
An Architecture for Systematic Administration of
SELinux Policies in Distributed Environments

Pedro Chavez Lugo, Juan J. Flores, and Juan Manuel Garcia Garcia

Abstract—An operating system designed under the criteria of
the class A1, consists of a collection of security strengthening
mechanisms for the kernel. SELinux is an example of this
type of operating system that supports several types of security
policies applied to access control. In this paper we address
the problem of inconsistency in SELinux policies, which can
be present in distributed environments. To solve this problem,
we propose an architecture that integrates a policy server for
enabling a simple and secure administration. The policy server
collects, integrates, and updates all policies that are applied in
the distributed environment. We aim to achieve authenticity,
integrity and confidentiality in the policy update process through
the Kerberos V protocol. A redundant policy server is used to
obtain availability on policies.

Index Terms—Access, control, distributed, administration,
SELinux, policies, Kerberos.

I. INTRODUCTION

NOwadays an operating system must integrate all the
security mechanisms that enable it to identify users,

control access to system resources, and record events (le-
gitimate and intrusive). An operating system should provide
functionality for managing hardware, serve as a base for
application programs, and act as an intermediary between the
end user and hardware, in addition to providing security and
protection [1]. The Orange Book [2] classifies systems into D,
C, B, and A divisions of enhanced security protection. Division
A uses of formal security verification methods to assure that
the mandatory and discretionary security controls; class A1
is a verified design [3]. A class A1 system bring along an
increase in complexity in the use and administration. In this
paper, we address the problem of inconsistency in SELinux
policies, which can be present in distributed environments.

A. Security Mechanisms

To identify users, limit the access to objects, and log the
actions performed by subjects, an operating system must
contains some of the following non bypassable mechanisms:

- Authentication.
- Auditing.
- Access Control.
Those mechanisms are described in the following subsec-

tions. The first question is how to determine if a computer
system is secure. To answer this question some organizations
formed hackers teams trying to obtain unauthorized access

Div. de Est. de Postgrado, F. de Ing. Electrica, Universidad Michoacana,
Morelia, Michoacan, Email: juanf@umich.mx, pedro@lsc.fie.umich.mx

Dep. de Sistemas Computacionales, Instituto Tecnologico de Morelia,
Morelia, Michoacan, Email: jmgarcia@itmorelia.edu.mx

to system resources. But the best point to the attackers is to
know vulnerabilities that are not known by developers and
administrators.

1) Authentication Mechanism: The authentication mecha-
nism determines if the user really is who he/she claims to be.
Authentication can be based on one or more of the following
factors:

- Something you know (a number or password).
- Something you possess (a key or smart card).
- Something you are (Biometrics).

A “something you know” factor does limit the number of
incorrect online or offline login attemps. Users can reproduce
their own features accurately and repeatedly by a biometric
factor. The “something you possess” factor is a poor au-
thentication mechanism, and it is neccessary to employ the
“something you know” or “something you are” factor. A strong
authentication mechanism combines two or more factors but it
comes with an increase in cost. Some works about biometry,
password managers, and smartcards can be found in [4]–[7].

2) Auditing Mechanism: The designers, builders, and ad-
ministrators sometimes need to analyze the audit records to
solve security problems. A trusted OS needs the ability to
record (log) the system’s and the users’ activity. The identity,
action, and time are the minimum aspects to log in order to
answer questions. It’s necessary to log the activities to:

- Perform chronological reconstructions of events.
- Detect unauthorized events recognition/spoofing.
- Provide problem identification.

It is necessary to limit the space for the audit records
in a storage medium. More detailed information about audit
records can be found in [8].

3) Access Control Mechanism: An operating system must
contain a lot of subjects and objects and each subject can
access some or all objects (see Fig. 1). Access control limits
the interaction between subjects and objects. Authorization is
part of access control, and its function is to grant or deny the
access to an object by a subject action (see Fig. 2).

Morrie Gasser [9] cites three tasks for the access control
mechanism:

- Authorization determines which subjects are entitled to
have access to which objects.

- Determining the access rights (a combination of access
modes such as read, write, execute, delete, etc).

- Enforcing the access rights.

In Access Control subjects and objects have security at-
tributes, and access is determined by a policy. A policy is
a set of rules that guide the access control engine based on

INTERNATIONAL JOURNAL OF
COMPUTERS AND COMMUNICATIONS

127 Issue 4, Volume 1, 2007

S1

O 1

S

S

O

O

O

2

3

2

3

4

Subjets

Objects

Fig. 1. Subjects accessing objects

O 1

Access granted

Access denied

S1

Access read?
Access Control

Fig. 2. Access control - Authorization

one or more access control models. Aconstraint is a mean
to disallow granted permissions. Some operating systems like
SELinux use some access control models, and the system
administrators need to know the right configuration steps and
each model used [10]. In following sections we define the
two diferent access control types and the most popular access
control models.

II. A CCESSCONTROL TYPES

An access control type describes the conceptual definition
for access control. The Trusted Computer System Evaluation
Criteria document [11], cites two different access control
types:

- Discretionary Access Control (DAC).
- Mandatory or Non-discretionary Access Control (MAC).

A. Discretionary Access Control

DAC is a means of restricting access to objects based on
the identity of subjects and/or groups to which they belong.
This kind of control is discretionary in the sense that a subject
with a certain access permission is capable of passing on that
permission (perhaps indirectly) to any other subject (unless
restrained by mandatory access control).

The rules of Discretionary Access Control allow users to
change the security attributes of their objects.

B. Mandatory Access Control

MAC is a means of restricting access to objects based on
the sensitivity (as represented by a label) of the information
contained in the objects and the formal authorization (i.e.,
clearance) of subjects to access information of such sensitivity.

The rules in MAC disallow users to change security at-
tributes to their objects. We believe it is necessary a new
MAC definition, including a policy that specifies that rules
are controlled by the organization and not by users.

O1

S 1 S nSubjects S = { }, . . . ,
O1 OmObjects O = { }, . . . ,

r
k

r

O i S 1Om SSn−1

S n−1

S n

S 2

S 1

, . . . ,
1

Access mode R = { }

R

.

. . . n

.

, SSa Ob cA[]

Fig. 3. Access matrix

others
group
user

− − −r − −r w x

Fig. 4. Object mode permission bits

III . ACCESSCONTROL MODELS

An access control model describes the ideal and concrete
definition for access control. A formal model is an important
component that provides a base to design and build trusted
systems. It is necessary to enforce the chosen model in the
kernel and not to use the user space to solve all security
problems. The formal model helps to demonstrate how secure
a given implementation is. The survey [12] cites some formal
models (developed from 1970 to 1980) to prove an O.S. really
provides the security its claims.

A. Access Matrix Model

A first matrix access control approach was proposed by
Lampson B. W. [13]; his model has four main sets: Subjects
(S), Objects (O), read-write-execute combination represented
by access mode (R), and a matrix to represent how and which
objects or subjects can be accessed by a subject.

Figure 3 shows an access matrix and notations for subjects,
objects, and access modes. An objectOb or subjectSc can be
accessed in moderj by subjectSa if A[Sa,Ob | Sc].

Nowadays, a variant of the matrix model variant is called
Access Control Lists (ACLs), and used in the Unix and Linux
OS since the 70’s and 80’s, respectively [14]. In this model
every object has three sets of permissions to define access for
the owner, owning group, and others. Each set defines read (r),
write (w), and execute (x) permissions, wich are represented
by only nine bits (see Fig. 4).

ACLs, has survived because it is a simple model, and
provides easy customization, administration, and usage. A
disadvantage of ACLs is the coarse access granularity; i.e.
user, group, and others. ACLs is a DAC model, where the
users/subjects can change their objects security attributes. For
some subject operations it is necessary the admin identit. This
final point can generate a threat like buffer overflow to gain
permission administrator privileges [15].

INTERNATIONAL JOURNAL OF
COMPUTERS AND COMMUNICATIONS

128 Issue 4, Volume 1, 2007

Read

Write

Access denied

Label: Secret

Subject 1

Label: Top secret

Label: Secret

Label: Unclassified

Object 1

Object 2

Object 3

Fig. 5. Data flow in MLS

B. Multilevel Security

D. Elliott Bell y Leonard J. Lapadula proposed the Multi-
level Security (MLS) model [16], based on a military informa-
tion structure. Subjects are classified in clearance levels and
objects in sensibility levels. Top secret, Secret, and Unclassi-
fied are name labels for sensibility levels. The need to know
principle is used to limit subject access needed for a specific
work and close the unnecessary access to other objects with
the same sensibility label. Two properties define the interaction
between subjects and objects, where L defines a clearance level
or a sensibility level:

- Simple security property: A subjects can read objecto
if and only if L(o) ≤ L(s) and has permission to reado.

- Star property: A subjects can write objecto if and only
if L(s) ≤ L(o) and has permission to write.

Fig. 5 shows the data flow in MLS. A Subject with “Secret”
label has write access to objects with “Top Secret” label, and
only read access to objects with same or less label. A MLS
model is characterized by the phrase “no write down, no read
up”. The MLS is a Mandatory Access Control type where the
users can change security attributes of their objects only if
the policy grants it. The main MLS goal was confidentiality
enforcement to prevent unauthorized disclosure of sensitive
information.

C. Biba Integrity Model

Clark and Wilson [17] compare military and commercial
systems and conclude that control of confidential information
is important in both environments, but a goal of commercial
systems is the separation of duties to ensure information
integrity to prevent frauds and errors. The Biba integrity model
[18] is similar to the MLS model, but its goal was integrity
enforcement to prevent unauthorized modification of sensitive
information. Fig. 6 shows the data flow in the Biba Integrity
model. A Subject with “Mediumintegrity” label has read
access to objects with “Highintegrity” label, and only write
access to objects with same or less label. The Biba integrity
model is characterized by the phrase “no write up, no read
down”. Chinese Wall is an other MAC example proposed to
be used in commercial environments [19] for the integrity
enforcement.

D. Type Enforcement

Type Enforcement (TE) Technology is a Secure Computing
trademark; in this scheme a process is confined to access only

Read

Write

Access denied

Label: Secret

Subject 1

Object 1

Object 2

Object 3

Label: Medium_integrity

Label: High_integrity

Label: Low_integrity

Fig. 6. Data flow in Biba Integrity

F G

r w

r w rU

V

Types

a

n

D
o
m

i

s

DTET

Fig. 7. DTE table

D
o
m

i
n
s

a

U V

V

enterU

Domains

DTT

Fig. 8. DT table

to the necessary resources to do its work (least privilege).
Domain and Type Enforcement [20], is an improved TE, where
subjects are classified in domains and objects in types. A
process can into other domain by a transition. The relations
between subjects and objects are controlled by a Domain and
Type Enforcement Table (DTET), and a Domain Transition
Table (DTT). DTET specifies what types and access modes
can be accessed by a domain (see Fig. 7). DTT specifies the
transitions between domains,

(see Fig. 8). In 1995 DTE was proposed to be implemented
in the UNIX OS [21], and was customized in 1996 [22]
to confine some processes like httpd that require the admin
identity. In Linux, DTE was customized in 1997 by Serge E.
Hallyn [23].

E. Role Based Access Control

In Role Based Access Control (RBAC), a role defines
tasks and responsibilities of organization members [24]. The
roles doctor, nurse, and administrator, are role examples in
a hospital. Recently, the National Institute of Standards and
Technology proposed a standard for RBAC [25], based on the
RBAC reference model and the RBAC functional specification.
The RBAC reference model provides a rigorous definition of

INTERNATIONAL JOURNAL OF
COMPUTERS AND COMMUNICATIONS

129 Issue 4, Volume 1, 2007

User Assignment
UA

Users
U

Roles
R

PA

Assignment
Permission

OPS OBS

P
Permissions

user_sessions session_roles

S
Sessions

Fig. 9. Core RBAC

RBAC sets and relations and the RBAC functional specifica-
tion defines requirements over administrative operations for
the creation and maintenance of RBAC sets and relations.

The RBAC reference model defines a set of Users-U, Roles-
R, Sessions-S, and Permissions-P (see Fig. 9). A user is
a human, a role is an occupation within an organization
semantics. A permission is an access mode for an object or
objects. The users can get one or more roles per session.

IV. SELINUX

An operating system designed under the criteria of class A1,
consists of a collection of security strengthening mechanisms
for the kernel. SELinux is a Linux kernel module, designed
by the National Security Agency (NSA), that produces an
operating system class A1. SELinux supports several access
control models.

SELinux kernel module is based on the Flux kernel ad-
vanced security (Flask), which is a flexible architecture that
supports several mandatory policies. The Flask architecture
was designed for microkernel environments but their use has
spread to the Linux monolithic kernel to produce SELinux
[26]. SELinux enhances the access control mechanism through
integration of theDiscretionary Access Control (DAC), and
the Mandatory Access Control (MAC). The Access Control
List (ACL) model used by the discretionary access control,
and the Multilevel Security, Type Enforcement (TE), Role-
Based Access Control (RBAC), and User Identity (UI) models
are used by the mandatory access control. Fig. 10, shows
the components of the SELinux module. An administrator,
using an interface for policy management, sends a policy to
the SELinux File System, which in turn sends the policy to
the Security Server. The Security Server determines whether
access to a resource is allowed or denied. The purpose of the
access vector cache is to store the rules of the policy that
are frequently evaluated to obtain a response as quickly as
possible, avoiding using the security server repeatedly.

A. SELinux OPERATION

At a high level of abstraction users interact with the hard-
ware through the operating system. At the operating system
level a user sesion is associated with aprocess, and at the
access control level that process is associated with thesubject
term. At the operating system level aresource is associated
to a file, directory, socket, etc. At the access control level that
resources are associated with theobjects term. Objects are

Various Kernel
Object Managers

Cache
Vector
Access

Yes or No?

Cache Miss

User Space

Kernel Space

SELinux Filesystem

Access Desicion Logic)

Security Server
(Policy Rules and

SELinux module

Policy Management
Interface

Administrator

Fig. 10. SELinux module architecture

grouped into classes, and each class specifies some actions
(read, write, etc.) that can be performed on such objects.
In SELinux each subject and object have a security context
associated to them. A security context is formed by a set
of attributes based on the mandatory access control models.
The identity attribute is taken from the UI model, thedomain
and type attributes are taken from the TE model. Therole
attribute is taken from the RBAC model and thelevel attribute
is taken from MLS model. An example of security context
is user u:system r:system t:s0, where the valuesuser u, sys-
tem r, system t, s0 correspond to identity, role, type, and level
attributes respectively, where these concepts are defined as
follows:

Identity. Each user (subject) has an identity normally repre-
sented by the user name.

Role. Within an organization a user can perform various
activities, which are based on the tasks entrusted to it. The
role attribute is used to classify the functions assigned to a
user. Depending on the activities developed by a user, he/she
can take one or more roles.

Domain and Type. The processes or subjects are grouped
into domains, and system resources (objects) are grouped into
types. A domain can have access to a type for a restricted set
of actions. Transitions can be done between domains.

Level. The level attribute is used to define access control as
follows:

- A subjects can have access to an objecto for a set of actions,
if and only if the subject’s levels is greater than or equal to
the object’s levelo.

Fig. 11, shows the relationships that exist between the
different security attributes. Anidentity attribute can access
one or morerole attributes, a role attribute can access one or
moredomain attributes, and a domain attribute combined with
a level attribute can have access to one or moretype attributes
with the same level value. Other important aspects are the
dominance between roles and the transition between domains
[21].

INTERNATIONAL JOURNAL OF
COMPUTERS AND COMMUNICATIONS

130 Issue 4, Volume 1, 2007

R L

TD
Domain

Level

Dominance

Identity
I

Type

Role

Transition

Fig. 11. Interactions between attributes

read
access?

read
access?

Object

DAC deny

allow

Subject

MAC deny

allow

Fig. 12. Interaction between DAC and MAC

− − −

DAC

read access
(r)?

Deny

Allow

r: read
w: write
x: execution

u: user owner
g: group
o: others

r w x r − −

{ { {

u g o

Subject:
spike a.c

Object:

Fig. 13. Discretionary access control by ACL

B. ACCESS CONTROL ON SELinux

When a subject tries to access an object to perform some
action, the discretionary access control is the first requested
instance. If the discretionary access control allows access to
the object, then the mandatory access control is requested to
allow or deny access to the object. If discretionary access
control denies access to the object, then the mandatory access
control is not invoked (see Fig. 12).

Fig. 13, shows the interaction between a subject and an
object through discretionary access control. In SELinux as well
as traditional Linux, ACL is the model used for discretionary
access control. This model is based on the identity of the sub-
ject and uses the set of permissions for the owner, group, and
others, respectively. Nowadays, ACLs are still employed by
their easy deployment, configuration, and use. A disadvantage
of ACLs is the lack of a fine granularity for access.

Fig. 14, shows the interaction between subject and object
by the mandatory access control. This access control type
analyzes the subject and object security contexts. The subject

MAC

Security Context Security Context

read access
(r)? Allow

Identity Role Type Level

spike system_r system_t S1
Identity Role Type Level

spike object_r test_t S0

Deny

Subject: Object:

a.cspike

Fig. 14. Mandatory access control on SELinux

wil l have read access on the objecta.c if and only if there
is a rule that allows thesystem t domain attribute to access
the objects with thetest t type attribute, and where the level
attribute of the object is lower than the subject. Another access
possibility exists if thesystem r attribute role dominates a
role that has enabled access to a domain attribute which can
access to thetest t type attribute, and the level criteria is
satisfied. Another possibility to access an object may be given
if the system t domain attribute has permition to transition to
a domain allowed to access thetest t type attributes, and the
level criteria is satisfied. The objectr role attribute is the role
for system objects.

C. SELinux POLICY

Nowadays, SELinux policies are administered locally and
the policy rules are grouped in several directories, which
contain a set of files. Fig. 15 shows the set of directories
used to store local SELinux security policies. One directory
is associated with a class, object, and permission structures
defined by the Flask architecture. Similarly, two directories
are associated with the rules, based on TE and RBAC models.
The directory associated with RBAC rules is combined with
the directory for the user statements. The constraints directory
contains the set of rules that deny others. For example if there
is a rule that allows access, may be a constraint invalidating
such rule. The security context directory specifies to each
element of files and directories.

SELinux confines processes in sandboxes (i.e. a least priv-
ilege environment) to limit them to perform their specific
functions. For example, the apache process can be confined
into a domain to only have access to their resources like
configuration files and web pages. Then access control only
allows the access to resources needed by the apache domain
and denies the access to other resources. The following rules
confine the apache process for the resources to it:

• Assignment of a security context to the web directory
/var/www.

– systemu:object r:web resourcetype:s0

• Domain and type definition rules.

– type apachet, domain;
– role apacher types apachet;
– type apacheexec t, file type, exectype;
– allow apachet web resourcetype : file {write read};

The rules given above are part of the set of rules needed
to confine the apache process, this rules define aapache r
role, a apache t domain, and aapache exec t type. The
apache t domain can have access to read and write files

INTERNATIONAL JOURNAL OF
COMPUTERS AND COMMUNICATIONS

131 Issue 4, Volume 1, 2007

Objects

Permissions
Classes TE files

RBAC
files

User
statement

Constraints
Security
context

Policy

Fig. 15. SELinux local policy structure

Internal
network

server
DNS

server
Mail

server
DHCP

server
Data Base

Web
server
(wsl) (msl) (dnsl)

(dbl) (dhcpl)

Fig. 16. SELinux distributed environment

of web resourcetype type. For the design and analysis of
security policies, administrators must have experience with
access control types and models. Another piece of knowledge
administrators need to have for the design of SELinux policies
is the macro preprocessor m4. For a good policy management,
an administrator needs to know the correct configuration
procedures.

In SELinux distributed environments each host has a policy
associated to it. Fig. 16 shows an example of a distributed
environment of SELinux hosts, where each host is responsible
for providing a network service. The administrative roles that
can be exercised in such environment are cited in Table I;
Table II cites the roles that can be used in each host. Each
host is associated with a set of users that can play one or
more roles. Table III shows the users and roles for hostdbl.

If a set of rules for some policies change, and those changes
are valid in a number of hosts, the policy administrator must
update the policy in all hosts where those changes are valid
(See Fig. 17). That is certainly not a desirable situation because
the administrator may have not updated all hosts. The con-
sistency, authenticity, integrity, availability, and confidentiality
aspects should be present in the policy update process. For
these reasons, it is necessary to develop tools that aid the
systematization of the policy management process. In the next
section we present an architecture that solves the problems
addressed in this section.

V. PROPOSED ARCHITECTURE

To solve the problems generated by using SELinux in
distributed environments, we propose an architecture that
systematizes the policy management process. We eliminate

Policy changes

update

update

update

Policy
Updated (consistency)
None updated (inconsistency)

(bkpr rules)

msl wsl dnsl

dhcpldbl

Fig. 17. Manual SELinux policies update

TABLE I
ADMINISTRATIVE ROLES

Role Description

bkpr Backup role
dbr Data base server admin
dhcpr DHCP server admin
dnsr DNS server admin
msr Mail server admin
systemr Operating system admin
wsr Web server admin

TABLE II
ROLES AND HOSTS

Hosts

Roles dbl dhcpl dnsl msl wsl

bkpr x x x x x
dbr x
dhcpr x
dnsr x
msr x
systemr x x x x x
wsr x

TABLE III
ROLES AND USERS FOR DBL HOST

Users

Roles spike john bob

bkpr x x
dbr x
dhcpr
dnsr
msr
systemr x x
wsr

policy inconsistencies by using a host that operates as a policy
server. We achieve authenticity, integrity, and confidentiality
in the policies update process by means of using Kerberos
system. Fig. 18 shows the integration of the policy server and
Kerberos system.

In case a policy changes, the policy server must update it
in all systems associated with the changes. The policies must

INTERNATIONAL JOURNAL OF
COMPUTERS AND COMMUNICATIONS

132 Issue 4, Volume 1, 2007

Internal
network

Web
server

server
DHCP

server
Data BaseKerberos V

server

server
Policy

server server
Mail DNS

(wsl) (msl) (dnsl)

(ksl) (dbl) (dhcpl)

(psl)

Fig. 18. Proposed architecture for policy management

be available in the update process, a redundant policy sever
is proposed to provide this characteristic. Other work about
secured distribution of contents on distributed environments
are cited in [27], it uses the Public Key Infrastructure, and
SEED encryption algorithm to protect the copyrights of digital
contents.

A. POLICY SERVER
The policy server centralizes the SELinux policies to avoid

inconsistencies in the distributed environment when any rules
change. This server reports to each host when the sets of
policies it stores change. At that point, a policy update process
takes place. Fig. 19 shows that a centralized policy segmented
and distributed to the different hosts in the distributed envi-
ronment.

Location Rules
The term location is used to designate a host integrated in
a SELinux distributed environment. To integrate the location
concept in SELinux policies we use two rule extensions to
express relationships between users, roles, and locations.

Rules involving locations and roles
Syntax: locationl rolesr1, r2, ..., rn

Semantics:location ws l roles { system r, ws r, bkp r};. The
rules for locations and roles are expressed in the location
statements module, these rules specify the set of roles that
can be exercised in the locations.

Rules for users, locations and roles
Syntax: useru location l rolesrx

Semantics:user bob location ws l roles {bkp r};. The rules for
users, locations and roles are expressed in the user statements
directory. These rules specify the roles that a user may play
in a given location.

Algorithms to produce local policies
The introduction of location policies require a modification
in all SELinux policy mechanisms. Instead of modifying
those mechanisms, which involve modifying the compiler,
loader, and interpreter of access control policies, we allow
administrators to introduce policies in the augmented syntax.
Policies using the augmented syntax are stored in the policy

Objects
Classes

Permissions
TE files RBAC

files

Users
statements

Security
contextConstraints

Objects
Classes

Permissions

RBAC
files

Users
statements

TE files

Constraints
Security
context

Objects
Classes

Permissions

RBAC
files

TE files

Users
statements

Constraints
Security
context

Policy
Locations
statements

Policy_host_1

host_n

Policy_host_n

host_1

Policies
segmentation

Fig. 19. Policy structure for locations

Input: Set of files for Locations statements directory
Output : Set of directories and files for host policies
foreach rule (location l roles r1, r2, ..., rn) do

Createl directory with a local policy structure;
foreach i = 1 to n do

R l = R l ← R l ∪ ri;
end

end
Algorithm 1 : Location algorithm

Input : Set of files for Locations directory
Output : user - role rules
foreach rule (user u location l roles r1, ..., rm) do

if r1, ..., rm ∈ R l then
Append (Roles (useru) {r1, ..., rm}) in users;

end
end

Algorithm 2 : User algorithm

server. When a host requires a policy, the server processes
that rule, and send it to a host in the syntax required by
SELinux. This mechanism allows hosts to ignore the location
information managed by the policy server. If a policy does not
allow a user to play a given role in a given host, a denial signal
is sent, and no policy is issued to the host. On the other hand,
if access is granted, the complete rule (in SELinux syntax) is
sent to the location.
The User and Location algorithms are used for producing
local policies. For each rule for locations and roles, the
locations algorithm generates a directoryl, containing
domains, filecontexts, objects class and permissions, RBAC
andTE directories, and the file for users statements. Similarly,
the algorithm generates the setRl, which defines the roles
that can be played on locationl. For each rule for users,
roles and locations, the User algorithm adds a new rule useru

rolesr1, ..., rm in the user.local file contained in thel directory.

Policy assignment/update process

INTERNATIONAL JOURNAL OF
COMPUTERS AND COMMUNICATIONS

133 Issue 4, Volume 1, 2007

Kdnsl,psl

Kdhcpl,psl
{Update}

dbl,pslK

K

K

dbl

msl wsl dnsl

psl dhcpl

msl,psl
{Update}

{Update}

{Update}

{Update}

wsl,psl

Fig. 20. Update policy process

When a host joins a distributed environment, it requires to
identify itself in that environment. In the example shown
in Fig. 18, the server responsible for providing the DHCP
service assigns the following parameters needed for distributed
operation:

• Network: ip, netmask, dns, dhcp, ntp.
• Kerberos server: Realm Name, Master, and Slave.
• Policy server: Master and Slave.

Once the client has obtained such parameters, it proceeds to
interact with the Kerberos system to authenticate itself. For
the service phase, the client sends a session keyKC,S to the
policy server, who will provide integrity, and confidentiality
in the policy update process. In message 1 of the check
consistency protocol protocol a client sends to the policy
server a md5 value of their actual policy structure. The
policy server compares the md5 value received and a md5
value obtained for the corresponding structure of the policy
assignment to the client. If the two md5 values are equal,
then the policy has not been changed; if they are different the
client policy must be updated.

C-Client, and S-Server

1. C → S : {md5(policy)}KC,S

- If md5 values are equal then
2. S→ C : {Ok}KC,S

- else
3. S→ C : {Update}KC,S

4. S→ C : {Newpolicy}KC,S

5. C → S : {Ok}KC,S

Protocol 1: Check consistency protocol.

Update policy process
When one or more policies change, the policy server is
responsible for sending a message 3 to notify that policies
should be updated. Such notification is shown in Fig. 20. In
this case is necessary analyze what to do with the active user
sessions, considering the possibility of new rules that affected
their activities.

Security architecture implementation
The policy server is fully implemented, delivering segmented
policies to the hosts. Policies segmentation and Kerberos
Implementation are ready. The clients on each host have also

been implemented. Hosts deliver requests to policy server,
receive the policies, and integrate them to the SELinux kernel
module.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we address the policies inconsistency problem
that SELinux presents in distributed environments. We propose
an architecture for a distributed environment comprises a
centralized a policy server to integrate and update policies
on each host. On the policy update process the Kerberos V
protocol provides authenticity, integrity, and confidentiality.
The security policy server provides consistency on policies;
availability is obtained with a redundant policy server.

An interesting question is what to do when a policy is in
use and it is necessary to update it. One solution is to block
the system to give way to the update policy process, but the
work of the users would be affected. Another solution to this
problem is to inform users of the need of policy update, and
give them a prudent time to log out and ensure that their
activities are not affected.

Users can play their assigned roles through local or remote
sessions. Access control does not distinguish between local
or remote sessions. Our implementation does not take into
account the idea of connecting “to” a host “from” a different
location “playing” a given role. The solution to this problem is
under development. Another direction of work is to develop a
policy server with heterogeneous operating systems. Another
interesting idea is to integrate into the access control security
policies a quantitative factor and time mark to limit the misuse
of resources.

At the moment of writing this paper, authors do not know
any work addressing the problem of inconsistency in security
policies in distributed environments.

REFERENCES

[1] Silberschatz, Galvin, and Gagne.Operating Systems Concepts. John
Wiley and Sons, seventh edition, 2005.

[2] Departament of Defense. Department of defense trusted computer
system evaluation criteria. Technical report, December 1985. DoD
5200.28-STD.

[3] Peter Loscoco, Stephen Smalley, Patrick A. Muckelbauer, and Ruth C.
Taylor. The inetability of failure: The flawed assumption of the security
in moderm computer enviroments. 2000. NSA.

[4] Daniel Lopresti Lucas Ballard, Fabian Monrose. Biometric authentica-
tion revisited: Understanding the impact of wolves in sheep’s clothing.
2006. 15th USENIX Security Symposium.

[5] P.C. van Oorschot Sonia Chiasson and Robert Biddle. A usability study
and critique of two password managers. 2006. 15th USENIX Security
Symposium.

[6] Saar Drimer and Steven J. Murdoch. Keep your enemies close: Distance
bounding against smartcard relay attacks. 2007. 16th USENIX Security
Symposium.

[7] MDLIN TEFAN VLAD VALENTIN SGRCIU. Smart card technology
used in secured personal identification systems. Bucharest, Romania,
2006. Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS,
COMMUNICATIONS & COMPUTERS.

[8] Marianne Swanson and Barbara Guttman. Generally accepted principles
and practices for securing information technology systems. Technical
report, National Institute of Standards and Technology, September 1996.

[9] Morrie Gasser. Building a Secure Computer System. Van Nostrand
Reinhold, 1998.

[10] Red Hat, Inc., PO Box 13588 Research Triangle Park NC 27709
USA. Red Hat Enterprise Linux 4 SELinux Guide, 2005.
http://www.redhat.com.

INTERNATIONAL JOURNAL OF
COMPUTERS AND COMMUNICATIONS

134 Issue 4, Volume 1, 2007

[11] DOD. Departament of defense trsuted computer system evaluation
criteria. Technical report, Departament of Defense, 1985.

[12] Carl E. Landwehr. Formals models for computer security.Computer
Surverys Vol. 13 ACM, 1981.

[13] B. W. Lampson. Protection.Proc. 5th Princeton Symp. Information
Sciences and Systems, 1971.

[14] Andreas Grunbacher. Posix access control lists on linux. Technical
report, 2003. Suse Administration Guide.

[15] Peter G. Smith.Linux Network Security. Charles River Media, 2005.
[16] D. Elliot Bell and Leonard LaPadula. Secure computer systems:

Mathematical foundations. Technical report, 1973. MITRE Technical
Report 2547, Volume I.

[17] David D. Clark and David R. Wilson. A comparison of commercial and
military computer security policies. April 1987. IEEE Symposium on
Computer Security and Privacy.

[18] Biba K. J. Integrity considerations for secure computer systems.
Technical report, 1977. MITRE Technical Report 3153.

[19] David F.C. Bwever and Michael J. Nash. China wall security policy.
May 1989. IEEE Symposium on Research in Security and Privacy.

[20] W. E. Boebert and R.Y. Kain. A practical alternative to hierarchical in-
tegrity policies.Proc. of the 8th National Computer Security Conference,
Gaithersburg, MD, 1985.

[21] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker,
and Sheila A. Haghighat. A domain and type enforcement unix
prototype. June 1995. Unix Security Symposium Proceedings.

[22] Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger, Michael J. Petkac,
David L. Sherman, and Karen A. Oostendorp. Confining root programs
with type enforcement (dte). 1996. Sixth USENIX UNIX Security
Symposium.

[23] Serge E. Hallyn. Domain ant type enforcement for linux. 1997.
[24] David Ferraiolo and Richard Khun. Role-based access control. 1992.

Proceedings 15th National Computer Security Conference.
[25] Ravi Sandhu, David Ferriaiolo, Serban Gavrila, D. Richard Kuhn, and

Ramaswamy Chandramoulli. Proposed nist standart for role-access
control. 2001. ACM Transactions on Information and System Security
Vol. 4 No. 3.

[26] Peter Loscoco and Stephen Smalley. Integrating flexible support for
security policies into linux operating system. 2001. NSA.

[27] UNG-MO KIM SEUNG-BAE YUN, HYUNK-JIN KO. The design
and the implementation of web service security system for the secured
distribution of digital contents. Madrid, Spain, 2006. Proceedings of the
5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering
and Data Bases.

Juan J. FloresDr. Flores got a B.Sc. degree in Elec-
trical Engineering from the Universidad Michoacana
in 1984. In 1986 he got a M.Sc. degree in computer
science from Centro de Investigacion y Estudios
Avanzados, of the Instituto Politecnico Nacional.
In 1997 got a Ph.D. degree in Computer Science
from the University of Oregon, USA. He is a full
time professor at the Universidad Michoacana since
1986. His research work deals with applications
of Artificial Intelligence to Electrical Engineering,
Computer Security, and Financial Analysis. He is a

member of the Sistema Nacional de Investigadores. He is a member of the
Mexican Academy of Sciences, the Association for Computing Machinery,
ACM, and of the group Computational Finance & Economics Network. He
was an invited Professor-Researcher at the University of Oregon in 2005/2006.

Pedro Chavez Lugodegree in Electrical Engineer-
ing from the Universidad Michoacana in 1998. In
2005 he received MSc degree in Electrical Engineer-
ing Computer Systems option from the Universidad
Michoacana. He is Professor at the Informatica
Administrativa from Facultad de Contaduria y Cien-
cias Administrativas, Universidad Michoacana. His
research work includes intrusion detection, infor-
mation security, programming languages and access
control, operating systems.

Juan Manuel Garcia Garcia received a MSc degree
in Computer Science from the Universidad Nacional
Autonoma de Mexico (UNAM) in 1994 and in 2003,
a PhD degree in Computer Science from the Cen-
tro de Investigacion en Computacion (CIC) of the
Instituto Politécnico Nacional (IPN), Mexico. Since
1991 he is a Full Time Professor at the Computer
Systems Department of the Instituto Tecnológico de
Morelia. His research interests includes information
security, cryptography and information theory.

INTERNATIONAL JOURNAL OF
COMPUTERS AND COMMUNICATIONS

135 Issue 4, Volume 1, 2007

	cc-15
	I. INTRODUCTION
	II. Optimal approximation of data obtained after sportsmen testing
	III. The necessity to use a graphical evaluation method
	IV. Presentation of the graphich analisys method
	V. Method errors estimation
	VI. Conlcusions

	cc-16
	cc-17
	I. INTRODUCTION
	II. Server Responsibilities and Issues
	A. Server responsibilities
	B. Scalability issues for the server
	1) Low latency
	2) Strongly linked multi-user interactions

	III. Limitations of the Current Solutions
	A. Virtual world independent instances
	B. Instance dungeons
	C. Static spatial decomposition

	IV. Dynamical Spatial Decomposition
	A. The decomposition method
	B. Required Middlewares
	1) Control layer
	2) Communication layer
	3) Persistence layer
	4) Plugins

	C. System architecture

	V. Vertical scaling using GPGPU
	A. GPUs evolution
	B. Current GPGPU concepts and limitations
	1) Streams
	2) Kernels
	3) Flow control and limitations

	VI. Regional decomposition with GPGPU
	A. GPU tasks
	B. CPU tasks
	C. Frames, Execution and Synchronization
	D. Load balancing
	E. Tuning
	F. Using the solution in frameworks for RAD
	G. Prototype and results

	VII. Conclusion

	cc-18

