
Towards an Ontology-driven Intellectual Properties

reuse for Systems On Chip design

Fateh Boutekkouk

Department of Mathematics and Computer Science

University of Oum El Bouaghi, BP 358

Oum El Bouaghi, Algeria

Fateh_boutekkouk@yahoo.fr

Abstract—Intellectual Properties reuse has gained widespread

acceptance in System-On-Chip design to manage the complexity

and shorten the time-to-market. However the need for a standard

representation that permits IPs classification, characterization,

and integration is still a big challenge. To address this problem,

we propose to develop an IPs reuse specific ontology that

facilitates IPs reuse at many levels of abstraction and

independently from any design language or tool. Our ontology is

built using the Protégé-OWL tool

Keywords—SOC; IP; Reuse; Integration;Ontology

I. INTRODUCTION

A System On Chip (SOC) [7] can be defined as an
Integrated Circuit that can integrate in the same chip a
diversity of programmable/nonprogrammable components. A
typical SOC involves general purpose processors to execute
embedded software and Real Time Operating System (RTOS)
code (ex. ARM), DSPs (Digital Signal Processors),
microcontrollers, Application Specific Integrated Circuit
(ASIC) to execute specific tasks, reconfigurable parts like
FPGA (Field Programmable Gate Arrays) for reconfigurable
computing, memories (ex. RAM, ROM, Flash, I-cache, D-
cache), and communication infrastructure. In addition to
digital parts, SOC can also integrate analog, RF (Radio
Frequencies) blocks, Voltage regulators, power management
circuits, and Inputs/outputs interfaces.

Most embedded systems are nowadays implemented as
SOCs. Such a solution can decrease the implementation cost
and the power consumption but in the same time it faces a big
challenge with regard to the effort of design including
verification cost and time-to-market pressure. One way to
manage the ever increasing complexity in SOC design is
through proper Intellectual Properties (IPs) (or virtual
components) reuse [2]. These design components are called
“Intellectual Property” blocks because they are traded as rights
to use and copy the design. IPs are predesigned, parameterized
and verified components which are delivered by many vendors
(third-party vendors). Normally, industry requires designing
all these IPs under one platform or even within the same
company. Under IP reuse platform, design efficiency is
achieved by ease of plug-and-play. IP cores may include
embedded processors, memory blocks, interface blocks,
analog blocks, and components that handle application

specific processing functions. Corresponding software
components are also provided in a reusable form and may
include RTOS and kernels, library functions, and device
drivers. IP reuse based-design is becoming recently a standard
for time-to-market driven industry.

Unfortunately, this IP based design is not free of
considerable effort. Most IPs are incompatible and the cost of
integration may be non reasonable. How to integrate these IPs
in one chip is a tough problem. In fact, IPs may be a software
component (legacy code written in assembly or a high level
language such C, C++, JAVA, etc.) or a hardware component
which in turn can be soft (VHDL code), hard or firm,
described in Transaction Level (SystemC), algorithmic
(behavioral) level (ex. VHDL, Verilog), RTL (Register
Transfer Level) or logical level. Even two IPs are described in
the same abstraction level and expressed in the same language;
they can be incompatible in their Input/Output signals bit size,
horologe frequency, voltage, timing constraints, and tools used
to create these cores (ex. Simulation, performance estimation,
and synthesis tools). The main steps of the IP reuse process,
before the effective integration of the IP component into a
design, are: IP creation, IP qualification, IP classification and
search, IP transfer, and IP evaluation. The integration process
involves connecting the IP cores to the communication
network, implementing design-for-test (DFT) techniques and
using methodologies to verify and validate the overall system-
level design. A well defined reuse methodology must takes
into account the reuse in various dimensions: Platform reuse,
IPs reuse, verification reuse, tools and environments reuse,
and expertise reuse. The purpose of this paper is to address IPs
reuse and integration issues in SOC design by developing IP
reuse specific ontology. Ontology is used to capture
knowledge about some domain of interest. It describes the
concepts and the relationships that hold between these
concepts in the specific domain. In the context of SOCs
domain, defining ontology may bring many advantages to IPs
vendors, customers and designers who collaborate via internet
to create SOCs by reusing existing IPs that satisfy the
customers’ requirements. A unified representation of concepts,
relations, and semantics specific to SOC domain may facilitate
the interoperability and integration between reusable
platforms, IPs, tools and expertise. The rest of the paper is
organized as follows: section two is devoted to related works
on IPs reuse and integration. Section three presents the

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1294 78

concept of IPs. Section four discusses the IPs integration
strategies for SOC design. Section five introduces the concept
of ontology and some concepts that are related to IPs reuse
and the IPs integration flow. Our proposed ontology is
developed in section six using the Protégé tool for ontology
editing before the conclusion and perspectives.

II. RELATED WORK

The literature on IPs reuse is very rich. Here we try to
mention some pertinent works. The VSI Alliance (VSIA) [13]
specifies interface standards and specifications that facilitate
the integration of IPs at both the functional level (interface
protocols) and physical level from multiple sources for the
development of SOCs. The OCP International Partnership
Association, Inc. (OCP-IP) [12] promotes and supports the
open core protocol (OCP) as the complete socket standard for
rapid creation and integration of interoperable IPs. The IP-
XACT standard [1] is an emerging IP reuse strategy from the
Spirit Consortium. IP-XACT defines an XML schema for
describing the buses, the ports, the configuration and the
properties of reusable hardware cores in a vendor neutral
manner and to facilitate core reuse at a high level of
abstraction. Authors in [1], present CHREC XML, a XML
schema that facilitate reconfigurable IPs reuse by encapsulating
their details at multiple levels of abstraction namely RTL layer
(the first layer), Data Type descriptions (the second layer) and
Interface Operation Information (the third layer). The
developed schema is independent from any design language or
tool. An IP integration tool that allows a designer to select and
integrate IP cores from a variety of languages/tools was also
created based on this schema. The tool can automatically run
the appropriate FPGA implementation tools to generate the
FPGA bitstream. The work in [3], applied hardware design
patterns for customizing and integrating the IP components into
SOC designs. They formulate the role of design patterns in HW
design, and describe their implementation using meta-
programming. Finally they proposed a Wrapper design pattern
for adapting the behavior of the soft IPs, and demonstrate its
application to the communication interface synthesis. Other
works use XML either as a specification language for IPs
modeling or as an intermediate format that is generated from
HDL (Hardware Description Languages) such as VHDL,
SystemC using XSLT for transformation rules specification [5,
10].

Despite, all these efforts, we can state that there is no IP
reuse specific ontology. Our ultimate objective is to develop an
IPs reuse specific ontology that covers all IPs reuse
requirements including IPs high level modeling, refinement,
performance analysis, integration, and verification. In this
paper, we are interested especially in IPs reuse at system level.
According to our knowledge, our ontology will be the first one
specific to IPs reuse domain. The contribution of this work is
the definition of a novel IPs reuse specific ontology that takes
into accounts both software and hardware IPs and deals with all
possible kinds of incompatibilities between IPs.

III. INTELLECTUAL PROPERTY (IP)

An Intellectual Property (IP) or a Virtual Component (VC)
is a reusable pre-designed and pre-verified component (core).

An IP may be analog, mixed-signal, or digital. A digital IP can
be programmable or not programmable. The IP programming
can appear as software programming using an embedded
processor or hardware programming using programmable logic
cores such as FPGA. There are two essential kinds of software
IP:

• Close-to-Hardware such as RTOS, drivers, hardware-

dependent code, that is optimized to particular hardware

platforms, often written in assembly.

• HW-independent usually in C language.
 Hardware IP can be delivered as hard IP, soft IP or firm IP.

A hard IP is a fully customized hardware core where all its
gates and interconnects are placed and routed, generally
delivered as GDS-II files. The reusability at this level is very
low. Soft IP is a fully synthesizable core with an RTL
representation. The reusability at this level is high because it is
technology independent. A firm IP is a hybrid of both hard and
soft IPs. It is a hardware core with an RTL description together
with some physical floor planning or placement. Extensions of
IPs are behavioral IP, Transactional Level (TL) IP, Bus Cycle
Accurate (BCA) IP and functional IP (FIP). A behavioral IP is
a core with algorithmic description (ex. VHDL) suited for High
Level Synthesis (HLS). A transactional IP describes the core
behavior and data transfers as a set of transactions (read, write)
and usually described in SystemC TLM (Transaction Level
Modeling). TL IPs may be timed or untimed. A BCA IP
describes the IP core interface, not functionality. Timing is
cycle accurate and tied to some global clock. It is used for the
architecture (performance) evaluation. FIP is used at the system
level design. It does not require a particular software or
hardware architecture. This kind of IP offers a very high level
of reusability. FIP IP may be timed or untimed. We note the
existence of another class of IPs which is the verification IP.
Verification IPs are designed to become a part of the testbench
or verification environment and reused to ensure the
correctness of the design.

IV. IP INTEGRATION STRATEGIES

Generally, there are three main strategies for the
integration of IP components [11]. This classification is based
on a clear separation between communication and
computation for each component:

A. Standard-based strategy

In this strategy, IPs interfaces are compliant to a given
standard. In this case, IPs may be integrated in the SOC
without requiring any functional adaptation.

B. Communication Synthesis Strategy

Used if components to be interconnected have
heterogeneous interfaces. In this case interface adapters
(wrappers) are generated and inserted between the
components. For programmable components, interface
adaptation requires the development of software wrappers
(device drivers) to match the application software and the
RTOS to the communication infrastructure.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1294 79

C. IP derivation strategy

Used when the source code (using an HDL, for hardware
components, or a programming language, for software ones) of
the IP components is available and may be directly modified,
so that a new component may be derived from the previous
one.

V. ONTOLOGIES

Ontology can be defined as an explicit specification of a
conceptualization [4]. It is concerned with making
representational choices that capture the relevant distinctions
of a domain at the highest level of abstraction while still being
as clear as possible about the meanings of terms. It defines a
set of representational primitives with which to model a
domain of knowledge. The representational primitives are
typically classes (concepts), objects (individuals or instances),
attributes, and relationships among objects. The definitions of
the representational primitives include information about their
meaning and constraints (axioms) on their logically consistent
application. Ontologies permit to:

• Share common understanding of the information
structure among people or software agents.

• Enable the reuse of domain knowledge.

• Make domain assumptions explicit.

• Separate domain knowledge from operational
knowledge.

• Analyze domain knowledge.

The most recent development in standard ontology
languages is OWL from the World Wide Web Consortium
(W3C). The impetus behind using Ontologies in IPs reuse is
to:

• Facilitate the so-called distributed IPs integration at
many levels of abstraction in an internet context where
many vendors (IP providers), customers, and designers
collaborate to design SOCs by defining reusable
platforms and IPs, constraints, tools and expertise in a
neutral representation.

• Expertise sharing between all persons in collaboration.

• Interoperability between different existing modelling,
simulation, performances estimation, and synthesis
tools.

• Effective platform derivation and IPs integration for
SOC design.

The integration includes the following loop:

• IPs and platforms research, qualification and storage.

• System Level integration.

• System Level model analysis.

• Architecture candidate’s selection.

• Hardware/Software Assignment.

• Communication synthesis.

• Performance estimation.

A. IPs and platform research, qualification and storage

This step is initiated by customers and according to their
requirements; they launch research on existing platforms and
IPs. Requests are sent to different vendors who propose their
IPs. All selected IPs and platforms are then registered into an
IPs database.

B. System Level Integration

In this step, designer begins to establish a system level
functional model by connecting compatible functional IPs
(FIPs) which are conform with the SOC specification.
Functional IPs behaviours are generally described in a
standard system level design language like SystemC.

Designer can resort to IP derivation strategy in order to
modify source code of a FIP if it does not match the
requirements of performances or interface. If IPs are not
compatible (for instance, one FIP is described in SystemC and
other in SpecC), designer can use some tools for automatic
translation of one language to another. In the worst case, he
has to modify the whole code manually. A generic FIP has a
name, data ports, control ports, the configuration (the
selectable candidate of functions, Master or Slave), the
behavioural description, design constraints, simulation tool,
and other remarks and information [8]. Each FIP port is
characterized by at least the name, the data type, and the
input/output direction. All FIP are supposed connected each
other via abstract channels using ports (direct
communication). Functional verification is performed using a
simulator (ex. SystemC).

C. System Level Model Analysis

The objective of this step is to enable designer to analyze
the profile of his model. The inputs of this step are the
functional model defined in the first step and the test data
designed at the system level. Generally profilers are used to
estimate the execution time consumed by each function of the
system level functional model. The result will guide the
designer to Hardware/Software assignment (i.e. functions
which consume more time will be implemented in Hardware).

D. Architecture candidate’s selection

Based on the results of the previous step, the designer
chooses an Architecture Template (AT) as an architecture
candidate. After selecting an AT, the designer chooses the
hardware IPs and the software IPs based on the dependencies
that are registered in the AT.

E. Hardware/Software Assignment

In this step, the designer tries to tradeoff hardware and
software, so software IP or hardware IP is assigned to a
functional IP. There are many strategies for assignment. For
instance, the designer starts to assign software IPs to
functional IPs and according to profiling results, hardware IPs
are assigned to the appropriate software IPs that are the

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1294 80

performance bottleneck of the SOC. A generic software IP has
a name, a configuration (the selectable candidate of software
algorithms and data structures), a set of control/data ports, a
behavioral description, the IP performances including
execution time, power consumption, object code size under
the processor parameters such as the processor clock cycle, the
compiler with optimization options, and a set of remarks.
Similarly to software IP, a generic hardware IP has a name, a
configuration (the selectable candidate of hardware
algorithms), a set of control/data ports, a behavioral
description, the IP performances including the area, the
processing time, the power consumption given by synthesized
circuits properties under the device parameters such as the
design rule, the voltage, etc., and a set of remarks. In order to
facilitate the automation of hardware/software assignment,
some principles and rules have to be defined. Here are some
examples:

• Functional IPs and software IPs are designed to be
functionally equivalent.

• Hardware IPs are designed to be functionally equivalent
to the leaf software IPs. A leaf IP is defined as an IP
that cannot be further subdivided into other IPs.

• Each port of an IP must have one-on-one
correspondence.

• After assigning software IPs to functional IPs, the direct
communications between functional IPs are refined to a
transaction level communication such as a packet
transformation.

• Leaf software IPs that are the performance bottleneck
are assigned by hardware IPs to accelerate the
performance of the SOC.

F. Communication Synthesis

After the hardware/software assignment, interface between
incompatible IPs is generated. The interface can be a hardware
wrapper (transducer) or a software wrapper (RTOS, device
driver) model. The choice of the interface model is based on
the adopted IP integration strategy. For instance, using the
core-based strategy, a transducer with two state machines
(FSMD) to transform incompatible protocols and a queue to
smoothen the communication data is generated. The
hardware/software wrappers models descriptions are also
available in the AT as upper/lower communication methods.
This step passes by a series of refinement phases so finally
upper communication methods are replaced by lower
communication methods.

G. Performance Estimation

In this step, accurate estimation of performances (e.g.
execution time and power consumption) is performed using
static performance estimation tools relying on IPs
characteristics or dynamic analysis with simulators.

VI. OUR ONTOLOGY

As stated before, our ultimate objective is to develop a IP
reuse specific ontology that permits a neutral and a standard

representation of IPs, platforms, knowledge, and expertise and
their eventually reuse for SOC design. The benefits of such
ontology are seen especially in an internet context where
customers and designers look for appropriate platforms IPs,
and tools that are provided by many IPs vendors. In this work,
we will deal with IPs as black boxes that communicate with
each other through predefined interfaces. An interface
contains several data ports, a list of attributes and constraints
and a communication protocol description. To each port we,
associate a contract including provided/required services
(signals). We can distinct four cases for system level IPs
integration:

• IPs are perfectly matched if they have the same protocol
communication and data over ports have the same size.
In this case, IPs can be connected directly without
wrapping.

• IPs have the same communication protocol but data
signals over ports have different sizes. In this case, an
FSM is needed to transform the signals.

• IPs have different communication protocols but data
over ports have the same size. In this case, a protocol
adapter is needed.

• IPs have different communication protocols and data
over ports have different sizes. In this case, a protocol
adapter and an FSM are needed.

• IPs have different communication protocols, data over
ports have different sizes and IPs clock frequencies are
different. In this case, we can use a transducer with two
FSMD to transform incompatible communication
protocols and a queue to smoothen the communication
data.

In order to model IPs reuse and integration, we have to
define the following classes: IP, Configuration, Interface,
InterfaceAdapter, Port, PortAdapter, Signal, DataType,
CommunicationProtocol, FSM, FSMD, Transducer, Queue,
Wrapper, Template, and IPLibrary. InterfaceAdapter and
PortAdapter are subclasses of Interface and Port classes
respectively and they are parts of the wrapper class. The
template class shows the designer the types of available IPs, the
dependencies between them, what IPs can be optional or
selectable and what IPs must be required in the desired SOC
architecture. The template is often abstracted in such a way the
designer sees a standard API (Application Programming
Interface) without detailed knowledge of the architecture. All
these classes with their properties are specified in the Protégé
OWL tool [6]. Using Protégé OWL, All concepts of IPs are
defined as classes; relationships among classes are defined as
objects properties; attributes of classes are defined as Datatype
properties. Datatype properties link an individual to an XML
Schema Datatype value. From XML format, we can exploit
existing commercial or open source parsers to generate many
HDL or software languages. We can also exploit existing
adapters such as SystemC/OCP and SystemC/Verilog for
system level integration. The links of these tools are defined as
Datatype properties.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1294 81

Fig. 1. IPs taxonomy

Fig. 2. IP relations

Fig. 3. Ports taxonomy

Fig. 4. Interface taxonomy

Fig. 5. Functional Interface taxonomy

Fig. 6. Wrappers taxonomy

Port

Functional

port
Software

port

TL port Behavioral

port
BCA port RTL port

Hardware

port

Design

IP

Functional

IP (FIP)
Hardware

IP
Verification

IP

Software

IP

TL IP Behavioral

IP

RTL IP

Analog

IP

Digital

IP

H-Soft

IP
H-Hard

IP

H-Firm

IP

S-Soft

IP

S-Hard

IP

S-Firm

IP

Timed

FIP

UnTimed

FIP

BCA IP

Timed

TL IP

UnTimed

TL IP

IP

hasAnInterface

Interface

containsPort

Port
Protocol

communicatio

Signal

containsPCom

m

DataType

hasAConfiguration

Configuration

defines

hasAType

IPLibrary
containsAnIP

Functional

Interface
Hardware

Interface

Software

Interface

TL

Interface

Behavioral

Interface
RTL

Interface

Interface

H-Soft

Interface

H-Hard

Interface

H-Firm

Interface

S-Soft

Interface

S-Hard

Interface

S-Firm

Interface

BCA

Interface

Functional

Interface

Standard

Compliant
Standard

Non-Compliant

OCP

Compliant

SystemC

Compliant

SystemVerilog

Compliant

PCI

Compliant

Functional

Wrapper
Hardware

Wrapper

Software

Wrapper

TL

Wrapper
Behavioral

Wrapper

RTL

Wrapper

Wrapper

H-Soft

Wrapper

H-Hard

Wrapper

H-Firm

Wrapper

RTOS

API

Device

Driver

RTOS

BCA

Wrapper

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1294 82

Fig. 7. Functional wrapper relations

Fig. 8. Software wrapper relations

Fig. 9. Hardware wrapper relations

VII. CONCLUSION

In this work, we presented our ontology for IPs reuse and

integration. We have exploited protégé-OWL tool to build the

proposed ontology. Using Protégé, we can easily specify IP

concepts, relationships and attributes, and check the coherence

between classes. An XML format is generated automatically

which is will be used as a front-end language to generate HDL

or software languages at different levels of abstractions. As a

perspective, we plan to develop our System Level wrappers to

integrate SystemC and SystemVerilog non compliant IPs and

to integrate an MDA (Model Driven Architecture)

environment to generate SystemC and SystemVerilog code

automatically.

Fig. 10. Using Protégé tool to build the proposed ontology

REFERENCES

[1] A. Arnesen, N. Rollins, M. Wirthlin. A multi-layered XML schema and

design tool for reusing and integrating FPGA IP. In Field Programmable

Logic and Applications, 2009. FPL 2009. pp.472 – 475.

[2] J. Biggs, A. Gibbon. Reference Methodology for Enabling Core Based

Design. European Synopsys User Group, SNUG, March 2002.

[3] R. Damaševičius, G. Majauskas, V. Štuikys. Application of design

patterns for hardware design Proceeding, DAC '03 Proceedings of the

40th annual Design Automation Conference. pp. 48-53.

[4] D. Djuric, D. Gasevic, V. Devedzic. Ontology Modeling and MDA. In

Journal on Object Technology, Vol 4, N 1, January-February 2005.

[5] M. Hamdoun, A. Ghrab, P. Hernandez, G. Saucier. IP XML

Encapsulation Portal. Proceedings International Workshop on IP-Based

SoC Design, December 2001, Grenoble, France.

[6] M. Horridge, H. Knublauch, A. Rector, R. Stevens, C. Wroe. A Practical

Guide To Building OWL Ontologies Using The Protégé-OWL Plugin

and CO-ODE Tools, Edition 1.0, August 27, 2004.

[7] A.A. Jerraya, W. Wolf. Multiprocessor systems on chip, Morgan

Kaufmann publishers, 2005.

[8] M. Muraoka, H. Nishi, R. K. Morizawa, H. Yokota, Y. Onishi. SoC

Architecture Synthesis Methodology Based on High-Level IPs. In IEICE

Transactions on Fundamentals of Electronics, Communications and

Computer Sciences, Vol. E87-A No.12 pp.3057-3067. Publication

Date: 2004/12/01, Print ISSN: 0916-8508.

[9] D. Shin, D. Gajski .Interface synthesis from protocol specification.

Technical Report CECS-02-13, University of California, Irvine, April

12, 2002.

[10] M. Visarius. An XML Format Based Integration Infrastructure for IP

Based Design. 16th Symposium on Integrated Circuits and Systems

Design (SBCCI'03), Sao Paulo, Brazil September, 2003.

[11] F. R. Wagner, W. O. Cesario, L. Carro, A.A. Jerraya. Strategies for

integration of hardware and software IP components in embedded

systems on chip. In VLSI journal, Elsevier, 2004.

[12] OCP-IP, http://www.ocp-ip.org.

[13] www.vsi.org

Functional

Wrapper

Interface

Adapter

Functional

IP

containsFIP

containsIA

FSM

Port

Adapter

containsPRA

Protocol

Adapter

containsPA

containsFSM

Software

Wrapper

Interface

Adapter

Software

IP

containsSIP

containsIA

RTOS

RTOS API

containsDD

Device Driver

containsAPI

containsRTOS

Hardware

Wrapper

Interface

Adapter

Hardware

IP

containsHIP

containsIA

FSMD

Port

Adapter

containsTrans

Transducer

containsPA

containsFSMD

Queue

containsQueue

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1294 83

