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      Abstract—This paper treats data reduction in array processing 

for the spatially colored noise case. The purpose is to reduce the 

computational complexity of the applied signal processing algorithms 

by mapping the data into a space of lower dimension by means of a 
linear transformation. We discuss ways to implement the 

transformation and show that it suffices to estimate the array 

covariance matrix instead of the noise covariance matrix in the design 
process of the optimal transformation. Computer simulations are 

given that illustrate the problem of interference from out-of-band-

sources that result when a beamspace transformation is designed to 

focus on a particular sector. The presents an dynamic state estimator. 
The method uses ANN based bus load prediction for the prediction 

step in the DSE. 

 

Keywords— Adaptive data reduction, colored noise, 
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I. INTRODUCTION 

HE computational complexity of the algorithms 

applied to the array signal processing problem is 

heavily dependent on the number of sensors in the 
array. Since large arrays with many sensors are preferable 

from an estimation accuracy viewpoint, accuracy and 

computational complexity are conicting issues. This has led to 

diferent schemes for dimension reduction via linear 

transforms, beamspace transformations, which reduce the 

computational load. Besides a reduction in computational 

complexity, a beamspace transformation can have other 

advantageous ejects, such as reduced bias, reduced sensitivity 

to directional interference, etc [4], [7]. Diferent criteria can be 

used when deriving the transform. If one knows from which 

angular sectors that signals may emanate from, a possible 
approach is to design a transformation that focuses on these 

sectors. This can, e.g., be accomplished by a bank of 

conventional  
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beamformers, the output of which are collected in a new 

vector, with reduced size. A more sophisticated variation of 

this theme is to design a beamspace transformation that 

maximizes the signal-to-noise ratio for signals impinging from 

the preselected. sectors [12],  or minimizes the interference 

power under the constraint that signals from the sectors are 

left un-distorted by the transform. 

    The latter method is easily implemented by a bank of 

linearly constrained minimum variance beamformers, see, e.g., 

[10], [11]. Yet another method is to design a transformation 

that preserves the Cramér-Rao bounds (CRB), for the 

parameters of interest, which is the approach taken in the 

present paper. This criterion is also considered in [1], [2], [8] 

for the white-noise case, i.e., an equal amount of un correlated 

noise at each sensor, and a stochastic signal model.  
    This paper concentrates on the spatially colored noise case, 

which is more realistic in any scenario, due to, e.g., directional 

interference from other sources (‘out-of-band sources'), mutual 

coupling between sensors, etc. The derived transform depends, 

in addition to the unknown DOAs, on the color of the noise 

process. However, it is shown herein that it is possible to 

implement the proposed transform without knowledge of the 

noise color and the exact directions of arrival; a fact that has 

great practical implications in a real scenario.  
    The paper presents a design approach and computer 

simulations that support the theoretical results. The 

simulations evaluate the approach against the method of 

spheroidal sequences [4], and the method presented in [1], [8] 

with respect to the e!ect of out-of-band sources.  

     The outline of the paper is as follows. 

Section 2 discusses the signal model, formulates the problem 

and derives the main results of the paper.  

Section 3 treats practical implementation issues and Section 4 

presents the computer simulations.  

Section 5 treats dynamic load prediction. 
Section 6 discusses the analysis of anomalous data. 

Section 7 proposed DSE scheme.  

Section 8 treats test system simulation. 

Finally, conclusions are given in Section 9. 

 

II. THE OPTIMAL MODEL  
 

    Consider an array of m sensors receiving p planar, 

narrowband, waveforms from the directions { }pθθ Λ1 .  

The sensor outputs are modelled by the relation 
 

T 
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( ) ( ) ( ) ( )te~tsA
~

ty~ +θ= 0 ,                     (1) 

 

where ( )0θA
~

 is the array steering matrix, 

 

               ( ) ( ) ( )[ ]pa~a~A
~

θθ=θ Λ10 ,  

and the source signals are collected in the vector 
 
 

                 ( ) ( ) ( )[ ]Tp tststs Λ1=                                (2) 

 

    The parameter vector 0θ  is a column vector containing the 

true directions of arrival.  The notation x~  is used to designate 

that the quantity, x, belongs to elementspace, i.e., the original 

data set to which the beamspace transformation is applied.  

     The signal s(t) and the noise ( )te~  are assumed to be 

independent, temporally white, zero-mean, complex Gaussian 

random variables with second-order moments 

 

      ( ) ( )[ ] ssRt*stsE = ,   ( ) ( )[ ] Q
~

t*e~te~E = .        (3) 

 

    The superscript, „*”, denotes complex conjugate transpose. 

The matrix Q
~

 is Hermitian and positive definite, but 

otherwise arbitrary. The signal covariance matrix, Rss, has 
rank d ≤ p. The latter condition implies that the signals may be 

spatially correlated, e.g., due to multipath, etc.  

     The array covariance matrix is given by  

 

( ) ( ) Q
~

*A
~

RA
~

R
~

ss +θθ= 00                         (4) 

 

    In general, to avoid ambiguous parameter estimates, some 

sort of structure must be imposed on the noise covariance 

matrix, see, e.g., [5], [8]. However, since the main question 

here is preservation of the CRB of the transformed data, we do 
not treat the problem of parameter identi"ability herein. Now, 

we introduce a linear transformation of the data from the 

complex m-dimensional vector space, Cm (m being the number 

of sensors) to the complex n-dimensional vector space C
n 

where n ≤m. Denoting the m×n beamspace transformation by 

T, the beamspace signal model becomes 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )tetsAte~*TtsA
~

*Tty +θ=+θ= 00        (5) 

 

where A
~

*TA =  is the beamspace steering matrix and e(t) is 

the resulting beamspace noise.  

Based on N snapshots of the beamspace data, y(t), the 

directions of arrival, [ ]Tpθθ=θ Λ10  are to be estimated. 

    Before stating and proving the main result of the paper, we 

briefly discuss the white-noise case, which is addressed in [1]. 

In this case, the spatial noise covariance matrix is a scaled 

version of the identity matrix, and the array covariance matrix 

is given by 

 

( ) ( ) I
~

*A
~

RA
~

R
~

ss
2

00 σ+θθ=               (6) 

 

where 2σ  is the variance of the additive thermal noise always 

present in the receiving equipment in a sensor array. Note also 

that the white-noise model assumes an equal amount of white-
noise at each sensor. In order to retain the white-noise model 

in beamspace, an orthogonality constraint must be imposed on 

the beamspace transformation matrix: T*T=I. In [1], it is 

shown that the optimal beamspace transformation matrix 

satisfies the condition 

 

                   R (T)⊇  R ( ) ( ) ( )( )[ ]pp d
~

d
~

a~a~ θθθθ ΛΛ 11             (7) 

 

    In the above equation, R (X) denotes the range space of X 

while ( )θd
~

 is the derivative of the steering vector with respect 

to θ .  

    Thus, to obtain a beamspace CRB which equals the 

elementspace CRB, the range space of the beamspace 

transformation matrix should include the subspace spanned by 
the steering vectors and the derivative of the steering vectors 

evaluated at the true directions of arrival. It should be noted 

that the minimal beamspace dimension that satis"es the 

condition in Eq.(7) is n=2p. 

   We now return to the colored noise case. The following 

theorem states a condition on the range space of the 

beamspace transformation that is sufficient to guarantee that 

the beamspace CRB equals the elementspace CRB. 

    Theorem 1. The CRB for the estimate of 0θ  in beamspace 

is equal to the CRB in element space, provided that the beam 

space transformation matrix T satisfies the following 

condition: 

 

R  (T)⊇  R ( )( )=θ−
0

1UQ
~

 R ( )( )0
1 θ− UR

~
, 

 

where ( )0θU  is defined as 

 

     
( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]pp

DEF

d
~

d
~

a~a~

D
~

A
~

U

θθθθ

=θθ=θ

ΛΛ 11

000  

 

    Proof. Without loss of generality, partition the beamspace 

transformation matrix in the following way: 

 

[ ] [ ]21
1 TTCUBQ

~
T

DEF

ΜΜ == − ,                   (8) 

 

where B, with dimension 2p×2p, is a full-rank matrix and C, 

with dimension m× (n-2p), is an arbitrary matrix. For 

convenience, the dependence on 0θ  is suppressed. The 

partitioning reflects the condition R (T)⊇  R ( )UQ
~ 1− . The 

beamspace signal becomes 

 

  ( ) ( )
( )

( )
( )










=








=

ty~T

ty~T

ty

ty
ty

*

*

2

1

2

1
.                                      (9) 

 

Concentrating on ( )ty~T*
1 , we can write 
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( )ty~T*
1 = ( )ty~T w

*
w ,    (10) 

 

where 

,UBQ
~

Tw
2

1
−

=    ( ),ty~Q
~

y~w
2

1
−

=                 (11) 

 

Now, using the result of [1], the optimal transformation that 

preserves the CRB for the whitened data set, ( )ty~w , should 

satisfy the condition R (Tw)⊇ R ( )UQ
~ / 21− .  

    This condition is satisfied because B is full rank, see (1). 

Now, since y1(t)= ( )ty~T*
1 = ( )ty~T ww , we obtain the same CRB 

for estimates based on the data y1(t) as for estimates based on 

elementspace data, ( )ty~ .  

    The data y2(t) can, in fact, be ignored since it conveys no 

more information about the parameters than is already present 

in y1(t). We have thus shown that the beamspace CRB equals 

that of the elementspace provided that R 

(T)⊇R ( )UQ
~ 1− , which concludes the first part of the proof. It 

remains to show that R ( )UQ
~ 1− ⊇  R ( )UR

~ 1− . The proof of 

this is based on the following two claims: 
 

I. ( ) 111 −−− += A
~

Q
~

*A
~

RIA
~

Q
~

A
~

R
~

ss ,      (12) 

 

II. [ ]











=

−
−−

I

D
~

Q
~

A
~

R
D
~

A
~

R
~

D
~

Q
~ ss

1
11       (13) 

 

    Proof of Claim I. Multiplying the right-hand side by R
~

, we 
have 

 

( ) 111 −−− += A
~

Q
~

*A
~

RIA
~

Q
~

A
~

R
~

ss =            
 

          
( ) ( )
( )( ) A

~
IA

~
Q
~

*A
~

RQIA
~

Q
~

*A
~

RA
~

A
~

Q
~

*A
~

RIA
~

Q
~

Q
~

*A
~

RA
~

ssss

ssss

=++

=++
−−−

−−−

111

111

 

 

which proves I. 

    Proof of Claim II. Multiplying the right-hand side by Q
~

, 

we get 

 

                   [ ] =










 −
−

I

D
~

Q
~

*A
~

R
D
~

A
~

R
~

Q
~ ss

1
1       

 

         ( ) D
~

D
~

Q
~

Q
~

*A
~

RA
~

R
~

Q
~

ss =+ −− 11 , 

 

which proves II.  

     From Claim I, it follows that 1
11 MA

~
Q
~

A
~

R
~ −− = , where M1 

is the full-rank matrix defined as the inverse of A
~

Q
~

*A
~

RI ss+ . 

This implies that  

 

 R ( )UQ
~ 1− = R ( )A

~
R
~ 1− .             (14) 

 

The implication of Claim II is that 

 

[ ] 2
1

1
11 UMR

~

I

D
~

Q
~

*A
~

R
D
~

A
~

R
~

D
~

Q
~ ss −

−
−− =












=      (15) 

 

where M2 is the full-rank matrix defined by 
 

2M =










 −

I

D
~

Q
~

*A
~

Rss
1

.          (16) 

 

Thus,    

                          R ( )DQ
~ 1− ⊃  R ( )UR

~ 1− .                       (17) 

Using Eqs. (14) and (17), and noting that the range spaces of 

UQ
~ 1−  and UR

~ 1− have the same dimension, yields the desired 

result 

 

                          R ( )UQ
~ 1− = R ( )U

~
R
~ 1− .                     (18) 

 

The proof of Theorem 1 is thereby complete.  

The extension of the result in Theorem 1 to the case where θ  

contains several parameters, e.g., elevation, is straightforward.  

    The matrix U( θ 0) is modified to include the derivatives of 

the steering vector with respect to these parameters as well. 

The result in Theorem 1 also applies to other signal models, 

such as the deterministic parameterized signal model 

considered in [3].  

    There is a close similarity of the result in Claim I to the 
matched filter solution for detecting a single source at a 

known bearing in a colored noise environment. In that case, 

one can substitute the noise covariance matrix in the matched 

filter by the array covariance matrix without loss of detection 

performance, see, e.g., [7]. The explanation to this is that the 

matched filter is unique up to a multiplicative scalar, and since 

it holds that ( )0
1 θ− aR

~
 is proportional to ( )0

1 θ− aQ
~

, the result 

follows.  

    The result of Claim I can thus be seen as a generalization of 

the single-source case. However, the result in Claim II is more 

intricate and has no obvious analogy. It is the combination of 

the claims into a single condition on the range space of the 

transformation matrix that is important.  

    Thus, the fact that the range space of ( )0
1 θ− UR

~
 is the same 

as that of ( )0
1 θ− UQ

~
 is a key point in Theorem 1. If this was 

not true, an estimate of the noise covariance matrix Q
~

 would 

be needed. The array covariance matrix, however, can be 

estimated by a simple time average. In a real scenario, the 

beamspace transformation can be updated to accommodate for 
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a nonstationary scenario where both the source locations and 

the noise color may change with time.  

    The matrix inversion lemma may be employed to 
recursively track the array covariance matrix in such a 

situation. An LMS - based update of the optimal beamspace 

transformation is also possible, for further reducing the 

computational complexity. 

 

III. IMPLEMENTING 
 

    We start this section by suggesting the following algorithm 

for beamspace DOA estimation: 

    (1) Determine a set of interesting angle intervals that will be 

processed in beamspace. Define also the following quantity: 
 

( ) ( )[ ]fnf

DEF

f a~a~U θθ= Λ1 ,                  (19) 

 

where ( )fia~ θ , i=1,…, n, is a sufficiently dense set of fictitious 

array steering vectors located within the selected angle 
intervals. 

    (2) Estimate the array covariance matrix as 
 

           ( ) ( ) It*y~ty~

N
R
~ N

t

ε+= ∑
=1

1
, 

 

where Iε  a possible regularization. 

    (3) Calculate the quantity 

 

              WUR
~

T f
/ 21

1
−= ,                                    (20)  

 

where W is a diagonal weighting matrix to be 

defined subsequently. 

    (4) Decide on an initial beamspace dimension, denoted ns, 

that is large enough to accommodate for the maximum number 

of expected sources within the sectors. 

    (5) Apply the singular-value decomposition, SVD, to the 

quantity in Eq. (20). The transformation is then created as 
 

             [ ]
sn

/ qqR
~

T Λ1
21−= ,                          (21) 

 

where ns is the number determined in Step 4 and qi, i=1,…,ns , 

are the corresponding left singular vectors. 

(6) Orthogonalize T (optional). 

   (7) Optional step. Estimate the number of sources in the 

reduced beamspace domain using, e.g., the minimum 

description length (MDL), principle, see [9]. Do Step 4 again 

where now ns is set to min(ns,2 p̂ ). Repeat Steps 5 and 6. 

     (8) Estimate the directions of arrival. 

Step 1 can preferably be based on the Capon spectrum, since 

this is used in the design of the beamspace transformation, see 

below. In this step, some kind of detection problem must be 

solved. A possible way to do this is just to look at the spatial 

spectrum and decide on which sectors to choose. Another way 

is the automated approach, in which a hypothesis problem can 
be posted, resulting in a thresholding problem. We do not treat 

this problem further in the present paper though. In Step 2, a 

possible regularization of the data covariance estimate is 

included. 

   This regularization makes the method robust to estimation 

errors in the data covariance matrix when the number of 

samples is low. The choice of ns in Step 4 may, e.g., be based 

on prior information on the maximum number of sources 

present in the sectors or such an estimate may be obtained by 

using, e.g., the MDL principle in elementspace. Another 

possibility is to choose the number ns as the number of 

significant singular values in the SVD of Step 5. Step 7 

facilitates a possible further reduction in the beamspace 

dimension, accompanied by a corresponding reduction of the 

computational load.  

    Finally, we note that the reason why the derivatives of the 

fictitious steering vectors are not included in Uf is that these 

can be well approximated by a finite difference of the included 

fictitious steering vectors, implying that the range space of Uf 

approximates the range space of U( θ 0). 

    The introduction of the weighting matrix in Step 3 is 

pertinent to the success of choosing the proper subspace 

dimension that the beamspace transformation shall preserve. 

We will now discuss two different choices of weighting 

matrices, W. The first is the identity matrix, and the other is 
created by putting the Capon spectrum for the fictitious 

directions of arrival on the main diagonal. Starting with the 

identity matrix, a column of the matrix defined in Eq. (20) has 

the magnitude 

 

       ( ) ( ) ( )fi
/

fifi
/ *a~R

~̂
*a~a~R

~̂
θθ=θ −− 21

2
21         (22) 

 

which is exactly the inverse of the Capon spectrum at the point 

specified by the fictitious DOA. Thus, truncating the SVD 

with no weighting can result in noise subspace directions 

being chosen instead of the signal subspace directions, 

yielding a loss in performance.  
    The second weighting is the Capon weighting. With this 

weighting, a column of the matrix in Eq. (20) has the 

magnitude 

 

*a~R
~̂

*a~*a~R
~̂

*a~
R
~̂ /

1

2

1

21 11

−−
− = ,               (23) 

 

which equals the Capon spectrum.  

This is the recommended weighting, since the problem of 

choosing the wrong subspace in the truncation of the SVD is 

eliminated. 

 
IV. NUMERICAL EXAMPLES 

 

    In this section we present computer simulations that support 
the theoretical result. First however, we briefly describe two 

approaches for finding a beamspace transformation matrix that 

reduce the dimensionality of the problem. 

   The author of [10] presents a method for calculating a near 

optimal, in the CRB sense, beamspace transformation matrix 
for the white-noise case. This method incorporates the use of a 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 2, 2008

80



set of ‘design DOAs' that cover an interval [ ba ,θθ ], within 

which the sources of interest are assumed to be located.  

    The steering vectors of the design DOAs and the respective 

derivatives are collected in a matrix for which the singular-

value decomposition (SVD), is calculated. 

    The final transformation is then created by selecting as 

columns in the transformation matrix the left singular vectors 
corresponding to the n most significant singular values. As the 

singular vectors are orthogonal, the orthogonality constraint of 

the beamspace transformation matrix is satisfied.  

   This method will be called the ‘white-noise method', since it 

preserves the Cramér-Rao bounds for the spatially white-noise 

case. In [4], the first n spheroidal sequences are used as 

columns in the beamspace transformation matrix.  

    The authors select n=   22 −Bm , where  .  denotes the 

integer part. The method supplies orthonormal beamformer 

weights that capture most of the energy of a spatially band-

limited process with a flat energy spectrum within the sector 

[ ba ,θθ ], see [4], [8] for details. Finally, it should be noted 

that the parameter values used in Section 4 below result in n=2 

if the rule defined above is used. Since the initial beamspace 

dimension is chosen as 6 in Section 4, the resulting beamspace 

transformation matrix captures an amount of energy well 

above the limit implied by the rule above. 

    We employ a uniform linear array with 25 sensors, 

separated by half a wavelength. Two source signals are 

located at -70 and -40 within the interesting sector, defined by 

[-100:100] relative broadside of the array. There are three 

sources located outside the sector, the first at 130, the second 

at 180 and the location of the third is swept from -200 to -80 in 

steps of 20. The sources outside the sector is referred to as 

‘out-of-band’ sources. Note that the out-of-band sources act as 

interference, since we try to estimate only the direction of 

arrival of the sources within the interesting sector. In effect, 

we have a spatially colored noise problem.  

    The initial beamspace dimension is set to 6, see Steps 4 and 

7 of Section 3. The SNR values of the sources are  equal and 

set to 10 dB relative to the noise power in one element.    

    The number of snapshots is either 200 or 50 and the number 

of Monte Carlo trials is 100. A white-noise model is employed 

in beamspace together with the MDL estimate of the number 

of sources.  

    The directions of arrival are estimated using the ‘stochastic 

maximum likelihood’ method, see, e.g., [6]. The numerical 

search is initiated in the following way: if the number of 

estimated sources in the MDL step is p̂ , the search is initiated 

in the p̂  true DOAs within and nearest to the interesting 

sector. In Fig. 1, the root-mean-square error for the source 

 
Fig.1: Number of snapshots: 200, ε=0. Solid: square root of the Cramér-Rao bound, ○-solid: the proposed method with Capon 

weighting, □-solid: the proposed method with no weighting, x-solid: spheroidal sequences, ◊-solid: the white-noise approach. 
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located at -70 is plotted as a function of the location of the 

moving out-of-band source for the proposed method, with the 

two diferent weightings discussed in 3, and the methods of [4], 

[1], [8]. The number of snapshots is 200. No regularization of 

the estimated array covariance matrix is used in this case. As 

the number of samples is 200, the estimate of the array 

covariance matrix is of sufficient quality. In the figure, the 

solid line is the square root of the element space Cramer-Rao 

bound.  

    The proposed method, with the proper weighting, yields an 

estimate with an accuracy very close to the bound. The other 

two methods, that have similar performance, produce 

estimates with considerably higher root-mean-square error. 

Note the severe degradation of the presented method if a 

proper weighting is not used. In Fig. 2, the approach is 

evaluated against the white-noise approach when the number 

of snapshots is decreased from 200 to 50. 

    The result of this is that the quality of the array covariance 

estimate deteriorates, which in turn degrades the performance 

of the method. This is clearly seen from the result in Fig. 2. 

However, the good performance is restored by adding a scaled 

identity matrix to the estimated data covariance matrix making 

the method more robust to poor sample support (see Fig. 2).  
    The excellent attenuation of the out-of-bandsources for the 

proposed method results in that the estimated model order for 

this method is in general lower than for the other two methods. 

This fact implies that the resulting multi-dimensional search is 

simplified for the proposed scheme. Thus, even though the 

implementation of the proposed transformation is 

computationally heavier than the other methods, the reduced 

model order compensates this. 

    Another interesting approach was proposed by Irving and 

Sterling [9].  

    They suggested to carry out data validation at the substation 

level where all the bus couplers and the circuit breakers are 

represented in detail. To be able to handle zero impedance 

branches, they suggested to take as variables the powers 

flowing through the circuit breakers. Later on, Clewer et al 

[10] extended the approach to the whole system by proposing 

a 4-stage iterative procedure based on a detailed substation 

representation together with a bus level network modeling. 
Unfortunately, the method involves many inter-related steps, 

which makes it rather complex. In addition, it is not 

guaranteed to converge [10]. 

     Once the state vector is estimated, the extreme outliers are 

identified and deleted from the measurement set. Then, one 

iteration of the algorithm is executed starting from the 

previous solution.  

     This measurement deletion is performed in order to cancel 

out the influence of the extreme outliers on the estimates. 

They are defined as measurements whose weighted residual 

have an amplitude larger than a given threshold, chosen 

between 6 and 10. 

    In an attempt to decrease the complexity of the foregoing 

method while meeting the need of a generalized state 

estimation raised by Slutsker et al [22], [23], Monticelli [11], 

Alsac et al. [4], and Abur et al [1] advocated the use of a 2-
step procedure that proceeds as follows.  

Fig.2: Number of snapshots: 50. Solid: Square root of the Cramér-Rao bound, □-solid: the proposed method with no regularization, 

*-solid: the proposed method with ε=0.5, ○-solid: the proposed method with ε=1, ◊-solid: the white-noise approach. 
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    First, a super-node-based state estimation is executed and a 

residual analysis is performed. In the event that the residuals 

associated with a branch or a bus are found to be large, then a 

detailed representation of the suspected substations is carried 

out and the state vector is expanded accordingly.  

    Finally, the expanded state vector is estimated through 

either a conventional estimator  or a LAV estimator [1]. 

However, both methods suffer from the aforementioned 

weaknesses inherent to any post-estimation approach. 

 
V. DYNAMIC LOAD PREDICTION 

 

    The DLP method is based on more realistic and physically 

meaningful foundation in comparison to the conventional state 

prediction model. 
   The main arguments which form the basis of DLP method 

are: 

    i) It is loads and generation which actually drive the system 

dynamics which is of concern in DSE (dynamic state 

estimator) of power system. 

    ii) Bus loads are more or less independent of each other. 

    iii) Bus loads follow a reasonably regular pattern and so are 

easier to predict with reasonable accuracy. 

For the purpose of DLP two types of busbars are defined: 

    a) Load bus bars - where only loads PL and QL are con-

nected. Let, NL be the number of these bus bars, and 
    b) Generator busbars - where generators are connected. 

Since generator busbars may also have loads in addition to 

generation so the net power injection is considered at these 

busbars. Also, at generating busbars the voltage is controlled, 

therefore real power injection PG and voltage magnitude VG 

are used as the prediction state variables at these busbars. Let 

NG be the number of these busbars.  

    In order to satisfy the active power balance in the system 

one generating busbars is taken as slack busbar, its active 

power PG can not be specified and therefore, is not included in 

the prediction variables. 

    Thus, the complete prediction vector S is defined as: 
 

       
[ ]TT

G

T

G

T

L

T

L VPQPS ,,,
∆

=
                                (24) 

 

   S consists of 2N-1 components, where N is the number of 

busbars and N=NL+NG. In order to make regular exchange of 
variables S <=> X possible, the voltage angle of slack busbar 

is considered as reference angle and is set to zero. This makes 

the number of variables in both S and X equal to 2N-1. 

    Active and reactive loads PLi, QLi; each busbar including the 

load at generator busbars (if any), is predicted for next time 

instant (k+1) using the ANN based bus load prediction [9]. 

    Active bus injections (generation - load) for generating 

busbars can not be directly predicted for the simple reason that 

generation has to adapt itself to load variation. A simple 

method for adapting this variation in load to the generation is 

to use generation participant factors.  

    That is, for the ith busbar, the real power injection at time 
instant k+1 is given by 
 

( ) ( ) ( )∑ +∆+=+
∧

loadsj

LjiGiGi kPkPkP
ε

α 11
~

        (25) 

where:  

    ( )=+1kP
~
Gi Predicted active power bus injection at busbar i 

at time instant k+1. 

    ( )=kP̂Gi Estimated active power bus injection at busbar i at 

time instant k. 

    =αi generation participation factor  

 

                             ( )∑ =α≤α≤ 110 ii ;  and 

( ) ( ) ( )kPkPkP LjLj

∧

−+=+∆ 11
~

         (26) 

 

    The generation participation factors are calculated using the 

economic load dispatch and are kept constant between two 

successive economic dispatch period. 
   The DLP method uses bus power injections (P,Q) as 

prediction variables, while for filtering step complex bus 

voltage (e,f) are more appropriate. The prediction vector S and 

filtering step state vector X are related through 2N-1 

nonlineared equations 

 
S = g(X)          (27) 

 

The change of variables from S → X at the end of the 

prediction step is performed using load flow solution [11]. The 

covariance matrix for injection prediction error is given by 
 

( ) ( ) ( )
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VI. ANALYSIS OF ANOMALOUS DATA 

 

   One of the objectives of state estimation is to detect, identify 

and remove or correct the anomalous, data from the incoming 

information, so as, to maintain the integrity of the data base.  

    One major advantage of DSE is the availability of the 

predicted state X which can be very useful in anomaly 

detection. Pre-filtering scheme for anomaly detection consists 

of computing the innovation vector: 

 

            ( ) ( ) ( )( )kX
~

hkZk −=ϑ                         (30) 

 

    In case, any anomalous data is present, the hypothesis 

( ) m  ∀λ〈λ maxm k  (where m is the measurement index, 

( ) ( ) ( )kkk mmm ρϑ=λ is the normalised innovation for 

measurement m and ( )kmρ  is the mth diagonal element of 

( )kℜ  matrix ) will not hold. The choice of threshold maxλ is 
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based on simulation. Under normal operating condition all the 

normalised innovation ( )kmλ will be small and within 

threshold value. 

     Discrimination between Anomalies and Treatment of 

Anomalous Data. One important property of the innovation 

vector is that no "smearing" takes place in innovation process, 

that is, at time sample k, ( )kλ  will have abnormal values for 

only those measurements which correspond to the erroneous 
(bad) measurements.  

    Although, the occurrence of bad data can be detected from 

the abnormal values of ( )kiλ , the quality of prediction, effect 

the value of λ , and a poor dynamic model for prediction may 

lead to λ  value comparable to the magnitude of bad data. In 

such cases, medium size bad data is likely to go undetected.  

    A more reliable method for detection of bad data is based 

on “skewness” of the innovation vector. Under normal 

operating condition, the distribution of ( )kϑ is symmetrical. 

     In case of sudden load change, though the normalised 

innovation will have large values corresponding to 

measurements in the vicinity of the busbar where sudden 

load/generation change has occurred, the innovation vector 

( )kϑ  will maintain its symmetrical property.  

     But in presence of bad data, the distribution of ( )kϑ  

becomes asymmetrical and its “asymmetry index” (skewness 

measure) ( ) ( ) ( )k/kMk 3
3 σ=γ  will be large, where, M3 is the 

third moment and σ  is the standard deviation of the nor-

malised innovation vector at time sample k.  

    The presence of bad data is determined from the value of 

asymmetry index.  

    When bad data is present ( ) maxk γ>γ , where maxγ is a 

threshold determined through simulation. Once presence of 

bad data is detected, measurements for which ( )kiλ values are 

greater than the threshold, are considered bad and are 

eliminated from the measurement set. 

    In case of sudden load/generation change, a number of 

measurements surrounding the changed injections will exhibit 

large values for ( )kiλ .  

    This is mainly because of the error in prediction of X(k) 

which has not taken the sudden injection change into account. 
Such a situation can be taken care of by the proposed filtering 

scheme as it incorporates the non-linearities of the 

measurement function. 

 

VII. PROPOSED DSE SCHEME 
 

    The overall procedure for the proposed DSE scheme is 

schematically shown in Figure 3. 

   ( )1+kX
~

obtained after prediction step provides the complete 

predictive data base, whereas, ( )kX
~

 obtained after filtering 

step provides the complete data base for the current time.  

    The proposed DLP based DSE model faithfully follows the 

recursive scheme of EKF, except that instead of the state 

transition based dynamic model it uses a combination of ANN 

based bus load forecasting and load flow solution to obtain the 

predicted state ( )kX
~

. It also incorporates non-linearities of the 

measurement function the filtering step. 

    Computational aspect: To reduce the computational burden 

and speed up the computational process of the proposed DSE 

scheme, following simplification in the algorithm is 

introduced: 

    (i) For computing predicted states from predicted bus loads 

fast second order load flow [10] is used. This load flow 

requires computation and factorization of the Jacobian matrix 

only once in the beginning of the fir iteration. For time step 

( )1+k , the estimated state ( )kX
~

 is used as the starting value 

for the load flow computation. 

 Fig. 3 : ANN based DSE scheme 
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    (ii) Since Jacobian matrix is already available from tl load 

flow at the prediction step, so no computation for Jacobian 

elements is required for computation ( )10 +kP  

    (iii) Computation of predicted state error covariance 

( )10 +kP , equation (33), introduces the heaviest comput tional 

burden in prediction step. Since the Jacobian matrix is very 

sparse, sparse matrix techniques a: used to obtain ( )10 +kP  

column by column. 

 

VIII. TEST SYSTEM SIMULATION 
 

    Test Systems: Simulation tests were performed on a number 

of systems, however due to limitation of space here results for 

only IEEE 118 bus test system is presented. The simulations 

were carried out for 30 time samples. 

    Generation of Bus loads: In the absence of real system data 

the generation of bus load data was carried out as given below: 
    (i) 17 sets of hourly load data from the IEEE-24 bus (17 

load bus) reliability test system data were used. 

    (ii) Hourly loads for each set were normalised with respect 

to the peak load of that data set.  

    (iii) These 17 load patterns were randomly assigned to 

various load busbars (one load pattern for each busbar)of the 

test systems.  

    (iv) Actual hourly load for each busbar of the test system 

was obtained by multiplying the normalised hourly load of the 

assigned load pattern with the peak load of the busbar. 

    (v) In the absence of any hourly load data for reactive 
power, hourly reactive power load for each busbar was 

obtained by keeping the power factor at each busbar constant 

at the nominal value for that busbar as given in the test system 

data. 

    Measurement Generation: The selection of measurements 

used, was based on random choice and redundancy (m/n)≅ 2 

was maintained (450 measurements were used).   

    The time evaluation for the system state was simulated by a 

load curve for each busbar. The power factor for the loads 
were kept constant. Changes in generation to take care of the 

load variations were obtained using generation participation 

factors. 

    For each time sample, a load flow was carried out using the 

load and generation values obtained through load curve and 

generation participation factor, to obtain the true state (X+) 

and true value of measurements (Z+).      

    The actual measurements (Z) were obtained by adding a 

normally distributed noise (error) with standard deviation (σ ) 

of 2% for power injections and flow measurements andσ  = 

1% for voltage measurements, to Z+. 

    Initialisation: To start the DSE process the initial values for 

the various parameters were specified as follows: Initial state 

( )0x̂  was obtained using static state estimation from the 

measurements at k=0 and its error covariance was specified as  

P+(0) =diag(10-6). 

 

    Bad Data: Bad data conditions were simulated by intro-
ducing error in the measurement set at 5th time sample in real 

power at bus 80, at 11th and 16th time sample in P80, P92 & 

Q115 at 21st time sample in P92. 

    Sudden Load Changes: Sudden load change condition was 

simulated by changing the load at bus number 54 at 11th and 

16th time samples. 

    Performance evaluation: The performance of the algorithms 

were assessed using the following indices. 

    Prediction step: The index used for assessing the 

performance of the prediction model is 

 

( ) ( ) ( )∑ +−=
n

iix kXkX
n

k
1

~1
ζ

  (31) 

 

    Filtering step:  For assessing the effectiveness of filter, the 

index used is 
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IX. CONCLUSION 
 

    This paper investigates the adaptive data reduction in sensor 

array processing for the colored noise case. The design 

criterion for the beamspace transformation is preservation of 

the Cramér-Rao bounds for the parameter estimates. A design 

procedure is given that produces a transformation that closely 

approximates the ideal one.  

    The benefits are shown via computer simulations that focus 

on the problem of out-of-band sources. These can be viewed 

as interfering sources in beamspace, causing a loss in 

performance relative elementspace estimation.  

     The results indicate that significant improvements can be 
gained in terms of meansquare-error performance if the 

outlined approach is followed. 

     The proposed ANN based DSE provides better state 

estimates than the DSE with conventional prediction model. 
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