the difference between desired and actual output 
has the value of 0.0005 per iteration – i.e. successful 
stabilization for the used control technique. The CFBasic has the 
form (5): 

 ∑
=

−+=
2

1
1

τ

τt
ttBasic ASTSpenCF , (5) 

where:   

TS - target state, AS - actual state 

τ1 - the first min value of difference between TS and AS 

τ2 – the end of optimization interval (τ1+ τs) 

pen1= 0 if τi - τ2 ≥ τs 

pen1= 10*( τi - τ2) if τi - τ2 < τs (i.e. late stabilization). 

VII. RESULTS 
Analytic Programming requires some EA for its run. In this 

paper, APmeta version was used. Meta-evolutionary approach 
means usage of one main evolutionary algorithm for AP 
process and the second algorithm for coefficient estimation, 
thus to find optimal values of constants in the evolutionary 
synthesized control law.  

SOMA algorithm was used for the main AP process and 
DE was used in the second evolutionary process. Settings of 
EA parameters for both processes given in Table 1 and Table 2 
were based on performed numerous experiments with chaotic 
systems and simulations with APmeta. 

TABLE I.  SOMA SETTINGS FOR AP 

SOMA Parameter Value 
PathLength 3 
Step 0.11 
PRT 0.1 
PopSize 50 
Migrations 4 
Max. CF Evaluations (CFE) 5345 

 

TABLE II.  DE SETTINGS FOR META-EVOLUTION 

DE Parameter Value 
PopSize 40 
F 0.8 
CR 0.8 
Generations 150 
Max. CF Evaluations (CFE) 6000 

 

The data set for AP required only constants, operators like 
plus, minus, power and output values nx and 1−nx . The set of 
elementary functions for AP was inspired in the original 
delayed feedback chaos control method TDAS (See section 4; 

(2) and (3)). Thus AP dataset consists only of simple functions 
(operators) with two arguments and functions with zero 
arguments, i.e. terminals (constants and system output values). 
Functions with one argument, e.g. Sin, Cos, etc.; were not 
required. 

Basic set of elementary functions for AP: 

 

GFS2arg= +, -, /, *, ^ 

GFS0arg= datan-1 to datan, K 

 

Total number of cost function evaluations for AP was 5345, 
for the second EA it was 6000, together 32.07 millions per 
each simulation. 

Following description of two selected experiments results 
contains illustrative examples of direct output from AP – 
synthesized control laws without coefficients estimated (6) and 
(8); further the notations with simplification after estimation by 
means of second algorithm DE (7) and (9), Table 3 with 
corresponding CF values and the average error value between 
actual and required system output, and finally Fig. 4 - 7 with 
simulation results. 

TABLE III.  COST FUNCTION VALUES AND SIMPLE STATISTICS 

Experiment No. CF Value Avg. Error per iteration
Experiment 1 6.2992·10-15 3.1496·10-16 
Experiment 2 1.4567·10-6 7.2836·10-8 
 

A. Experiment 1 

 ( )( ) nnnnnn xxxxxKF −−−= −− 111 22  (6) 

 ( )( ) nnnnnn xxxxxF −−−= −− 11 218253.1  (7) 

 

Fig. 4. Simulation results – Experiment 1, variable x of Lozi map 
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Fig. 5. Simulation results – Experiment 1, variable y of Lozi map 

 

B. Experiment 2 

 ( ) 1112111 2 −−−−− +++−= nnnnnnn xxxxKxxKF  (8) 

 ( ) 11111 8473.721492.16 −−−−− +++−= nnnnnnn xxxxxxF  (9) 

 

Fig. 6. Simulation results – Experiment 2, variable x of Lozi map 

 

Fig. 7. Simulation results – Experiment 2, Variable y of Lozi map 

VIII. CONCLUSIONS 
This paper deals with a synthesis of a new universal robust 

control law by means of AP for stabilization of selected 
discrete chaotic system at fixed point. Two-dimensional Lozi 
map as the example of discrete chaotic systems were used in 
this research.  

Obtained results reinforce the argument that AP is able to 
solve this kind of difficult problems and to produce a new 
robust synthesized control law in a symbolic way securing 
desired behaviour and precise stabilization of the selected 
chaotic systems. 

Presented two simulation examples show two different 
results. Extremely precise stabilization and simple control law 
in the first case and not very precise and slow stabilization and 
relatively complex notation of chaotic controller in the second 
case. This fact lends weight to the argument, that AP is a 
powerful symbolic regression tool, which is able to strictly and 
precisely follow the rules given by cost function and synthesize 
any symbolic formula, in the case of this research – the 
feedback controller for chaotic system. 

The future research will include the development of better 
cost functions, testing of different AP data sets, and performing 
of numerous simulations to obtain more results and produce 
better statistics, thus to confirm the robustness of this approach. 
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