
Analytic Programming – a Novel Tool for Synthesis
of Controller for Chaotic Lozi Map

Roman Senkerik, Zuzana Kominkova Oplatkova and Michal Pluhacek
Faculty of Applied Informatics
Tomas Bata University in Zlin

T.G. Masaryka 5555, 760 01 Zlin, Czech Republic
{senkerik , kominkovaoplatkova , pluhacek}@fai.utb.cz

Abstract— In this paper, it is presented a utilization of a novel
tool for symbolic regression, which is analytic programming, for
the purpose of the synthesis of a new feedback control law. This
new synthesized chaotic controller secures the fully stabilization
of selected discrete chaotic systems, which is the two-dimensional
Lozi map. The paper consists of the descriptions of analytic
programming as well as selected chaotic system, used heuristic
and cost function design. For experimentation, Self-Organizing
Migrating Algorithm (SOMA) and Differential evolution (DE)
were used. Two selected experiments are detailed described.

Keywords—Analytic Programming; Symbolic regression;
Chaos control; Evolutionary algorithms; Lozi map

I. INTRODUCTION
During the recent years, usage of new intelligent systems in

engineering, technology, modeling, computing and simulations
has attracted the attention of researchers worldwide. The most
current methods are mostly based on soft computing, which is
a discipline tightly bound to computers, representing a set of
methods of special algorithms, belonging to the artificial
intelligence paradigm. The most popular of these methods are
neural networks, evolutionary algorithms, fuzzy logic and tools
for symbolic regression like genetic programming. Currently,
evolutionary algorithms are known as a powerful set of tools
for almost any difficult and complex optimization problem.

The interest about the interconnection between evolutionary
techniques and control of chaotic systems is spread daily. First
steps were done in [1] representing the utilization of
differential evolution algorithm for the synchronization and
control of chaotic systems. The papers [2], [3] were concerned
to tune several parameters inside the original control technique
for discrete chaotic systems. The evolutionary tuned control
technique was based on Pyragas method: Extended delay
feedback control – ETDAS [4]. Another example of
interconnection between deterministic chaos and evolutionary
algorithms represents the research focused on the embedding of
chaotic dynamics into the evolutionary algorithms [5] - [7].

This paper shows a possibility how to generate the whole

control law by means of analytic programming (AP) (not only
to optimize several parameters) for the purpose of stabilization
of the selected discrete chaotic system. The synthesis of control
is inspired by the Pyragas’s delayed feedback control technique
[8], [9].

AP is a superstructure of EAs and is used for synthesis of
analytic solution according to the required behaviour. Control
law from the proposed system can be viewed as a symbolic
structure, which can be synthesized according to the
requirements for the stabilization of the chaotic system.

Firstly, AP is explained, and then a problem design is
proposed. The next sections are focused on the description of
used soft-computing tools and the design of cost function.
Results and conclusion follow afterwards.

II. MOTIVATION
This work is focused on the expansion of AP application

for synthesis of a whole robust control law instead of
parameters tuning for existing and commonly used control
technique to stabilize desired Unstable Periodic Orbits (UPO)
of selected discrete chaotic system.

This work represents an extension of previous research
[10], [11], with the application to the chaotic discrete Lozi map

In general, this research is concerned to stabilize Lozi map
chaotic system at p-1 UPO, which is a stable state, utilizing the
synthesized control law.

III. LOZI MAP
Lozi map is the selected example of chaotic systems, which

represents the simple discrete two-dimensional chaotic map.
The x, y plot of the Lozi map is depicted in Fig. 1. The map
equations are given in (1). The parameters are: a = 1.7 and
b = 0.5 as suggested in [12], [13]. The chaotic behavior of the
uncontrolled Lozi map is depicted in Fig. 2.

nn

nnn

XY
bYXaX

=

+−=

+

+

1

1 1 (1)
This work was supported by European Regional Development Fund

under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089 and by Internal
Grant Agency of Tomas Bata University under the project
No. IGA/FAI/2013/012.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.9 Volume 15, 2021

E-ISSN: 2074-1294 50

Fig. 1. x, y plot of the Lozi map

Fig. 2. Iterations of the uncontrolled Lozi map (variable x)

IV. ORIGINAL CHAOS CONTROL METHOD
This work is focused on explanation of application of AP

for synthesis of a whole control law instead of demanding
tuning of any original method control law to stabilize desired
Unstable Periodic Orbits (UPO). In this research desired UPO
is only p-1 (the fixed point, which represents the stable state).
Original Time-Delay-Auto-Synchronization (TDAS) delayed
feedback control method was used in this research as an
inspiration for synthesizing a new feedback control law by
means of evolutionary techniques and for preparation of sets of
basic functions and operators for AP.

The original control method – TDAS has form (2) and its
discrete form is given in (3).

 ()[])()(txtxKtF −−= τ (2)

 ()nmnn xxKF −= − (3)

Where: K is adjustable constant, F is the perturbation, dτ is
a time delay; and m is the period of m-periodic orbit to be
stabilized. The perturbation nF in equation (3) may have
arbitrarily large value, which can cause diverging of the
system. Therefore, nF should have a value between maxF− ,

maxF . In this work a suitable maxF value was taken from the
previous research.

V. USED SOFT-COMPUTING TOOLS
This section gives the brief overview and the description of

used soft-computing tools. This research utilized the symbolic
regression tool, which is analytic programming and two
evolutionary algorithms: Self-Organizing Migrating Algorithm
[14]; and Differential Evolution [15].

Future simulations expect a usage of soft computing GAHC
algorithm (modification of HC12) [16] and a CUDA
implementation of HC12 algorithm [17].

A. Analytic Programming
Basic principles of the AP were developed in 2001. Until

that time only genetic programming (GP) and grammatical
evolution (GE) had existed. GP uses genetic algorithms while
AP can be used with any evolutionary algorithm,
independently on individual representation. AP represents
synthesis of analytical solution by means of evolutionary
algorithms. Various applications of AP are described in [18] -
[21].

The core of AP is based on a special set of mathematical
objects and operations. The set of mathematical objects is set of
functions, operators and so-called terminals (as well as in GP),
which are usually constants or independent variables. This set
of variables is usually mixed together and consists of functions
with different number of arguments. Because of a variability of
the content of this set, it is called here “general functional set”
– GFS. The structure of GFS is created by subsets of functions
according to the number of their arguments. For example
GFSall is a set of all functions, operators and terminals, GFS3arg
is a subset containing functions with only three arguments,
GFS0arg represents only terminals, etc. The subset structure
presence in GFS is vitally important for AP. It is used to avoid
synthesis of pathological programs, i.e. programs containing
functions without arguments, etc. The content of GFS is
dependent only on the user. Various functions and terminals
can be mixed together [20].

The second part of the AP core is a sequence of
mathematical operations, which are used for the program
synthesis. These operations are used to transform an individual
of a population into a suitable program. Mathematically stated,
it is a mapping from an individual domain into a program
domain. This mapping consists of two main parts. The first part
is called discrete set handling (DSH) [21] and the second one
stands for security procedures which do not allow synthesizing
pathological programs. The method of DSH, when used, allows
handling arbitrary objects including nonnumeric objects like
linguistic terms {hot, cold, dark…}, logic terms (True, False)
or other user defined functions. In the AP DSH is used to map

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.9 Volume 15, 2021

E-ISSN: 2074-1294 51

an individual into GFS and together with security procedures
creates the above mentioned mapping which transforms
arbitrary individual into a program.

AP needs some evolutionary algorithm that consists of
population of individuals for its run. Individuals in the
population consist of integer parameters, i.e. an individual is an
integer index pointing into GFS. The individual contains
numbers which are indices into GFS. The detailed description
is represented in [20].

AP exists in 3 versions – basic without constant estimation,
APnf – estimation by means of nonlinear fitting package in
Mathematica environment and APmeta – constant estimation by
means of another evolutionary algorithms; meta means meta-
evolution.

B. Self-Organizing Migrating Algorithm (SOMA)
Self-Organizing Migrating Algorithm is a stochastic

optimization algorithm that is modeled on the basis of social
behavior of cooperating individuals [14]. It was chosen
because it has been proven that the algorithm has the ability to
converge towards the global optimum [14] and due to the
successful applications together with AP [22], [23].

SOMA works on a population of candidate solutions in
loops called migration loops. The population is initialized
randomly distributed over the search space at the beginning of
the search. In each loop, the population is evaluated and the
solution with the highest fitness becomes the leader L. Apart
from the leader, in one migration loop, all individuals will
traverse the input space in the direction of the leader. Mutation,
the random perturbation of individuals, is an important
operation for evolutionary strategies (ES). It ensures the
diversity amongst the individuals and it also provides the
means to restore lost information in a population. Mutation is
different in SOMA compared with other ES strategies. SOMA
uses a parameter called PRT to achieve perturbation. This
parameter has the same effect for SOMA as mutation has for
genetic algorithms.

The novelty of this approach is that the PRT Vector is
created before an individual starts its journey over the search
space. The PRT Vector defines the final movement of an active
individual in search space.

The randomly generated binary perturbation vector controls
the allowed dimensions for an individual. If an element of the
perturbation vector is set to zero, then the individual is not
allowed to change its position in the corresponding dimension.

An individual will travel a certain distance (called the
PathLength) towards the leader in n steps of defined length. If
the PathLength is chosen to be greater than one, then the
individual will overshoot the leader. This path is perturbed
randomly.

C. Differential evolution
DE is a population-based optimization method that works

on real-number-coded individuals [24] - [26]. DE is quite
robust, fast, and effective, with global optimization ability. It
does not require the objective function to be differentiable, and

it works well even with noisy and time-dependent objective
functions. Description of used DERand1Bin strategy is
presented in (4). Please refer to [15], [26] for the description of
all other strategies.

 ()GrGrGrGi xxFxu ,3,2,11, −⋅+=+ (4)

VI. COST FUNCTION DESIGN
The proposal of the basic cost function (CF) is in general

based on the simplest CF, which could be used problem-free
only for the stabilization of p-1 orbit. The idea was to minimize
the area created by the difference between the required state
and the real system output on the whole simulation interval – τi.
This CF design is very convenient for the evolutionary
searching process due to the relatively favorable CF surface.
Nevertheless, this simple approach has one big disadvantage,
which is the including of initial chaotic transient behavior of
not stabilized system into the cost function value. As a result of
this, the very tiny change of control method setting for
extremely sensitive chaotic system causing very small change
of CF value, can be suppressed by the above-mentioned
including of initial chaotic transient behavior

But another universal cost function had to be used for
stabilizing of extremely sensitive chaotic system and for having
the possibility of adding penalization rules. It was synthesized
from the simple CF and other terms were added.

This CF is in general based on searching for desired
stabilized periodic orbit and thereafter calculation of the
difference between desired and found actual periodic orbit on
the short time interval - τs (40 iterations for higher order UPO)
from the point, where the first minimal value of difference
between desired and actual system output is found (i.e. floating
window for minimization – see Fig. 3.).

Fig. 3. “Floating window” for minimization

Such a design of universal CF should secure the successful
stabilization of either p-1 orbit (stable state) or higher periodic
orbits anywise phase shifted. Furthermore, due to CF values
converging towards zero, this CF also allows the using of
decision rules, avoiding very time demanding simulations. This

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.9 Volume 15, 2021

E-ISSN: 2074-1294 52

rule stops EA immediately, when the first individual with good
parameter structure is reached, thus the value of CF is lower
then the acceptable (CFacc) one. Based on the numerous
experiments, typically CFacc = 0.001 at time interval τs = 20
iterations, thus the difference between desired and actual output
has the value of 0.0005 per iteration – i.e. successful
stabilization for the used control technique. The CFBasic has the
form (5):

 ∑
=

−+=
2

1
1

τ

τt
ttBasic ASTSpenCF , (5)

where:

TS - target state, AS - actual state

τ1 - the first min value of difference between TS and AS

τ2 – the end of optimization interval (τ1+ τs)

pen1= 0 if τi - τ2 ≥ τs

pen1= 10*(τi - τ2) if τi - τ2 < τs (i.e. late stabilization).

VII. RESULTS
Analytic Programming requires some EA for its run. In this

paper, APmeta version was used. Meta-evolutionary approach
means usage of one main evolutionary algorithm for AP
process and the second algorithm for coefficient estimation,
thus to find optimal values of constants in the evolutionary
synthesized control law.

SOMA algorithm was used for the main AP process and
DE was used in the second evolutionary process. Settings of
EA parameters for both processes given in Table 1 and Table 2
were based on performed numerous experiments with chaotic
systems and simulations with APmeta.

TABLE I. SOMA SETTINGS FOR AP

SOMA Parameter Value
PathLength 3
Step 0.11
PRT 0.1
PopSize 50
Migrations 4
Max. CF Evaluations (CFE) 5345

TABLE II. DE SETTINGS FOR META-EVOLUTION

DE Parameter Value
PopSize 40
F 0.8
CR 0.8
Generations 150
Max. CF Evaluations (CFE) 6000

The data set for AP required only constants, operators like
plus, minus, power and output values nx and 1−nx . The set of
elementary functions for AP was inspired in the original
delayed feedback chaos control method TDAS (See section 4;

(2) and (3)). Thus AP dataset consists only of simple functions
(operators) with two arguments and functions with zero
arguments, i.e. terminals (constants and system output values).
Functions with one argument, e.g. Sin, Cos, etc.; were not
required.

Basic set of elementary functions for AP:

GFS2arg= +, -, /, *, ^

GFS0arg= datan-1 to datan, K

Total number of cost function evaluations for AP was 5345,
for the second EA it was 6000, together 32.07 millions per
each simulation.

Following description of two selected experiments results
contains illustrative examples of direct output from AP –
synthesized control laws without coefficients estimated (6) and
(8); further the notations with simplification after estimation by
means of second algorithm DE (7) and (9), Table 3 with
corresponding CF values and the average error value between
actual and required system output, and finally Fig. 4 - 7 with
simulation results.

TABLE III. COST FUNCTION VALUES AND SIMPLE STATISTICS

Experiment No. CF Value Avg. Error per iteration
Experiment 1 6.2992·10-15 3.1496·10-16
Experiment 2 1.4567·10-6 7.2836·10-8

A. Experiment 1

 ()() nnnnnn xxxxxKF −−−= −− 111 22 (6)

 ()() nnnnnn xxxxxF −−−= −− 11 218253.1 (7)

Fig. 4. Simulation results – Experiment 1, variable x of Lozi map

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.9 Volume 15, 2021

E-ISSN: 2074-1294 53

Fig. 5. Simulation results – Experiment 1, variable y of Lozi map

B. Experiment 2

 () 1112111 2 −−−−− +++−= nnnnnnn xxxxKxxKF (8)

 () 11111 8473.721492.16 −−−−− +++−= nnnnnnn xxxxxxF (9)

Fig. 6. Simulation results – Experiment 2, variable x of Lozi map

Fig. 7. Simulation results – Experiment 2, Variable y of Lozi map

VIII. CONCLUSIONS
This paper deals with a synthesis of a new universal robust

control law by means of AP for stabilization of selected
discrete chaotic system at fixed point. Two-dimensional Lozi
map as the example of discrete chaotic systems were used in
this research.

Obtained results reinforce the argument that AP is able to
solve this kind of difficult problems and to produce a new
robust synthesized control law in a symbolic way securing
desired behaviour and precise stabilization of the selected
chaotic systems.

Presented two simulation examples show two different
results. Extremely precise stabilization and simple control law
in the first case and not very precise and slow stabilization and
relatively complex notation of chaotic controller in the second
case. This fact lends weight to the argument, that AP is a
powerful symbolic regression tool, which is able to strictly and
precisely follow the rules given by cost function and synthesize
any symbolic formula, in the case of this research – the
feedback controller for chaotic system.

The future research will include the development of better
cost functions, testing of different AP data sets, and performing
of numerous simulations to obtain more results and produce
better statistics, thus to confirm the robustness of this approach.

REFERENCES
[1] B. Liu, L. Wang, Y.H. Jin, D.X. Huang and F. Tang, “Control and

synchronization of chaotic systems by differential evolution algorithm”,
Chaos, Solitons & Fractals, Volume 34, Issue 2, 2007, pp. 412-419,
ISSN 0960-0779.

[2] I. Zelinka, R. Senkerik and E. Navratil, “Investigation on evolutionary
optimization of chaos control”, Chaos, Solitons & Fractals, Volume 40,
Issue 1, 2009, pp. 111-129.

[3] R. Senkerik, I. Zelinka, D. Davendra and Z. Oplatkova, “Utilization of
SOMA and differential evolution for robust stabilization of chaotic
Logistic equation”, Computers & Mathematics with Applications,
Volume 60, Issue 4, 2010, pp. 1026-1037.

[4] K. Pyragas, “Control of chaos via extended delay feedback”, Physics
Letters A, vol. 206, 1995, pp. 323-330.

[5] I. Aydin, M. Karakose and E. Akin, “Chaotic-based hybrid negative
selection algorithm and its applications in fault and anomaly detection”,
Expert Systems with Applications, Vol. 37, No. 7, 2010, pp. 5285–5294.

[6] D. Davendra, I. Zelinka and R. Senkerik, “Chaos driven evolutionary
algorithms for the task of PID control”, Computers & Mathematics with
Applications, Vol. 60, No. 4, 2010, 1088-1104, ISSN 0898-1221.

[7] M. Pluhacek, R. Senkerik, D. Davendra, Z. Kominkova Oplatkova and
I. Zelinka, “On the behavior and performance of chaos driven PSO
algorithm with inertia weight”, Computers & Mathematics with
Applications, 2013, (article in press), ISSN 0898-1221, DOI
10.1016/j.camwa.2013.01.016.

[8] W. Just, “Principles of Time Delayed Feedback Control”, In: Schuster
H.G., Handbook of Chaos Control, Wiley-Vch, 1999.

[9] K. Pyragas, “Continuous control of chaos by self-controlling feedback”,
Physics Letters A, 170, 1992, pp. 421-428.

[10] R. Senkerik, Z. Oplatkova, I. Zelinka and D. Davendra, “Synthesis of
feedback controller for three selected chaotic systems by means of
evolutionary techniques: Analytic programming”, Mathematical and
Computer Modelling, Vol. 57, No. 1 - 2, 2013, pp. 57 – 67, ISSN 0895-
7177.

[11] Z. Kominkova Oplatkova, R. Senkerik, I. Zelinka and M. Pluhacek,
“Analytic programming in the task of evolutionary synthesis of a
controller for high order oscillations stabilization of discrete chaotic

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.9 Volume 15, 2021

E-ISSN: 2074-1294 54

systems”, Computers & Mathematics with Applications, ISSN 0898-
1221, 2013, (articele in press), DOI 10.1016/j.camwa.2013.02.008.

[12] R.C. Hilborn “Chaos and Nonlinear Dynamics: An Introduction for
Scientists and Engineers”, Oxford University Press, 2000, ISBN: 0-19-
850723-2.

[13] J.C. Sprott, “Chaos and Time-Series Analysis“, Oxford University Press,
2003.

[14] I. Zelinka, “SOMA – Self Organizing Migrating Algorithm”, In: New
Optimization Techniques in Engineering, (B.V. Babu, G. Onwubolu
(eds)), Springer-Verlag, 2004, ISBN 3-540-20167X.

[15] K. Price, R.M. Storn and J. A. Lampinen, “Differential Evolution: A
Practical Approach to Global Optimization”, Springer, 2005.

[16] R: Matousek and E. Zampachova, “Promising GAHC and HC12
algorithms in global optimization tasks”, Optimization Methods &
Software, Vol. 26, No. 3, 2011, pp. 405‐419. ISSN 1055-6788.

[17] R. Matousek, “HC12: The Principle of CUDA Implementation”. In
Proceedings of 16th International Conference On Soft Computing
Mendel 2010, 2010, pp. 303‐308. ISBN 978‐80‐214‐4120‐ 0.

[18] I. Zelinka, Ch. Guanrong and S. Celikovsky, “Chaos Synthesis by
Means of Evolutionary algorithms”, International Journal of Bifurcation
and Chaos, Vol. 18, No. 4, 2008, pp. 911–942

[19] Z. Oplatkova and I. Zelinka, “Investigation on Evolutionary Synthesis of
Movement Commands”, Modelling and Simulation in Engineering, Vol.
2009 (2009), Article ID 845080, 12 pages, Hindawi Publishing
Corporation, ISSN: 1687-559.

[20] I. Zelinka, D. Davendra, R. Senkerik, R. Jasek and Z. Oplatkova,
“Analytical Programming - a Novel Approach for Evolutionary
Synthesis of Symbolic Structures”, In Evolutionary Algorithms, Eisuke
Kita (Ed.), InTech, 2011.

[21] B. Chramcov and P. Varacha, “Usage of the Evolutionary Designed
Neural Network for Heat Demand Forecast”. In: Proceedings of
Nostradamus 2012: Modern Methods of Prediction, Modeling and
Analysis of Nonlinear Systems, 2013, pp. 103-122. ISBN 978-3-642-
33226-5.

[22] P. Varacha and R. Jasek, “ANN Synthesis for an Agglomeration Heating
Power Consumption Approximation”. In: Recent Researches in
Automatic Control. Montreux : WSEAS Press, p. 239-244. ISBN 978-1-
61804-004-6.

[23] P. Varacha and I. Zelinka, “Distributed Self-Organizing Migrating
Algorithm Application and Evolutionary Scanning”. In: Proceedings of
the 22nd European Conference on Modelling and Simulation ECMS.
2008, p. 201-206. ISBN 0-9553018-5-8.

[24] J. Lampinen, I. Zelinka, “New Ideas in Optimization – Mechanical
Engineering Design Optimization by Differential Evolution”, Volume 1.
London: McGraw-hill, 1999, 20 p., ISBN 007-709506-5

[25] K. Price, “An Introduction to Differential Evolution”, In: (D. Corne, M.
Dorigo and F. Glover, eds.) New Ideas in Optimization, London:
McGraw-Hill, pp. 79–108, 1999.

[26] K. Price and R. Storn, “Differential evolution homepage”, 2001,
http://www.icsi.berkeley.edu/~storn/code.html, [Accessed 01/03/2013].

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.9 Volume 15, 2021

E-ISSN: 2074-1294 55

