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Abstract—In this paper, we intend to introduce a new curved
surface representation that we qualify by three-polar. It is
constructed by the superposition of the three geodesic potentials
generated from three reference points of the surface. By consider-
ing a pre-selected levels set of this superposition, invariant points
are obtained. The accuracy of the three-polar representation for
3D human faces description is performed in the mean of the
Hausdorff distance. A comparison between this representation
and the one based on the level curves around the nose tip is
established in the sense of the robustness under errors on the
nose tip positions.
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I. INTRODUCTION

3D shape analysis and description has received a
great deal of attention over the last few years due to
the increasing development of 3D sensors, their low cost
and the good 3D data quality they provide. Actually, R3

surfaces description becomes a necessary task for pattern
recognition, computer vision and 3D movement analysis. In
practice, the data obtained from 3D sensors is not organized
or partially organized like the 3D triangular mesh known
as the conventional 3D discrete surface representation.
Therefore, one of the major issues faced today in the three
dimensional imaging field is the construction of a surface
representation that ensures several properties. The invariance
under some transformations and different parametrisations,
the independence from the point of view and the robustness to
some local variations in shape consist the most important ones.
In the litterature, the three dimensional surface description
methods can be classified into four major categories: the
transform based approaches, the 2D views, the graph ones
and those based on statistical features.

The transform based approaches consist in the application of
specific transformations on the surface after its conversion
onto 3D voxels or a spherical grid. The most known
transformations are 3D Fourier [1], the 3D Radon [2], the
angular radial transform [3], the rotation-invariant spherical
harmonics [4], the uniformization [5] and the spherical
wavelet descriptors [6].

For the two dimensional view based methods, a collection of
2D projections from canonical viewpoints is realized. Then,
planar image descriptors are computed as Zernike moments
[7] and Fourier descriptors [8].

The graph based approaches have the potential to code
geometrical and topological shape properties in an intuitive
manner. However, they are complex, in general harder to be
constructed and not applicable easily to all 3D objects. The
usually used descriptors are Reeb graphs [9] and the skeletal
ones [10].

For the fourth description category, numerical attributes
of the 3D object are collected. Several past works adopted
this approach for invariant features extraction like the works
of high curvature area determination [11], the generalized
shape distribution [12], the extend Gaussian image [13], the
CIRCON representation [28] and the canonical 3D Hough
transform descriptor [14]. Bannour et al. [15] proposed a new
surface pseudo-reparametrisation by the extraction of a curves
network determined by iso-curvature features computation.
Other methods impose the use of local coordinates by
the exponential map around a point belonging to the two
dimensional manifold obtained by wrapping a neighborhood
of this point by the polar coordinates of the tangent plane at
the same point or by constructing a set of geodesic circles
relative to a given reference point [16], [17], [18]. The
stability of these last methods remains dependent on the
robustness of the reference point detection. In recent works,
Jribi et al. [27] and Ghorbel et al. [26] proposed a new
representation that they called a bipolar one. It consists on the
superposition of the two geodesic potentials generated from
two reference points instead of one reference point. The goal
was to provide a more stability to the representations based
on only one reference point [16], [17], [18].

We propose in this paper a novel curved surface representation
that we qualify by three-polar. It is an attempt to generalize
what is known by local coordinates around a reference point.
It is constructed from the superposition of the three geodesic
potentials generated from three reference points of the surface.
The proposed representation is obtained by sampling the
sum of these three geodesic potentials. The accuracy of such
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representation for 3D human faces’ description is proved. A
comparison between the proposed representation and the one
based on only one reference point (the nose tip) is established
in the sense of the robustness under errors on the reference
points positions.

Thus, this paper will be structured as follows: We present
in the second section the mathematical formulation of the
three-polar representation. The used similarity metric to
compare between shapes is illustrated in the third section. We
show in the fourth section the performance of the three-polar
representation for 3D faces’ description. In the last section,
a comparison between the three-polar representation and the
unipolar one in the sense of the robustness under errors on
the nose tip positions is established.

II. THE THREE-POLAR REPRESENTATION:
MATHEMATICAL FORMULATION

We consider here a two dimensional differential manifold
S and we denote by Ur the geodesic potential generated from
a reference point r. For each point p of S, Ur(p) is the length
of the geodesic curve joining p to r. This function is well
defined since a geodesic curve between any two points of the
surface always exists. For a given real value λ, the points
with geodesic potential values equal to λ form a curve that
we denote by Cλr . It belongs to the surface and is called the
geodesic of level λ.

We describe here a representation that we call a three-
polar one. It is constructed from the superposition of the
three geodesic potentials generated from the three reference
points. Thus, let consider {ri, i = 1..3} three points of
the two differential manifold S. Let {Uri , i = 1..3} be
their corresponding potentials functions. We denote by
Ur3 =

∑3
i=1 Uri the geodesic potential constructed by

the sum of the three geodesic potentials generated from
{ri, i = 1..3} .

Let p∗ be a point of S. Therefore there exist {λ∗i , i = 1..3}
such that p∗ belongs to the three level curves {Cλ

∗
i

r , i = 1..3}.
Let U∗r3 = min{Ur3}. The points of the surface with the same
geodesic sum are invariant. We construct a system of invariant
points under the rotations’ group SO(3) by considering a
levels set of this sum. The representation that we propose is
constructed by varying these levels from 0 to the integer K.
This integer represents the maximum value determined by the
interest region extend which lies between the three reference
points and its neighborhood on the surface. Therefore, the
descriptor can be written as following:

Mk
r3(S) = {p∗ ∈ S;Ur3(p∗) = U∗r3+

k

K
(αK−U∗r3), k = 0..K}

(1)
Where αK is the maximum of geodesic sum.

III. SIMLARITY METRIC

It is important to define the used similarity metric to
compare between different shapes. The well known Hausdorff
shape distance introduced by Ghorbel in [20], [21] is chosen.
Following the same process, we denote by G the group
representing all possible normalized parametrisations of

surfaces which can be the real plane R2 or the unit sphere
S2. we consider the space of all surface pieces as the set of
all 3D objects assumed diffeomorphic to G which can be
assimilated to a subspace of L2

R3(G) formed by all square
integrated maps from G to R3. The direct product of the
Euler rotations group SO(3) by the group G , acts on such
space in the following sense:

SO(3)×G× L2
R3(G)→ L2

R3(G) (2)

{A, (u0, v0), S(u, v)} → AS(u+ u0, v + v0)

The 3D Hausdorff distance ∆ can be written for every
S1 and S2 belonging to L2

R3(G) and g1 and g2 to SO(3) as
follows:

∆(S1, S2) = max(ρ(S1, S2), ρ(S2, S1)) (3)

Where:

ρ(S1, S2) = sup
g1∈SO(3)

inf
g2∈SO(3)

‖ g1S1 − g2S2 ‖L2 (4)

‖ S ‖L2 denotes the norm of the functional banach space
L2
R3(G).

Due to the fact that the euclidean rotations preserve this norm,
it is easy to show that this distance is reduced to the following
quantity:

∆(S1, S2) = inf
h∈SO(3)

‖ S1 − hS2 ‖L2 (5)

After that, we consider a normalized version of ∆ so that
the variations of this normalized distance are confined to the
interval [0,1]. We try to achieve the real value of this distance
with an adaptative version of the well known Itertive Closest
Point (ICP) algorithm [19].

IV. HUMAN FACE DESCRIPTION WITH THE THREE-POLAR
REPRESENTATION

The description and the analysis of three dimensionnal
shapes have become more and more attracting especially with
the availability of 3D shape scanners. The 3D face description
has received a great deal of attention over the last few years
because of its various application domains. The biometrics
are one of the most important applications. We test here the
accuracy of the three-polar representation on the 3D meshes
of the database Bosphorus [22] in the sense of the Hausdorff
distance. We use a total of ten faces that can be grouped into
two classes. A first class contains five faces of the same person
with different expressions and a second one contains five faces
of different persons.

A. The choice and the automatic extraction of the reference
points

The first step of the three-polar representation construction
consists on the choice of the reference points from the face.
There is a general agreement that eyes are the most important
facial features [25]. Indeed, they are a crucial source of
information about the state of human being. Moreover, their
appearance is less variant to certain face changes. Therefore,
we choose to use the two outer corners of the eyes as reference
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points for the proposed three-polar representation. Since the
nose tip is commonly used for many facial surfaces’ descrip-
tion [16], [17], [18], it will be also chosen as a reference point
in the three-polar representation. For the automatic extraction
of these points, we refer to the work of Szeptycki et al. [24].
This method is based on a curvatures analysis with the use of
a generic face model generated from a set of faces.

B. Geodesic potentials computation

Having extracted the reference points, the geodesic dis-
tances between any reference points and each vertex of the
surface should be computed. Several past methods have been
proposed in the litterature to compute distances on discrete
meshes. This computation must take in consideration the trade
off between the the computational cost and the accuracy. We
use in the present work a simple method in which the geodesic
distance is approximated by Dijkstra’s algorithm [23] based on
the edges length. This algorithm has a computational cost of
order O(n log n). n is the number of vertices in the mesh.

C. Accuracy of the three-polar representations for human face
description

After determining the reference points and computing the
geodesic distances from these points, the next step consists
on the extraction of the levels set of the geodesic sum for the
construction of the three-polar representation.

The figure 1 shows the proposed representation with
different resolutions which are linked to the number of levels
in the representation construction.

Fig. 1. Row 1: A neutral face. Row 2: A face with a surprise expression. (a)
The three-polar representation with 9 levels. (b) The three-polar representation
with 19 levels. (c) The three-polar representation with 29 levels.

To illustrate the effectiveness of the joint introduction in this
context of the two notions: the three-polar representation and
the Hausdorff distance, the matrix representing the pairwise
normalized distances between the ten faces is computed.
The first five faces correspond to the first class. The rest
belongs to the second class. The figure 2 illustrates this matrix.

This matrix shows that the distances between the faces
of the same persons are smaller compared with the ones
computed between faces of different individuals.

Fig. 2. Matrix of pairwise normalized Hausdorff distances between the ten
facial surfaces. The first five faces correspond to the same person while others
belong to different individuals

V. ROBUSTNESS UNDER ERRORS ON REFERENCE POINTS
POSITIONS

We propose to make here a comparison between the
three-polar representation and the unipolar one based on only
one reference point which corresponds to the nose tip. This
comparison will be performed in the sense of the robustness
under error on their common reference point (the nose tip)
positions.

To evaluate this robustness, we assume that the nose tip
is moved by some geodesic distance around the same point
without errors of extraction. The figure 3 illustrates the
unipolar representation in two cases: a good extraction of the
nose tip (a), and with error of extraction (b).

The figure 4 shows the three-polar representation for the
same two cases with the same errors of the nose tip extraction.

The superposition of the two representations (with and
without errors of the nose tip extraction) is illustrated in the
figure 5 for the three-polar representation and the unipolar one.

This figure tends to prove that the three-polar representation
is more robust than the unipolar one under errors on the nose
tip positions. Indeed, for the three-polar representation, there
is a better superposition of the level curves (with and without
errors of extraction of the nose tip) than the unipolar one.

In order to more illustrate this robustness under the
small distortions of the nose tip positions, this point is
chosen randomly in a small neighborhood around the same
point without errors. The matrices representing the pairwise
normalized distance are computed for the two representations.
The figure 6 illustrates these matrices.

From the comparison of these two matrices, we can
note that the three-polar representation is more robust than the
unipolar representation under errors of the nose tip positions.
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Fig. 3. Row 1: A face with a surprise expression. Row 2: A face with a happiness expression (a) The unipolar representation with a good extraction of the
nose tip. (b) The unipolar representation with errors on the nose tip positions. (c): The superposition of the two representations (with and without errors).

Fig. 4. Row 1: A face with a surprise expression. Row 2: A face with a happiness expression. (a) The three-polar representation with a good extraction of the
nose tip. (b) The three-polar representation with errors on the nose tip positions. (c): The superposition of the two representations (with and without errors).

VI. CONCLUSION

We have proposed in this paper a novel curved surface
representation. It is called a three-polar one since it consists
on the superposition of the three geodesic potentials generated
from three reference points of the surface. By sampling this
continuous representation, a levels set of this superposition
is computed. The accuracy of this representation for human
face description is proved. Its robustness under errors on one
reference point positions is established.
We intend in future works to perform the experimentation
on a larger number of faces. We propose also to apply the
representation for other types of surfaces (medical, archeolog-
ical,...). Another track of future works can be the determination
of the optimal number of the level curves of the proposed
representation.
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surfaces de R3: Application à la description du visage par une approche
3D, Traitement du signal (TS), vol. 29, No 1-2, 2012, pp. 51-63.

[28] C. Torre-Ferrero, S. Robla, E. G. Sarabia and J. R. Llata : 3D
Registration by Using an Alternative 3D Shape Representation, 7th

WSEAS Int. Conf. on Signal Processing, Computational Geometry and
Artificial Vision, Athens, Greece, 2007.

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS 
DOI: 10.46300/91013.2021.15.10 Volume 15, 2021 

E-ISSN: 2074-1294 61




