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Abstract— In this paper the probability that the queue size is
kept below some threshold in time interval of a given length is
studied. In particular, a formula for this probability is shown in
terms of generating functions. In addition to analytical results, a set
of numerical results is presented. These numerical results reveal a
surprising phenomenon. Namely, when the arrival process is strongly
autocorrelated, the level-crossing probability may depend very little
on the system load. As IP traffic is often strongly autocorrelated, it
is likely that this phenomenon may be observed in queues of packets
in Internet routers.
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I. I NTRODUCTION

In this paper we deal with the single-server queue with
infinite waiting room [9]. Let us suppose that it is important
that the queue length is kept below some levelL as long as
possible and that queues longer thanL, although allowed, are
very undesirable.

The purpose of this paper is to calculate the probability that
in the time interval of lengtht the queue size does not exceed
the levelL.

This study can be motivated by the observation that in most
applications of queueing systems the queue size is desired
to be small. This is especially true when considering traffic
buffering in packet-oriented telecommunication networks (e.g.
Internet). It is well known that in this (dominant nowadays)
networking technology the packets are queued (buffered) in
network nodes. Keeping short queues in network nodes is
crucial for maintaining low end-to-end delays and, therefore,
for providing satisfactory level of network services.

To make the analytical results widely applicable, a general
queueing model is assumed. In particular, it includes general
type of the service time distribution and autocorrelated arrival
process.

The autocorrelated structure of the arrival process is a must
when modeling telecommunication traffic, as it often shows
strongly correlated and long-range dependent behaviour [14],
[10], [18]. On the other hand, it is well known that passing
over the autocorrelation in the arrival stream leads to serious
and optimistic overestimation of the queueing characteristics
[11].

Therefore, to enable modeling of the interarrival times
autocorrelation, the Markovian arrival process (MAP, [16], [4])
is used herein. It is quite flexible (yet analytically tractable)
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traffic model that allows for not only precise fitting of the
autocorrelation function, but also for fitting of the mean traffic
rate, higher moments and the marginal distribution at the same
time [19], [13], [2], [3]. The MAP is also widely used in
telecommunication traffic modeling [17], [12], [20], [21]).

II. M ODEL DESCRIPTION

Let us denote byN(t) the total number of arrivals in(0, t]
and letJ(t) be the state of a continuous-time Markov chain.
The Markovian arrival process (MAP) is a 2-dimensional
Markov process(N(t), J(t)) on the state space{(i, j) : i ≥
0, 1 ≤ j ≤ m} with a generator matrixQ in the following
form:

Q =




D0 D1 0 0 0 · ·
0 D0 D1 0 0 · ·
0 0 D0 D1 0 · ·
· · · · · · ·


 .

Here D0 and D1 are matrices of sizem × m, D1 is non-
negative,D0 has negative diagonal elements and nonnegative
off-diagonal elements and the matrix

D = D0 + D1

is an irreducible infinitesimal generator. We assume also that
D 6= D0.

As for the model of the queueing system, we consider
herein a single-server queue [9] whose arrival process is
given by a MAP. The service time is distributed according
to a distribution functionF (·), which is not further specified,
and the standard independence assumptions are made. The
capacity of the system (waiting room) is infinite. The queueing
discipline is irrelevant in this study, therefore FCFS (First
Come First Served) or FCLS (First Come Last Served) can
be assumed.

Here and subsequentlyP(·) stands for the probability,0
stands for them×m matrix of zeroes,I stands for them×m
identity matrix, while1 denotes the column vector of 1’s.
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Moreover, we will use the following notation:

µi = −(D0)ii,

pij =
1
µi

(D0)ij for i 6= j, pii = 0,

qij =
1
µi

(D1)ij ,

y(s) = ((s + µ1)−1, . . . , (s + µm)−1)T ,

U(s) =
[

µipij

s + µi

]

i,j

,

V (s) =
[

µiqij

s + µi

]

i,j

.

I II. L EVEL-CROSSING PROBABILITY

Let X(t) stands for the queue size at the momentt (includ-
ing service position). Let the initial queue size ben and the
initial state of the Markov chainJ be i. Let B(t) = B(L, t),
L > n, denotes event that in time interval(0, t] the queue
length is smaller thanL, i.e. for everyt0 ∈ (0, t] is X(t0) < L.

The main result of this article is presented by means of the
following transform:

αn,i(s) =
∫ ∞

0

e−stP(B(t)|X(0) = n, J(0) = i)dt,

αn(s) = (αn,1(s), αn,2(s), . . . , αn,m(s))T
.

Theorem 1. For n < L it holds true that:

αn(s) = GL−n(s)T−1
L (s)cL(s)− hL−n(s), (1)

where the sequencesGk(s), Tk(s), ck(s), hk(s) have the
following generating functions:

G(z, s) =
∞∑

k=0

zkGk(s)

= z(A(z, s)− Iz)−1A(z, s), (2)

A(z, s) =
∫ ∞

0

e−steD(z)tdF (t),

D(z) = D0 + zD1,

h(z, s) =
∞∑

k=1

zkhk(s)

= z(A(z, s)− Iz)−1d(z, s), (3)

d(z, s) =
z

1− z

∫ ∞

0

e−steD(z)t(1− F (t))dt · 1,

c(z, s) =
∞∑

k=1

zkck(s)

= (U(s) + zV (s)− I)h(z, s)− z

1− z
y(s), (4)

T (z, s) =
∞∑

k=1

zkTk(s)

= (U(s) + zV (s)− I)G(z, s). (5)

Proof. Firstly, according to the total probability formula we
have for1 ≤ i ≤ m, 0 < n < L:

P(B(t)|X(0) = n, J(0) = i)

=
m∑

j=1

L−n−1∑

k=0

∫ t

0

P(B(t− u)|X(0) = n + k − 1,

J(0) = j)Pi,j(k, u)dF (u)

+(1− F (t))
m∑

j=1

L−n−1∑

k=0

Pi,j(k, t). (6)

and

P(B(t)|X(0) = 0, J(0) = i)

=
m∑

j=1

∫ t

0

P(B(t− u)|X(0) = 0, J(0) = i)

·pijµie
−µiudu

+
m∑

j=1

∫ t

0

P(B(t− u)|X(0) = 1, J(0) = i)

·qijµie
−µiudu + e−µit, (7)

wherePi,j(n, t) denotes the counting function for the MAP:

Pi,j(n, t)

= P(N(t) = n, J(t) = j|N(0) = 0, J(0) = i).

We proceed then by applying transforms to (6), (7) and
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writing results in matrix form:

αn(s) =
L−n−1∑

k=0

Ak(s)αn+k−1(s)

+dL−n(s), 0 < n < L, (8)

α0(s) = U(s)α0(s) + V (s)α1(s) + y(s), (9)

where

Ak(s) = [ak,i,j(s)]i,j ,

ak,i,j(s) =
∫ ∞

0

e−stPi,j(k, t)dF (t),

dn(s) = (dn,1(s), . . . , dn,m(s))T ,

dn,i(s) =
m∑

j=1

n−1∑

k=0

∫ ∞

0

e−stPi,j(k, t)(1− F (t))dt.

The system (8) i (9) can be solved in the same way as shown
in [5]. We obtain:

αn(s) =
L−n∑

k=0

RL−n−k(s)Ak(s)T−1
L (s)cL(s)

−
L−n∑

k=1

RL−n−k(s)dk(s), 0 ≤ n ≤ L− 1, (10)

with

R0(s) = 0,

R1(s) = A−1
0 (s),

Rk+1(s) = R1(s)

(
Rk(s)−

k∑

i=0

Ai+1(s)Rk−i(s)

)
,

k ≥ 1, (11)

TL(s) = U(s)
L∑

i=0

RL−i(s)Ai(s)

+V (s)
L−1∑

i=0

RL−1−i(s)Ai(s)

−
L∑

k=0

RL−k(s)Ak(s), (12)

cL(s) = U(s)
L−1∑

i=1

RL−i(s)di(s)

+V (s)
L−2∑

i=1

RL−1−i(s)di(s)

−
L∑

k=1

RL−k(s)dk(s)− y(s). (13)

Note that the sequenceRk(s) is called a potential for the
sequenceAk(s) and is also useful in finding other character-
istics of queueing systems (see, for instance, [6], [7], [8]).

Defining

Gn(s) =
n∑

k=0

Rn−k(s)Ak(s), (14)

hn(s) =
n∑

k=1

Rn−k(s)dk(s), (15)

and using (10) we obtain (1).
Now, following [15], the generating function for the se-

quenceAk(s) has the form:

A(z, s) =
∞∑

k=0

Ak(s)zk

=
∫ ∞

0

e−steD(z)tdF (t),

Similarly, it is easy to obtain the generating function fordn(s):

d(z, s) =
∞∑

k=1

dk(s)zk

=
z

1− z

∫ ∞

0

e−steD(z)t(1− F (t))dt · 1.

From (11) it follows that

R(z, s) =
∞∑

k=0

Rk(s)zk

= z(A(z, s)− Iz)−1.

Observing that in (14) and (15) we have convolutions of
sequences, we obtain

G(z, s) = R(z, s)A(z, s),

h(z, s) = R(z, s)d(z, s),

and, as a consequence, formulas (2), (3).
From (12) and (14) it follows that

TL(s)
= U(s)GL(s) + V (s)GL−1(s)−GL(s), (16)

which proves (5), while from (13) and (15) it follows that

cL(s)
= U(s)hL(s) + V (s)hL−1(s)− hL(s)− y(s), (17)
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which yields (4).
This finishes the proof of Theorem 1.

IV. NUMERICAL EXAMPLES

A. Example 1

We start numerical experiments with the following MAP
parameterization:

D0 =
[ −1000 10

1 −10

]
, (18)

D1 =
[

986 4
1 8

]
. (19)

This parameterization was chosen so that the resulting arrival
process is strongly autocorrelated – its autocorrelation function
is presented in Fig. 1.
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Fig. 1. Autocorrelation of the MAP defined in (18) and (19).

The average arrival rate of this MAP is

λ = 131.62,

while the stationary distribution of the underlying Markov
chain:

π = (0.125, 0.875).

The level that we do not want to be crossed is set to

L = 10.

It is assumed that the service time is constant and equal to
d. Therefore, manipulatingd we can easily manipulate the
system load

ρ = λd.

In the reminder of this section the behaviour of the function
rn,i(t) defined as

rn,i(t) = P(B(t)|X(0) = n, J(0) = i)

will be studied for different values of the initial queue size,
n, the initial modulating state,i, and the system load,ρ. We

will use also the symbolr∗n(t) in the case when the initial
modulating state is distributed according toπ, namely:

r∗n(t) = π · (rn,1(t), rn,2(t))T .

In Figs. 2, 3 and 4 the dependence ofrn,i(t) on the initial
queue size is depicted. Namely, in Fig. 2 the results for
ρ = 0.75 are shown using linear plot while in Fig. 3 – using
a logarithmic plot. In Fig. 4 the results forρ = 0.99 are
presented. We see that the values ofrn,i(t) depend strongly
on the initial queue size and that the level-crossing probability
decreases exponentially witht.

In Fig. 5 the dependence ofrn,i(t) on the initial modulating
state is shown. We see that for the MAP parameterization (18)
and (19) the level crossing probability depends strongly on
J(0).
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Fig. 2. Probability that in(0, t] the queue size is below 10 for initial queue
sizes: 9, 5 and 0, counting from the bottom. The MAP defined in (18) and
(19), ρ = 0.75, i = 1.
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Fig. 3. Probability that in(0, t] the queue size is below 10 for initial queue
sizes: 9, 5 and 0, counting from the bottom. The MAP defined in (18) and
(19), ρ = 0.75, i = 1.
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Fig. 4. Probability that in(0, t] the queue size is below 10 for initial queue
sizes: 9, 5 and 0, counting from the bottom. The MAP defined in 18) and
(19), ρ = 0.99, i = 1.
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Fig. 5. Probability that in(0, t] the queue size is below 10 fori = 1 (lower
curve) andi = 2 (upper curve). The MAP defined in (18) and (19),ρ = 0.75,
n = 0.

In Fig. 6 the dependence ofrn,i(t) on the system load is
presented. These results are quite surprising – all the curves
are almost identical, even for such a different loads as0.75
and0.99. For instance, forρ = 0.75 we have:

r0,1(1) = 0.0261, (20)

while for ρ = 0.99:

r0,1(1) = 0.0246. (21)

It is important to check that the phenomenon presented
in Fig. 6 has nothing to do with the choice of the initial
modulating state. Indeed, for the second modulating state
the curves are also almost identical (see Fig. 7). Again, for
ρ = 0.75 we have

r0,2(1) = 0.1814, (22)

while for ρ = 0.99

r0,2(1) = 0.1789. (23)
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Fig. 6. Probability that in(0, t] the queue size is below 10 forρ = 0.99,
0.95, 0.95 and0.75. The MAP defined in (18) and (19),n = 0, i = 1. All
the curves are almost identical.
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Fig. 7. Probability that in(0, t] the queue size is below 10 forρ = 0.99,
0.95, 0.95 and0.75. The MAP defined in (18) and (19),n = 0, i = 2. All
the curves are almost identical.

A detailed comparison of the level-crossing probabilities for
ρ = 0.75 and 0.99 and the stationary distribution ofJ(0) is
presented in Table I. In Tab. II the dependence ofr∗0(1) on
the system load is shown.

The phenomenon shown in Figs. 6, 7 and Tabs. I, II is likely
to be connected with the strong autocorrelation of the arrival
process. In the next example we will check the behaviour of
rn,i(t) for a very weakly correlated MAP.
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t r∗0(t) for ρ = 0.75 r∗0(t) for ρ = 0.99
0.1 0.7653881 0.7631767
0.2 0.6440878 0.6414009
0.3 0.5420114 0.5390561
0.4 0.4561123 0.4530419
0.5 0.3838267 0.3807525
0.6 0.3229970 0.3199979
0.7 0.2718078 0.2689376
0.8 0.2287311 0.2260247
0.9 0.1924813 0.1899592
1.0 0.1619765 0.1596484
1.1 0.1363061 0.1341742
1.2 0.1147040 0.1127648
1.3 0.0965255 0.0947715
1.4 0.0812279 0.0796493
1.5 0.0683547 0.0669401
1.6 0.0575217 0.0562589
1.7 0.0484056 0.0472819
1.8 0.0407341 0.0397374
1.9 0.0342785 0.0333967
2.0 0.0288460 0.0280678
2.1 0.0242744 0.0235892
2.2 0.0204273 0.0198252
2.3 0.0171899 0.0166618
2.4 0.0144656 0.0140031
2.5 0.0121731 0.0117687
2.6 0.0102439 0.0098908
2.7 0.0086204 0.0083126
2.8 0.0072542 0.0069862
2.9 0.0061045 0.0058714
3.0 0.0051371 0.0049346
3.1 0.0043229 0.0041472
3.2 0.0036378 0.0034854
3.3 0.0030613 0.0029293
3.4 0.0025761 0.0024619
3.5 0.0021678 0.0020690
3.6 0.0018243 0.0017389
3.7 0.0015351 0.0014614
3.8 0.0012918 0.0012282
3.9 0.0010871 0.0010322
4.0 0.0009148 0.0008675
4.1 0.0007698 0.0007291
4.2 0.0006478 0.0006127
4.3 0.0005451 0.0005150
4.4 0.0004587 0.0004328
4.5 0.0003860 0.0003637
4.6 0.0003248 0.0003057
4.7 0.0002733 0.0002569
4.8 0.0002300 0.0002159
4.9 0.0001936 0.0001814
5.0 0.0001629 0.0001525

TABLE I

PROBABILITIES r∗0(t) FOR ρ = 0.75 AND 0.99 IN EXAMPLE 1.

ρ r∗0(1)
0.05 0.9999636
0.10 0.8926249
0.15 0.3337932
0.20 0.2232732
0.25 0.1953409
0.30 0.1832879
0.35 0.1766358
0.40 0.1724321
0.45 0.1695390
0.50 0.1674275
0.55 0.1658192
0.60 0.1645534
0.65 0.1635308
0.70 0.1626867
0.75 0.1619765
0.80 0.1613685
0.85 0.1608396
0.90 0.1603724
0.95 0.1599542
1.00 0.1595755

TABLE II

PROBABILITIES r∗0(1) FOR DIFFERENT VALUES OFρ IN EXAMPLE 1.

B. Example 2

In the second example we use the following MAP parame-
terization:

D0 =
[ −261.540 153.847

46.154 −184.616

]
, (24)

D1 =
[

46.154 61.539
15.385 123.077

]
. (25)

The average arrival rate of this MAP is the same as in Example
1, namely

λ = 131.62,

while the stationary distribution of the underlying Markov
chain is now:

π = (0.222222, 0.777777).

The level that we do not want to be crossed is again set to

L = 10.

The resulting MAP is now weakly correlated – its autocor-
relation function is presented in Fig. 8.

In Figs. 9, 10 and 11 the dependence ofrn,i(t) on the initial
queue size is shown. What was to be expected, the values of
rn,i(t) depend strongly on the initial queue size.

In Fig. 12 the dependence ofrn,i(t) on the system load is
presented. These results are quite different compared to those
shown in Fig. 6. Now all the curves have different shapes
and this behaviour is typical for queueing systems with such
different loads. Forρ = 0.75 we have now:

r0,1(1) = 0.8661,
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Fig. 8. Autocorrelation of the MAP defined in (24) and (25).
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Fig. 9. Probability that in(0, t] the queue size is below 10 for initial queue
sizes: 9, 5 and 0, counting from the bottom. The MAP defined in (24) and
(25), ρ = 0.75, i = 1.

while for ρ = 0.99:

r0,1(1) = 0.2203.

The difference between these two numbers is to be compared
to the difference between (20) and (21).

A similar behaviour we can observe fori = 2. Namely, for
ρ = 0.75 we have:

r0,2(1) = 0.8660,

while for ρ = 0.99:

r0,1(1) = 0.2200.

A detailed comparison of the level-crossing probabilities for
ρ = 0.75 and 0.99 and the stationary distribution ofJ(0) is
given in Table III, while in Tab. IV the dependence ofr∗0(1)
on the system load is presented.

t r∗0(t) for ρ = 0.75 r∗0(t) for ρ = 0.99
0.1 0.99477500 0.9656587
0.2 0.98078737 0.8475935
0.3 0.96576422 0.7214380
0.4 0.95085467 0.6098449
0.5 0.93616447 0.5147387
0.6 0.92170020 0.4343094
0.7 0.90745933 0.3664187
0.8 0.89343847 0.3091352
0.9 0.87963424 0.2608060
1.0 0.86604330 0.2200322
1.1 0.85266235 0.1856328
1.2 0.83948814 0.1566114
1.3 0.82651748 0.1321271
1.4 0.81374723 0.1114706
1.5 0.80117429 0.0940435
1.6 0.78879561 0.0793410
1.7 0.77660818 0.0669370
1.8 0.76460906 0.0564722
1.9 0.75279534 0.0476434
2.0 0.74116414 0.0401950
2.1 0.72971266 0.0339110
2.2 0.71843811 0.0286094
2.3 0.70733776 0.0241366
2.4 0.69640891 0.0203632
2.5 0.68564892 0.0171796
2.6 0.67505519 0.0144938
2.7 0.66462513 0.0122279
2.8 0.65435622 0.0103162
2.9 0.64424598 0.0087034
3.0 0.63429194 0.0073427
3.1 0.62449171 0.0061947
3.2 0.61484289 0.0052263
3.3 0.60534315 0.0044092
3.4 0.59599019 0.0037199
3.5 0.58678174 0.0031383
3.6 0.57771557 0.0026477
3.7 0.56878948 0.0022337
3.8 0.56000130 0.0018845
3.9 0.55134890 0.0015899
4.0 0.54283019 0.0013413
4.1 0.53444309 0.0011316
4.2 0.52618559 0.0009547
4.3 0.51805567 0.0008054
4.4 0.51005136 0.0006795
4.5 0.50217072 0.0005733
4.6 0.49441184 0.0004836
4.7 0.48677285 0.0004080
4.8 0.47925188 0.0003442
4.9 0.47184712 0.0002904
5.0 0.46455676 0.0002450

TABLE III

PROBABILITIES r∗0(t) FOR ρ = 0.75 AND 0.99 IN EXAMPLE 2.
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Fig. 10. Probability that in(0, t] the queue size is below 10 for initial queue
sizes: 9, 5 and 0, counting from the bottom. The MAP defined in (24) and
(25), ρ = 0.90, i = 1.
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Fig. 11. Probability that in(0, t] the queue size is below 10 for initial queue
sizes: 9, 5 and 0, counting from the bottom. The MAP defined in (24) and
(25), ρ = 0.99, i = 1.

V. CONCLUSIONS

In this paper a study on the level-crossing probability in
a queue with a complex arrival process is presented. It was
motivated by packet buffering processes in Internet routers,
but the general service time distribution and flexible arrival
process make the results applicable in other areas as well.

The main result is a formula for the level-crossing probabil-
ity (Theorem 1) presented by means of the Laplace transform
and generating functions.

In addition to analytical results, two numerical examples
based on two different MAP parameterizations are presented.
These examples reveal a surprising behaviour of the level-
crossing probability. Namely, it may sometimes depend very
little on the system load. This effect is supposed to be con-
nected with the autocorrelated structure of the arrival process
and may have some important practical consequences. For
instance, it is well known that IP traffic is often strongly
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Fig. 12. Probability that in(0, t] the queue size is below 10 forρ = 0.99,
0.95, 0.95 and 0.75, counting form the bottom. The MAP defined in (24)
and (25),n = 0, i = 1.

ρ r∗0(1)
0.30 0.9999968
0.35 0.9999802
0.40 0.9999022
0.45 0.9995964
0.50 0.9985695
0.55 0.9955519
0.60 0.9877046
0.65 0.9695794
0.70 0.9325183
0.75 0.8660433
0.80 0.7627381
0.85 0.6252880
0.90 0.4698837
0.95 0.3206925
1.00 0.1983160

TABLE IV

PROBABILITIES r∗0(1) FOR DIFFERENT VALUES OFρ IN EXAMPLE 2.

autocorrelated. Therefore, the level-crossing probability in an
Internet router may depend very little on the router’s load, or,
equivalently, on the packet transmission time (link speed).
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