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Scheduling Jobs and Batches Based on Historical
Data

Richárd Kápolnai, Imre Szeberényi

Abstract— This paper considers the problem of minimizing the
makespan when scheduling jobs of unknown length on identical
machines, meaning there is no a priori information on the job lengths.
However, as the user of a parallel computational infrastructure is
assumed to repeat the execution of the jobs multiple times and is
able to measure individual machine completion times, a historical
database is proposed to aid the approximation of the optimal schedule.
We limit the size of this database so any set of jobs assigned to a
machine has to be briefly described with limited data so an arbitrary
feasible schedule may not be suitable.

Two job models are studied: the Parameter Sweep Application
(PSA) model which can be regarded as a set of jobs without
dependency or inter-communication requirements, and the Batches
of PSAs (BPSA) model where the jobs are executed in batches to be
preceded by a sequence independent setup work.

We propose an iterative framework which repeats computing an
approximate schedule, executing the PSA or BPSA and updating
the historical database according to the machine completion times.
After each iteration, the approximation algorithm further improves
some upper bound on the makespan until a 2-approximation is
reached in case of PSA, 3-approximation in case of BPSA. The
scheduling algorithm always assigns consecutive jobs called chains to
machines keeping the historical database and the machine assignment
descriptions brief.

Keywords—approximation, chain partitioning, historical data, batch
scheduling, uncertainty, workload balancing

I. INTRODUCTION

WE investigate the problem of scheduling a Parameter
Sweep Application (PSA) on a parallel computational

infrastructure. In a PSA, the same computation has to be
executed for many different values of a parameter, which is
common in engineering or scientific computations. To each
parameter value, we assign a non-interruptible job. We call
the domain of all possible parameter values the parameter
space, corresponding to the set of jobs. Every job requires a
processing time to complete called its length, and a machine’s
completion time is the total length of work assigned to it. We
consider the cost of a schedule the makespan, i.e. the maximal
completion time. Hence the underlying problem is the widely
known NP-hard optimization problem of scheduling indepen-
dent jobs to identical parallel machines while minimizing the
makespan, often denoted as P ||Cmax, except that we have no
a priori knowledge of the job lengths. To maintain tractability,
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we focus on a 2-approximation, where an α-approximation is a
polynomial time algorithm yielding a solution of cost at most
α times the optimal cost and α is called the approximation
ratio.

Our inspiration was a supposedly common usage scenario.
When a user develops a PSA for a project, sometimes executes
it several times during the project, as observed by others [1],
because of different reasons: testing, fixing bugs, adding new
features such as more detailed output, improved precision etc.
To exploit a parallel infrastructure, the user has to partition
somehow the parameter space by creating a schedule, i.e. a
mapping from the parameter space to the set of machines.
We call the work of a machine, which is the set parameters
assigned to it, an assignment. In many PSAs, the processing
times of the parameters may be significantly different and hard
to predict, so the first partition may result in a makespan far
from optimal. So after the execution, assuming the measured
machine completion times are available, the user may notice
that some assignments took extremely short or long time to
complete. To minimize the makespan, the user should adjust
the partition intuitively or systematically in order to shorten
the longest assignments at the next execution. If the makespan
still turns out to be too high, further adjustments are made
until the makespan meets the requirements.

Our most essential assumption is that most users tend to
repeat executing their PSAs. Naturally not to optimize the
makespan, but for various reasons such as executing later a
revised version of PSA. This kind of user behaviour is assumed
throughout this paper:

Conjecture 1 ([1]). The user submits for execution a PSA
multiple times.

It also is important to notice that the process above is
validated by another strong assumption: the parameter space
and processing times of the parameters remain constant be-
tween the executions, nevertheless, the user may do changes
to the PSA (e.g. fix a program bug). The lack of these ideal
conditions could clearly influence both the cost of schedules
and the convergence properties of this process.

The main goal of this paper is proposing a generic, iterative
framework to help automating this process. In each iteration
the framework updates its historical database with the mea-
sured completion times of the execution of the previously
computed schedule. If it is not clear whether the approximation
ratio of 2 has already been reached, then splits the long
assignments into parts estimating proportionally their lengths,
contracts the small ones, and re-computes the schedule for the
next execution. We prove that, under all assumptions above,
after a finite number of iterations the approximation ratio
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of 2 is always reached for any PSA. For a demonstration,
we implemented a preliminary version of the framework as
a Saleve client [2]. The demonstration includes a simple
synthetic example as well as a real, previously published PSA.
We believe this framework can be incorporated into existing
PSA execution supporting tools or even scheduling techniques.

According to Conjecture 1, the PSA is not repeated because
our framework needs more iteration. It is repeated regardless
of the framework because this is the wish of the user. So the
framework does not cause additional execution costs, instead
it gradually decreases the execution costs.

To keep in sight easy implementation and small historical
database, let us suppose the parameter space is an ordered set.
Our scheduling algorithm only assigns a set of consecutive
jobs called a chain to any machine, which keeps the machine
assignment descriptions brief so the historical database. So in
a nutshell, based on historical data, the framework splits the
long chains and contracts the small ones in each iteration.

It is worth clarifying that we have two different approxi-
mation ratios in the process that are not necessarily equal. We
call the framework ratio the cost of the schedule after the final
iteration of the framework divided by the cost of the optimal
a priori schedule of the original jobs. Within an iteration
of the framework, we create a synthetic scheduling problem
with known or estimated job lengths: these synthetic jobs
are the previously measured or temporarily estimated chains
consisting of the original jobs of unknown length. To schedule
the synthetic jobs, we use some approximation algorithm, and
we call its approximation ratio the iteration ratio, which is the
cost of the computed schedule of the synthetic jobs divided by
the optimal cost of scheduling the synthetic jobs. Obviously
the iteration ratio is a lower bound on the framework ratio.

The iteration ratio of 2 cannot be further improved unless we
give up our restriction of scheduling only chains of jobs. Hence
we say the price of chaining is 2, inspired by Papadimitriou’s
definition of the “price of anarchy” [3]. So if the limited size
of the database compensates this price of chaining, then we
insist on applying it because of its adequacy to our problem.

We also extend the iterative framework for an application
model more general than PSA we call Batches of PSAs (BPSA),
in which the jobs are partitioned into families. Families are
divided into batches in a schedule, where a batch is a subset
of a family scheduled on one machine. The difference between
a BPSA and a PSA is that a machine can execute a batch
only if it already executed a setup for that family which also
has processing time. We suppose the setup lengths are known
a priori, but the job lengths are still unknown. A number of
applications follow the BPSA model. Some common examples
for setup work can be downloading and preprocessing the
input data such as images, and the different families of jobs
operate on different input sets, or, installing a specific software
or hardware environment such as a virtual machine or some
physical equipment before starting the effective work.

Organization of this paper: Section II enumerates some
related work. Section III states the underlying problem for-
mally, and presents the iterative framework to solve it. Sec-
tion IV proves that the framework meets the requirements
which is illustrated in Section V with a synthetic and a real-

world PSA. Section VI extends the framework for batches with
setups. Finally, the paper is concluded by Section VII.

II. RELATED WORK

The classical scheduling problem P ||Cmax has received
much attention through the past decades. We refer to [4, 5] for
a survey of the first approximation algorithms including limited
approximations schemes for fixed number of machines. There
also exist simple 2-approximation algorithms, e.g. Graham’s
list scheduling [6] or the more general one of Archer and
Tardos [7] which rounds a fractional schedule. However, these
algorithms cannot be used in the iterations of the framework
because of incompatibilities shown in Section IV, therefore
we present yet another 2-approximation for P ||Cmax which
schedules chains. Many approximations for scheduling batches
(the BPSA model) are surveyed in [8], and we use an idea
from [9] to compute the synthetic schedule. Setups can be
both software of hardware tasks [10, 11].

Scheduling chains is usually referred to in the literature as
one dimensional array partitioning or chain-on-chain parti-
tioning, or, in the case of identical machines, equivalently
chain partitioning. In our setting, the optimal chain partitioning
can be found in polynomial time [12], and exact solutions are
surveyed in [13, 14]. Despite the efficiency of exact solutions,
we are not interested in them because even an optimal chain
partitioning is just another 2-approximation for the original
problem P ||Cmax. This is a direct consequence of the price of
chaining, as detailed in Section III.

There are a number of approaches to design scheduling
techniques when uncertainty arises. Some surveys characterize
techniques as proactive (more robust to unplanned changes)
and reactive (less committed to existing plan) [15, 16]. For
instance, a proactive approach could be utilizing the average
and worst-case execution times [17]. The well-known list
scheduling could be considered as a reactive method when
job lengths are unknown a priori: when a machine is idle
because of finishing its temporary assignment, it gets one new
job. This setup is also known as self-scheduling. While self-
scheduling is a good approximation in theory, obviously effects
an enormous overhead in a system. Guided self-scheduling and
factoring algorithms offer a compromise: they form chunks of
jobs (similar to our chains) to reduce the overhead. Initially
these algorithms dispatch large chunks, then the chunk size
will gradually decrease to improve balancing [18].

However, reactive behaviour usually implies the algorithm
intervenes during the execution of the schedule based on some
quasi real-time feedback of the system state, aiming to improve
one schedule. Instead, our long-term goal is simpler: we aim
to collect historical data to improve the next schedules. We
note that getting real-time feedback may be very expensive
in distributed systems. Our framework uses only a historical
database which is not real-time, thus we believe it is more
generally applicable and easier to implement.

The problem of unknown jobs had been attacked with
numerous methods. A straightforward idea to require the
users to provide the processing times [19]. AppLeS [20] and
GrADS [21] require the user to provide explicit performance
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model of the application to predict processing times. Proba-
bilistic estimation was also studied, assuming the lengths are
independent random variables [22]. Uncertainty can concern
not only the application attributes (the number of jobs, their
lengths etc.) but also the resource performances (number and
speed of machines etc.) [23], although the latter case is beyond
the scope of this paper.

Frequently, the application properties could be learnt by
building a historical database from measurements from pre-
vious executions. Probabilistic estimation could be backed up
by a database to estimate the average of the distribution [24].
A database can support machine learning techniques to au-
tomatically develop performance models from the application
source code [25], or to predict processing times using records
of similar jobs where similarity is defined by some distance
function in the attribute space considering e.g. user and job
identification information, requested resources [26, 27, 28].

Some work focus on collecting processing times of the
whole application [29, 30] in order to optimize resource
performance such as utilization. Others, as well as this work,
measure the parts of an application to optimize application
running time [31, 32, 33, 34]. Some of them model the
processing time to be depending on the input data size so
a time can be predicted by projecting a previously measured
time on the same resource for another data set (e.g. [34, 30]).
In our case, we cannot use this prediction system for the
chain lengths because then every job (or parameter) would
have uniform processing time, contradicting to our setting.
In [32] and [33], the goal is determining the optimal number
of machines to achieve the desired speed-up and efficiency.
MARS [31] collects both application-specific and system-
specific information to balance loads, but it was designed for
more general parallel applications than a PSA, and it does not
exploits that the tasks may be divisible as our chains.

III. THE PROPOSED ITERATIVE FRAMEWORK

In this section, after introducing the notations and the basic
properties of chain partitioning, we formalize our objective and
present the framework.

A. Approaching the problem with chain partitioning
We wish to schedule n non-interruptible jobs of length

p1, . . . , pn onto m identical machines. A schedule f is a
mapping f : [1 . . n] 7→ [1 . . m], and we say f is a chain
partitioning iff either f(j +1) = f(j) or f(j +1) = f(j) + 1
holds for all 1 ≤ j < n, so each assignment is a chain.
A chain c is a subinterval within [1 . . n], its cardinality is
its size, its processing time is its length, denoted by `(c).
The completion time of machine i is the total length of its
assignment: Ci(f) =

∑
f(j)=i pj . A chain containing only

one job is called a singleton, its size is 1. Let C∗max denote
the makespan of the optimal schedule (NP-hard to compute),
and C1D∗

max the makespan of the optimal chain partitioning
(computable in polynomial time). We call the price of chaining
the supremum of the quotient C1D∗

max/C
∗
max over all valid

scheduling problems. To demonstrate the price of chaining is
2, we have

Example 1. Let n = 2m, and the processing times p1 = . . . =
pm = m, pm+1 = . . . = p2m = 1.

Clearly, for this input C∗max = m+1 and C1D∗
max = 2m, so if

the price of chaining exists, it is at least 2. On the other hand,
as the 2-approximation framework presented by this paper is
a chain partitioning as well, we have C1D∗

max ≤ 2 · C∗max. We
note that a slight alteration of the algorithm of [7] also admits
a 2-approximation chain partitioning.

According to our assumption on uncertainty, after executing
a schedule f , all measured completion times C(f) become
known and can be used to optimize future schedules. C(f)
stands for the vector C1(f), . . . , Cm(f). It is easy to see
that any chain partition f can be unambiguously described in
O(m log n) space: the m assignments are intervals of integers,
so the description needs m integer numbers, each number
given in log n digits. The framework uses a historical database
containing less than 2m chains, as presented in the next
subsection.

B. Outline of the Framework
The working of the framework is outlined in Algorithm 1,

details are elaborated in this section. Given m, n, the historical
database contains initially an arbitrary initial schedule f0, and
its measured, accurate completion times C(f0). f0 can be
obtained e.g. by splitting the parameter space into equally sized
parts. In the qth iteration, starting with q = 1, the schedule fq
has to be computed based on the database. After the execution
of fq , the measurements C(fq) are merged into the database.

Algorithm 1 Iterative framework
1: procedure PSAPARTITION(m,n, f0,C(f0))
2: q ← 0, calculate TLB
3: while s(q) > 1 do
4: q ← q + 1
5: P ← a synthetic scheduling problem of the chains

of the database and their length
6: for all original chain c in P s.t. `(c) > 2TLB do
7: Split chain c in half
8: Estimate the length of the half chains
9: Replace chain c with the half chains in P

10: fq ← FRUGALLYSCHEDULE(P , TLB)
11: Execute schedule fq , measure C(fq)
12: Merge C(fq) into the database
13: Recalculate TLB

We define the indicator of exit condition s(q) to be the
maximum size of the chains in the database of length more
than 2TLB at the end of the qth iteration, and 0, if every length
is under 2TLB. The framework exits when every long chain is
a singleton, i.e. s(q) = 1 or s(q) = 0.

We define the chains of the database after merging C(fq)
in line 12 as follows, which we rely in lines 5 and 13 on. A
chain assignment c of fq may or may not contain a chain c∗
of estimated length as a subset. If it does not, then we say c
is a chain of the database with is its measured length (some
completion time). Otherwise it is easy to verify that c \ c∗ is

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 7, 2013

57



also a chain because c∗ is either prefix or suffix subset of c. In
addition, its length `(c \ c∗) was already known as stated later
by Proposition 2 (previously measured or calculated), so finally
after executing fq the exact length of c∗ can be calculated
from measurements: `(c∗) = `(c) − `(c \ c∗). So in this case
we say c∗ and c \ c∗ are chains of the database. Hence for
each assignment c, we have either one or two chains in the
database, so the database consists of less than 2m chains. We
note that the chains of the database are disjoint and cover
[1 . . n], i.e. form a partition. We also note that it is crucial
to gather as much information as possible on the half chains
of estimated length as they are the longest ones exercising the
most influence on the makespan. This is the reason we need
to store more information than the last schedule fq and its
completion times C(fq).

The goal of the framework is to assure that Cmax ≤ 2C∗max
after a finite number of iterations. For this purpose, a lower
bound on the optimal makespan C∗max is determined in each
iteration: the average completion time TLB :=

∑n
j=1 pj/m.

We note that we could omit the recalculation of TLB in
every iteration (line 13), but it provides the framework some
adaptivity: if the processing times change because of some
alteration in the PSA, the recalculation of TLB restores the
convergence.

In each iteration, a synthetic scheduling problem is prepared
from the chains of the database after an adjustment: the longest
chains (longer than 2TLB) are split in half. The length of the
half chains are unknown, so they are estimated temporarily
as the half of the original length. Each chain corresponds to
a synthetic job of the same length, where a synthetic length
is either provided by the database or estimated as above.
The synthetic jobs are scheduled by the algorithm called
FRUGALLYSCHEDULE, presented in Algorithm 2, which is a
simple array partitioning algorithm for jobs of known length,
with important features though. FRUGALLYSCHEDULE returns
a schedule f ′ which can be trivially interpreted also as a
schedule f of the original jobs of unknown length. We mention
that in the earlier conference version of this paper [35] this
algorithm also contained an optional heuristics to move to the
next machine if its workload reached T .

Algorithm 2 Subroutine: schedules frugally
Require: P : n′ synthetic jobs of known length p′1, . . . , p

′
n′

Ensure: schedule f ′ is a mapping f ′ : [1 . . n′] 7→ [1 . . m]
1: function FRUGALLYSCHEDULE(P , T )
2: i← 1
3: C1 ← 0, . . . , Cm ← 0
4: for all job j do
5: if Ci > 0 and Ci + p′j > 2T then i← i+ 1

6: if i > m then ABORT! T is too small
7: Assign job j to machine i, i.e. f ′(j) := i
8: Update Ci

9: return the computed schedule f ′

The next section presents the sketch of a formal proof
that the framework meets the requirements, while Section V
strengthens it via examples.

IV. ANALYSIS OF THE FRAMEWORK

Although the framework and the scheduling subroutine look
primitive, together they successfully manage some non-trivial
issues. Most important one is the convergence (finite number
of iteration), achieved by the framework by keeping decreasing
the sizes of the longest chains in the database until every non-
singleton chain is under 2TLB. To assist in that, the scheduling
subroutine should not map more than one synthetic job of
estimated size (“half chain”) to a machine. If each estimation is
specified with exact measurements by the end of the iteration,
long chains will keep getting smaller and shorter. Even an
optimal chain partitioning may map more than one estimated
chain to a machine as well as other approximations such as
the one in [7], so the existence of FRUGALLYSCHEDULE
(Algorithm 2) is justified.

Another aid in maintaining convergence is that the database
stores more than just the last measured completion times, as
illustrated below. The notation f [a . . b] = i stands for f(j) = i
for all j ∈ [a . . b].

Example 2. Let m = 3 and n = 4 with p1 = 20, p2 =
70, p3 = 20, p4 = 10. Let the initial schedule f0 be the
following mapping: f0[1] = 1, f0[2 . . 3] = 2 and f0[4] = 3.

So the lengths of the chains of the database are `([1]) =
C1(f0) = 20, `([2 . . 3]) = C2(f0) = 90 and `([4]) =
C3(f0) = 10. As TLB = 40, the chain [2 . . 3] is split
by the framework, and the half chains [2] and [3] both gets
estimated length of 45. Then the next computed schedule f1
contracts the first two chains, so the measurements C(f1) are:
`([1 . . 2]) = 90, `([3]) = 20 and `([4]) = 10. If the previous
data C1(f0) was already unavailable, then there would not be
any significant improvement on the quality of the database: the
size and the length of longest chain would be the same (2 and
90). However, using both `([1]) = C1(f0) and `([1 . . 2]) =
C1(f1) the framework can conclude that `([2]) = 70.

As the difficulties above shows, the framework and the sub-
routine has to interact to succeed. We begin the discussion of
the framework with the properties of FRUGALLYSCHEDULE.

Proposition 1. Given the number of machines m and
n′ jobs of length p′1, . . . , p

′
n′ by the problem P , let

p′max := max1≤j≤n′{p′j}. For the schedule f ′ returned by
FRUGALLYSCHEDULE(P, T ) in Algorithm 2, we have the
following:

(i) if T ≥
∑n′

j=1 p
′
j/m, then the algorithm does not abort

and f is a valid chain partitioning,
(ii) if the algorithm does not abort, then Cmax(f

′) ≤
max{2T, p′max},

(iii) if the algorithm does not abort, no machine gets two jobs
longer than T , even if Cmax(f

′) > 2T .

Proof: For part (i), first we prove by induction that for
any k < m, if the first k machines did not get all the jobs,
then either

∑k
1 Ci ≥ k ·T or

∑k+1
1 Ci ≥ (k+1) ·T holds. For

any machine k, there are two possible cases if the algorithm
has not run out of unassigned jobs i.e. there are still jobs for
machine (k + 1). In the first case, machine k gets normal
amount of work: Ck ≥ T , proving the case trivially. In the
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other case, machine k gets less work: Ck < T , but this also
implies Ck+1 > 2T , because a job longer than 2T comes next
in line 4 of Algorithm 2, and the machine (k+1) gets this long
job. Thus Ck + Ck+1 > 2T , proving this case. Consequently
the last machine could get a work of length at most

∑n′

j=1 p
′
j−

(m− 2)T , proving (i).
For both parts (ii) and (iii), observe that a machine i gets

more than 2T amount of work only if its assignment consists
of one single job, as line 4 assures that each job longer than
2T is assigned to a dedicated machine.

According to part (ii), FRUGALLYSCHEDULE is not an
ordinary 2-approximation. It is of importance, because while
p′max is a lower bound on the optimal makespan of the
synthetic scheduling problem P , it is usually not a lower bound
for the original scheduling problem, as the longest synthetic
job may not correspond to a singleton chain. The algorithm is
frugal because it does not allow the makespan to reach 2p′max,
as an ordinary approximation would.

Proposition 2 enables us to finish the analysis of the frame-
work.

Proposition 2.
(i) In any schedule executed by the framework, the assign-

ment of a machine can contain at most one half chain of
estimated length, so the length of the complement of the
estimated chain is known.

(ii) s(q + 1) ≤ ds(q)/2e for every iteration q.
(iii) If s(q) = 1, then Cmax(fq) = pmax, if s(q) = 0, then

Cmax(fq) ≤ 2TLB.

Proof: Part (i) follows from part (iii) of Proposition 1 and
the fact that each estimated length is more than T (see line 8 in
Algorithm 1). Part (ii) follows from that all long, non-singleton
chains in the database are split in half in each iteration. Part
(iii) follows from part (ii) of Proposition 1.

Finally, we summarize the results in

Theorem 1. The PSAPARTITIONER framework presented
in Algorithm 1 yields a makespan at most 2C∗max using a
database of size O(m log n), after at most dlog ne iterations,
starting from any initial schedule f0.

We note that as the initial schedule can be arbitrary, so if
the processing times would change between two iterations be-
cause of some change, the converging process is automatically
restarted from the current schedule.

V. DEMONSTRATION OF THE FRAMEWORK

In this section we present two PSAs to test the framework
with: a simple artificial one (Example 3), and a graph gener-
ation program (Example 4).

Example 3. Let m = 3, n = 12 and the job lengths
p1..12 = 93, 1, 1, 1, 102, 50, 25, 25, 1, 1, 1, 1. The initial sched-
ule f0 assigns uniform, 4-sized chains to the machines.

This example focuses on illustrating the virtual chains of
the database, which are more than the last measurement. The
average load remains TLB = 100 throughout the iterations.
Before the first iteration, initially we have the schedule f0[1 . .

4] = 1, f0[5 . . 8] = 2, f0[9 . . 12] = 3 and its completion
times C(f0) = (96, 202, 4).

As Cmax = 202 > 2TLB = 200, the first iteration has to
come. The chain [5 . . 8] is split in half, both `([5 . . 6]) and
`([7 . . 8]) are estimated to be 101, so FRUGALLYSCHEDULE is
called with the synthetic jobs p′1..4 = 96, 101, 101, 4. It returns
the schedule of the synthetic jobs f ′1[1 . . 2] = 1, f ′1[3 . . 4] =
2, which is interpreted as a schedule (chain partitioning) of the
original jobs: f1[1 . . 6] = 1, f1[7 . . 12] = 2. This is executed,
and the completion times are measured as C(f1) = (248, 54).

However, at the end of the 1. iteration, the “chains of the
database” and their length are: `([1 . . 4]) = 96, `([5 . . 6]) =
152, `([7 . . 8]) = 50, `([9 . . 12]) = 4, derived from C(f1)
and C(f0). In the 2. iteration no chain of the database needs
to be split, as the previous long chain [1 . . 6] is represented
already as two chains of the database. So the final schedule is
f2[1 . . 4] = 1, f2[5 . . 6] = 2, f2[7 . . 12] = 3, the completion
times are C(f2) = (96, 152, 54), and the framework stops as
realises that Cmax = 152 < 2TLB.

Example 4 ([36]). The processing times of the n = 49566 jobs
of a plane graph generation PSA [36] are shown on Fig. 1
(top), and m = 12.

The whole process is illustrated on Fig. 1. The first diagram
(on top) visualizes the processing times, which spread from
4 to 8125 (in hundredth seconds). It also shows that the first
10000 jobs (j ≤ 10000) are longer than the others.

The second diagram of Fig. 1 shows the initial schedule
f0 and its completion times C(f0). The initial schedule
assigns the uniform-sized chains to the 12 machines and the
assignment intervals (chains) are separated by vertical lines,
and their machine indices are also displayed. The machine
index assigned to a job index j is f0(j), so Cf0(j)(f0) is the
completion time of the machine that gets job j. There are
12 rectangles on the second diagram, and the width of the
ith rectangle corresponds to the size (number of jobs) of the
assignment of machine i, while its height corresponds to the
length of this assignment. Obviously the makespan of f0 is the
height of the highest rectangle, which is Cmax(f0) = 760177.

The average completion time is TLB = 194851, so the
first iteration splits the first and the second chains, estimate
their sizes (not shown on the figure) and computes the next
schedule f1, executes it and measures its completion times. f1
and C(f1) are shown on the third diagram. In this iteration,
FRUGALLYSCHEDULE only assigned jobs to 8 machines, and
the machine index i is only displayed for 5 ≤ i ≤ 8. Again, we
have 8 rectangles corresponding to 8 machine assignments. It
is worth observing that the short chains (lowest rectangles)
from the previous schedule f0 were contracted into bigger
chains (wider rectangles), while the longest ones (highest
rectangles) were split into smaller (narrower rectangles) chains.
The makespan is still Cmax = 433898, so the next iteration
comes.

The second iteration splits only the third chain of f1,
computes and executes the schedule f2, updates the database
with C(f2), shown on the fourth, last diagram of Fig. 1. The
only difference from the previous iteration is that the one chain
split in half is dispatched to two distinct machines. Finally, the
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Figure 1. Plane graph generation PSA processing times pj and machine
completion times C(fq) of iterations q = 0, 1, 2. All horizontal axes
correspond to the job number j. Vertical axes denote time.

makespan is Cmax = 365471, so the framework stops with the
satisfying schedule f2.

VI. SCHEDULING BATCHES WITH SETUPS

This section extends the framework for the more general
application model we call Batches of PSAs (BPSA). A BPSA
consists of n jobs similarly as a PSA, though the jobs are
partitioned into g families. We assume every family consists
of jobs of consecutive indices, i.e. the families are chains. Each
family h ∈ [1 . . g] is divided into one or more batches [8]
in a schedule, preceded by the corresponding setup of length
uh, where uh depends only on the family. So the work of a
machine consists of batches of jobs and corresponding setups,
and its completion time has to be redefined as the total length
of the jobs and setups assigned. The more batches are divided
a family into, the more additional setups are contributed to
the total work. As chain partitioning keeps family members
close, it might be an economical approach to mitigate costs
from having extra setup work. We suppose the setup lengths
u1, . . . , ug (denoted by the vector u) are known a priori, but
the job lengths are still unknown.

The extended framework presented in Algorithm 3 is a gen-
eralization of the iterative framework shown by Algorithm 1
in Section III. In each iteration, first it calculates a preliminary
schedule (chain partitioning), which may not be feasible yet
because it misses some setups (to be inserted later). Let us
pretend for a moment that we have only a single machine, i.e.
m = 1. Then the only feasible chain partitioning is that we
put the setup of the first family of length u1, then every job of
the first family, then continue with a setup and the jobs of the
second family etc. We regard this machine assignment, i.e. the
sequence of (n + g) jobs and setups as a fictitious PSA, and
the framework computes the chain partitioning of the fictitious
PSA first. We call this partitioning f : [1 . . n+ g] 7→ [1 . . m]
the preliminary schedule, which is not a feasible schedule if
a family is split up between machines. To fix it, we need
to simply insert the corresponding additional setup into each
assignment not starting with a setup, then we have the feasible
fixed schedule, illustrated on Fig. 2. A similar idea was used
in [9].

The chains of the database now form a partition of
[1 . . n+ g] and used in the preliminary schedule. However,
the measured machine completion times are feedback on the
fixed schedule instead, so a conversion is needed: the length of
the chain of the database is equal to the completion time minus
the length of the additional setup. This easy conversion is done
when initializing the database from completion times (line 1)
and when merging the new completion times (line 13). We
mention an implementation issue: there may be a redundant
setup in the end of assignments but since we know the
setup lengths, we are not required to execute the redundant
setup, instead, we can simply add its length to the measured
completion time.

Finally, we need to adjust the former lower bound TLB and
the maximum size of the long chains s, hence we introduce
Tu

LB := TLB +
∑g

h=1 uh/m which is now the average comple-
tion time of the fictitious PSA, and the definition of su(q) is
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Figure 2. Fixing a schedule with additional setups, g = 3, n = 6, m = 2.

Algorithm 3 Iterative framework for batches
1: procedure BATCHPARTITIONER(m,n,u, f0,C(f0))
2: q ← 0, calculate Tu

LB
3: while su(q) > 1 do
4: q ← q + 1
5: P ← a synthetic scheduling problem of the chains

of the database and their length
6: for all original chain c in P s.t. `(c) > 2Tu

LB do
7: Split chain c in half
8: Estimate the length of the half chains
9: Replace chain c with the half chains in P

10: fq ← FRUGALLYSCHEDULE(P , Tu
LB)

11: Fix fq: add the corresponding setups
12: Execute fq , measure C(fq)
13: Merge C(fq) into the database
14: Recalculate Tu

LB

similar to s(q) but uses Tu
LB as a threshold instead of TLB, and

counts the setups in as well.
The extended framework copes with the constraint of setups,

and in the special case when u ≡ 0 it behaves exactly like the
previous framework. However, for the batch case it admits only
a 3-approximation as shown by

Theorem 2. The BATCHPARTITIONER framework presented
in Algorithm 3 yields a makespan at most 3C∗max using
a database of size O(m log n), after at most dlog n + ge
iterations, starting from any initial schedule f0.

Proof: Proposition 1 is still applicable in addition to
the claims (i) and (ii) of Proposition 2. So the makespan
of the preliminary schedule in the last iteration is either
max{pmax;umax} if su(q) = 1 or less than 2Tu

LB if su(q) = 0,
i.e. the preliminary schedule is a 2-approximation, although
infeasible.

We base the rest of the proof on the observation that in
order to fix the preliminary schedule, at most one setup has
to be inserted into each machine assignment in line 11 in

Algorithm 3. It is the consequence of the construction of
the fictitious PSA that when a machine switches from one
family to another, there already is a corresponding setup in the
preliminary schedule. Thus the completion times of the fixed
schedule are made longer than the preliminary completion
times with at most umax, respectively. In conclusion, as the
preliminary is a 2-approximation, the fixed schedule is a 3-
approximation.

VII. OUTLOOK AND CONCLUDING REMARKS

We presented a framework to schedule independent jobs
of unknown length a priori. The framework iteratively learns
the necessary length information to achieve an approximation
by repeatedly adjusting an initial scheduling, executing it and
updating its historical database. In each iteration the framework
approaches to its goal, the information on the most dense
parts of the parameter space is refined, and an upper bound
on the schedule (p′max) monotone decreases. We showed that
the framework after log n iterations (execution of schedules)
yields a schedule with a makespan at most 2 times the optimal
makespan, using only O(m log n) space for the historical
database. The framework was tested with a PSA and was
considered an adequate tool to automatically aid the user to
reduce the cost of schedule. We also mention that a small
perturbation in the time characteristics of the PSA probably
does not destroys the convergence.

To the best knowledge of the authors, it is an open problem
whether this framework can be strictly improved in the sense
that neither the framework approximation ratio (2), nor the
convergence rate (logn) and the space used (m log n) de-
grades.

A batch setting where the setups would also be unknown a
priori seems to be rather a calling open problem.

Another direction of possible future work could be gen-
eralizing this really simple model towards a heterogeneous
environment or more complex job interactions. However, both
the chain partitioning for the case of heterogeneous ma-
chines [37], and the application of using multi-dimensional
chain partitioning [38] is NP-hard.
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