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Abstract—Intellectual Properties reuse has gained widespread 

acceptance in System-On-Chip design to manage the complexity 

and shorten the time-to-market. However the need for a standard 

representation that permits IPs classification, characterization, 

and integration is still a big challenge. To address this problem, 

we propose to develop an IPs reuse specific ontology that 

facilitates IPs reuse at many levels of abstraction and 

independently from any design language or tool. Our ontology is 

built using the Protégé-OWL tool 
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I.  INTRODUCTION 

A System On Chip (SOC) [7] can be defined as an 
Integrated Circuit that can integrate in the same chip a 
diversity of programmable/nonprogrammable components. A 
typical SOC involves general purpose processors to execute 
embedded software and Real Time Operating System (RTOS) 
code (ex. ARM), DSPs (Digital Signal Processors), 
microcontrollers, Application Specific Integrated Circuit 
(ASIC) to execute specific tasks, reconfigurable parts like 
FPGA (Field Programmable Gate Arrays) for reconfigurable 
computing, memories (ex. RAM, ROM, Flash, I-cache, D-
cache), and communication infrastructure. In addition to 
digital parts, SOC can also integrate analog, RF (Radio 
Frequencies) blocks, Voltage regulators, power management 
circuits, and Inputs/outputs interfaces.  

Most embedded systems are nowadays implemented as 
SOCs. Such a solution can decrease the implementation cost 
and the power consumption but in the same time it faces a big 
challenge with regard to the effort of design including 
verification cost and time-to-market pressure. One way to 
manage the ever increasing complexity in SOC design is 
through proper Intellectual Properties (IPs) (or virtual 
components) reuse [2]. These design components are called 
“Intellectual Property” blocks because they are traded as rights 
to use and copy the design. IPs are predesigned, parameterized 
and verified components which are delivered by many vendors 
(third-party vendors). Normally, industry requires designing 
all these IPs under one platform or even within the same 
company. Under IP reuse platform, design efficiency is 
achieved by ease of plug-and-play. IP cores may include 
embedded processors, memory blocks, interface blocks, 
analog blocks, and components that handle application 

specific processing functions. Corresponding software 
components are also provided in a reusable form and may 
include RTOS and kernels, library functions, and device 
drivers. IP reuse based-design is becoming recently a standard 
for time-to-market driven industry.  

Unfortunately, this IP based design is not free of 
considerable effort. Most IPs are incompatible and the cost of 
integration may be non reasonable. How to integrate these IPs 
in one chip is a tough problem. In fact, IPs may be a software 
component (legacy code written in assembly or a high level 
language such C, C++, JAVA, etc.) or a hardware component 
which in turn can be soft (VHDL code), hard or firm, 
described in Transaction Level (SystemC), algorithmic 
(behavioral) level (ex. VHDL, Verilog), RTL (Register 
Transfer Level) or logical level. Even two IPs are described in 
the same abstraction level and expressed in the same language; 
they can be incompatible in their Input/Output signals bit size, 
horologe frequency, voltage, timing constraints, and tools used 
to create these cores (ex. Simulation, performance estimation, 
and synthesis tools). The main steps of the IP reuse process, 
before the effective integration of the IP component into a 
design, are: IP creation, IP qualification, IP classification and 
search, IP transfer, and IP evaluation. The integration process 
involves connecting the IP cores to the communication 
network, implementing design-for-test (DFT) techniques and 
using methodologies to verify and validate the overall system-
level design. A well defined reuse methodology must takes 
into account the reuse in various dimensions: Platform reuse, 
IPs reuse, verification reuse, tools and environments reuse, 
and expertise reuse. The purpose of this paper is to address IPs 
reuse and integration issues in SOC design by developing IP 
reuse specific ontology. Ontology is used to capture 
knowledge about some domain of interest. It describes the 
concepts and the relationships that hold between these 
concepts in the specific domain.  In the context of SOCs 
domain, defining ontology may bring many advantages to IPs 
vendors, customers and designers who collaborate via internet 
to create SOCs by reusing existing IPs that satisfy the 
customers’ requirements. A unified representation of concepts, 
relations, and semantics specific to SOC domain may facilitate 
the interoperability and integration between reusable 
platforms, IPs, tools and expertise. The rest of the paper is 
organized as follows: section two is devoted to related works 
on IPs reuse and integration. Section three presents the 
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concept of IPs. Section four discusses the IPs integration 
strategies for SOC design. Section five introduces the concept 
of ontology and some concepts that are related to IPs reuse 
and the IPs integration flow. Our proposed ontology is 
developed in section six using the Protégé tool for ontology 
editing before the conclusion and perspectives. 

II. RELATED WORK 

The literature on IPs reuse is very rich. Here we try to 
mention some pertinent works. The VSI Alliance (VSIA) [13] 
specifies interface standards and specifications that facilitate 
the integration of IPs at both the functional level (interface 
protocols) and physical level from multiple sources for the 
development of SOCs. The OCP International Partnership 
Association, Inc. (OCP-IP) [12] promotes and supports the 
open core protocol (OCP) as the complete socket standard for 
rapid creation and integration of interoperable IPs. The IP-
XACT standard [1] is an emerging IP reuse strategy from the 
Spirit Consortium. IP-XACT defines an XML schema for 
describing the buses, the ports, the configuration and the 
properties of reusable hardware cores in a vendor neutral 
manner and to facilitate core reuse at a high level of 
abstraction. Authors in [1], present CHREC XML, a XML 
schema that facilitate reconfigurable IPs reuse by encapsulating 
their details at multiple levels of abstraction namely RTL layer 
(the first layer), Data Type descriptions (the second layer) and 
Interface Operation Information (the third layer). The 
developed schema is independent from any design language or 
tool. An IP integration tool that allows a designer to select and 
integrate IP cores from a variety of languages/tools was also 
created based on this schema. The tool can automatically run 
the appropriate FPGA implementation tools to generate the 
FPGA bitstream. The work in [3], applied hardware design 
patterns for customizing and integrating the IP components into 
SOC designs. They formulate the role of design patterns in HW 
design, and describe their implementation using meta-
programming. Finally they proposed a Wrapper design pattern 
for adapting the behavior of the soft IPs, and demonstrate its 
application to the communication interface synthesis. Other 
works use XML either as a specification language for IPs 
modeling or as an intermediate format that is generated from 
HDL (Hardware Description Languages) such as VHDL, 
SystemC using XSLT for transformation rules specification [5, 
10]. 

Despite, all these efforts, we can state that there is no IP 
reuse specific ontology. Our ultimate objective is to develop an 
IPs reuse specific ontology that covers all IPs reuse 
requirements including IPs high level modeling, refinement, 
performance analysis, integration, and verification. In this 
paper, we are interested especially in IPs reuse at system level. 
According to our knowledge, our ontology will be the first one 
specific to IPs reuse domain. The contribution of this work is 
the definition of a novel IPs reuse specific ontology that takes 
into accounts both software and hardware IPs and deals with all 
possible kinds of incompatibilities between IPs. 

III. INTELLECTUAL PROPERTY (IP) 

An Intellectual Property (IP) or a Virtual Component (VC) 
is a reusable pre-designed and pre-verified component (core). 

An IP may be analog, mixed-signal, or digital. A digital IP can 
be programmable or not programmable. The IP programming 
can appear as software programming using an embedded 
processor or hardware programming using programmable logic 
cores such as FPGA. There are two essential kinds of software 
IP: 

• Close-to-Hardware such as RTOS, drivers, hardware-

dependent code, that is optimized to particular hardware 

platforms, often written in assembly.  

• HW-independent usually in C language. 
 Hardware IP can be delivered as hard IP, soft IP or firm IP. 

A hard IP is a fully customized hardware core where all its 
gates and interconnects are placed and routed, generally 
delivered as GDS-II files. The reusability at this level is very 
low. Soft IP is a fully synthesizable core with an RTL 
representation. The reusability at this level is high because it is 
technology independent. A firm IP is a hybrid of both hard and 
soft IPs. It is a hardware core with an RTL description together 
with some physical floor planning or placement. Extensions of 
IPs are behavioral IP, Transactional Level (TL) IP, Bus Cycle 
Accurate (BCA) IP and functional IP (FIP). A behavioral IP is 
a core with algorithmic description (ex. VHDL) suited for High 
Level Synthesis (HLS).  A transactional IP describes the core 
behavior and data transfers as a set of transactions (read, write) 
and usually described in SystemC TLM (Transaction Level 
Modeling). TL IPs may be timed or untimed. A BCA IP 
describes the IP core interface, not functionality. Timing is 
cycle accurate and tied to some global clock. It is used for the 
architecture (performance) evaluation. FIP is used at the system 
level design. It does not require a particular software or 
hardware architecture. This kind of IP offers a very high level 
of reusability. FIP IP may be timed or untimed. We note the 
existence of another class of IPs which is the verification IP. 
Verification IPs are designed to become a part of the testbench 
or verification environment and reused to ensure the 
correctness of the design. 

IV. IP INTEGRATION STRATEGIES 

Generally, there are three main strategies for the 
integration of IP components [11]. This classification is based 
on a clear separation between communication and 
computation for each component: 

A. Standard-based strategy 

In this strategy, IPs interfaces are compliant to a given 
standard. In this case, IPs may be integrated in the SOC 
without requiring any functional adaptation.  

B. Communication Synthesis Strategy 

Used if components to be interconnected have 
heterogeneous interfaces. In this case interface adapters 
(wrappers) are generated and inserted between the 
components. For programmable components, interface 
adaptation requires the development of software wrappers 
(device drivers) to match the application software and the 
RTOS to the communication infrastructure. 
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C. IP derivation strategy 

Used when the source code (using an HDL, for hardware 
components, or a programming language, for software ones) of 
the IP components is available and may be directly modified, 
so that a new component may be derived from the previous 
one. 

V. ONTOLOGIES 

Ontology can be defined as an explicit specification of a 
conceptualization [4]. It is concerned with making 
representational choices that capture the relevant distinctions 
of a domain at the highest level of abstraction while still being 
as clear as possible about the meanings of terms. It defines a 
set of representational primitives with which to model a 
domain of knowledge. The representational primitives are 
typically classes (concepts), objects (individuals or instances), 
attributes, and relationships among objects.  The definitions of 
the representational primitives include information about their 
meaning and constraints (axioms) on their logically consistent 
application. Ontologies permit to:  

• Share common understanding of the information 
structure among people or software agents. 

• Enable the reuse of domain knowledge. 

• Make domain assumptions explicit. 

• Separate domain knowledge from operational 
knowledge. 

• Analyze domain knowledge. 

The most recent development in standard ontology 
languages is OWL from the World Wide Web Consortium 
(W3C). The impetus behind using Ontologies in IPs reuse is 
to: 

• Facilitate the so-called distributed IPs integration at 
many levels of abstraction in an internet context where 
many vendors (IP providers), customers, and designers 
collaborate to design SOCs by defining reusable 
platforms and IPs, constraints, tools and expertise in a 
neutral representation. 

• Expertise sharing between all persons in collaboration. 

• Interoperability between different existing modelling, 
simulation, performances estimation, and synthesis 
tools. 

• Effective platform derivation and IPs integration for 
SOC design.  

The integration includes the following loop: 

• IPs and platforms research, qualification and storage. 

• System Level integration. 

• System Level model analysis. 

• Architecture candidate’s selection. 

• Hardware/Software Assignment. 

• Communication synthesis. 

• Performance estimation. 

A. IPs and platform research, qualification and storage 

This step is initiated by customers and according to their 
requirements; they launch research on existing platforms and 
IPs. Requests are sent to different vendors who propose their 
IPs. All selected IPs and platforms are then registered into an 
IPs database.  

B. System Level Integration 

In this step, designer begins to establish a system level 
functional model by connecting compatible functional IPs 
(FIPs) which are conform with the SOC specification. 
Functional IPs behaviours are generally described in a 
standard system level design language like SystemC. 

Designer can resort to IP derivation strategy in order to 
modify source code of a FIP if it does not match the 
requirements of performances or interface. If IPs are not 
compatible (for instance, one FIP is described in SystemC and 
other in SpecC), designer can use some tools for automatic 
translation of one language to another. In the worst case, he 
has to modify the whole code manually. A generic FIP has a 
name, data ports, control ports, the configuration (the 
selectable candidate of functions, Master or Slave), the 
behavioural description, design constraints, simulation tool, 
and other remarks and information [8]. Each FIP port is 
characterized by at least the name, the data type, and the 
input/output direction. All FIP are supposed connected each 
other via abstract channels using ports (direct 
communication). Functional verification is performed using a 
simulator (ex. SystemC). 

C. System Level Model Analysis 

The objective of this step is to enable designer to analyze 
the profile of his model. The inputs of this step are the 
functional model defined in the first step and the test data 
designed at the system level. Generally profilers are used to 
estimate the execution time consumed by each function of the 
system level functional model. The result will guide the 
designer to Hardware/Software assignment (i.e. functions 
which consume more time will be implemented in Hardware). 

D. Architecture candidate’s selection 

Based on the results of the previous step, the designer 
chooses an Architecture Template (AT) as an architecture 
candidate. After selecting an AT, the designer chooses the 
hardware IPs and the software IPs based on the dependencies 
that are registered in the AT. 

E. Hardware/Software Assignment 

In this step, the designer tries to tradeoff hardware and 
software, so software IP or hardware IP is assigned to a 
functional IP. There are many strategies for assignment. For 
instance, the designer starts to assign software IPs to 
functional IPs and according to profiling results, hardware IPs 
are assigned to the appropriate software IPs that are the 
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performance bottleneck of the SOC. A generic software IP has 
a name, a configuration (the selectable candidate of software 
algorithms and data structures), a set of control/data ports, a 
behavioral description, the IP performances including 
execution time, power consumption, object code size under 
the processor parameters such as the processor clock cycle, the 
compiler with optimization options, and a set of remarks. 
Similarly to software IP, a generic hardware IP has a name, a 
configuration (the selectable candidate of hardware 
algorithms), a set of control/data ports, a behavioral 
description, the IP performances including the area, the 
processing time, the power consumption given by synthesized 
circuits properties under the device parameters such as the 
design rule, the voltage, etc., and a set of remarks. In order to 
facilitate the automation of hardware/software assignment, 
some principles and rules have to be defined. Here are some 
examples: 

• Functional IPs and software IPs are designed to be 
functionally equivalent. 

• Hardware IPs are designed to be functionally equivalent 
to the leaf software IPs. A leaf IP is defined as an IP 
that cannot be further subdivided into other IPs. 

• Each port of an IP must have one-on-one 
correspondence.   

• After assigning software IPs to functional IPs, the direct 
communications between functional IPs are refined to a 
transaction level communication such as a packet 
transformation. 

• Leaf software IPs that are the performance bottleneck 
are assigned by hardware IPs to accelerate the 
performance of the SOC. 

F. Communication Synthesis 

After the hardware/software assignment, interface between 
incompatible IPs is generated. The interface can be a hardware 
wrapper (transducer) or a software wrapper (RTOS, device 
driver) model. The choice of the interface model is based on 
the adopted IP integration strategy. For instance, using the 
core-based strategy, a transducer with two state machines 
(FSMD) to transform incompatible protocols and a queue to 
smoothen the communication data is generated. The 
hardware/software wrappers models descriptions are also 
available in the AT as upper/lower communication methods. 
This step passes by a series of refinement phases so finally 
upper communication methods are replaced by lower 
communication methods. 

G. Performance Estimation 

In this step, accurate estimation of performances (e.g. 
execution time and power consumption) is performed using 
static performance estimation tools relying on IPs 
characteristics or dynamic analysis with simulators. 

VI. OUR ONTOLOGY 

As stated before, our ultimate objective is to develop a IP 
reuse specific ontology that permits a neutral and a standard 

representation of IPs, platforms, knowledge, and expertise and 
their eventually reuse for SOC design. The benefits of such 
ontology are seen especially in an internet context where 
customers and designers look for appropriate platforms IPs, 
and tools that are provided by many IPs vendors. In this work, 
we will deal with IPs as black boxes that communicate with 
each other through predefined interfaces. An interface 
contains several data ports, a list of attributes and constraints 
and a communication protocol description. To each port we, 
associate a contract including provided/required services 
(signals). We can distinct four cases for system level IPs 
integration:  

• IPs are perfectly matched if they have the same protocol 
communication and data over ports have the same size. 
In this case, IPs can be connected directly without 
wrapping. 

• IPs have the same communication protocol but data 
signals over ports have different sizes. In this case, an 
FSM is needed to transform the signals. 

• IPs  have different communication protocols but data 
over ports have the same size. In this case, a protocol 
adapter is needed. 

• IPs have different communication protocols and data 
over ports have different sizes. In this case, a protocol 
adapter and an FSM are needed. 

• IPs have different communication protocols, data over 
ports have different sizes and IPs clock frequencies are 
different. In this case, we can use a transducer with two 
FSMD to transform incompatible communication 
protocols and a queue to smoothen the communication 
data. 

In order to model IPs reuse and integration, we have to 
define the following classes: IP, Configuration, Interface, 
InterfaceAdapter, Port, PortAdapter, Signal, DataType, 
CommunicationProtocol, FSM, FSMD, Transducer, Queue, 
Wrapper, Template, and IPLibrary. InterfaceAdapter and 
PortAdapter are subclasses of Interface and Port classes 
respectively and they are parts of the wrapper class. The 
template class shows the designer the types of available IPs, the 
dependencies between them, what IPs can be optional or 
selectable and what IPs must be required in the desired SOC 
architecture. The template is often abstracted in such a way the 
designer sees a standard API (Application Programming 
Interface) without detailed knowledge of the architecture. All 
these classes with their properties are specified in the Protégé 
OWL tool [6]. Using Protégé OWL, All concepts of IPs are 
defined as classes; relationships among classes are defined as 
objects properties; attributes of classes are defined as Datatype 
properties. Datatype properties link an individual to an XML 
Schema Datatype value. From XML format, we can exploit 
existing commercial or open source parsers to generate many 
HDL or software languages. We can also exploit existing 
adapters such as SystemC/OCP and SystemC/Verilog for 
system level integration. The links of these tools are defined as 
Datatype properties. 
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Fig. 1. IPs taxonomy 

 

 

 

 

 

 

 

 

 

Fig. 2. IP relations 

 

 

 

 

 

 

 

Fig. 3. Ports taxonomy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Interface taxonomy 

 

 

 

 

 

 

 

 

Fig. 5. Functional Interface taxonomy 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Wrappers taxonomy 
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Fig. 7. Functional wrapper relations 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Software wrapper relations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Hardware wrapper relations 

VII. CONCLUSION 

In this work, we presented our ontology for IPs reuse and 

integration. We have exploited protégé-OWL tool to build the 

proposed ontology. Using Protégé, we can easily specify IP 

concepts, relationships and attributes, and check the coherence 

between classes. An XML format is generated automatically 

which is will be used as a front-end language to generate HDL 

or software languages at different levels of abstractions. As a 

perspective, we plan to develop our System Level wrappers to 

integrate SystemC and SystemVerilog non compliant IPs and 

to integrate an MDA (Model Driven Architecture) 

environment to generate SystemC and SystemVerilog code 

automatically. 

 

 
Fig. 10. Using Protégé tool to build the proposed ontology 
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