

Abstract—Network testbed has developed experiment software

which supports operations of testbed experiments. In recent years, the
experimenters utilize virtualization technologies such as KVM and
Xen to expand the scale of experimental environment. By contrast,
current experiment support software does not have enough functions
for such an experiment environment. As a result, the experimenters
often encounter some sort of stumbling block when constructing
huge-scale experiment environment. In this paper, we investigate the
technical requirements of experiment support software for huge-scale
network environment by analyses and considerations.

Keywords—Network testbed, Experiment support software,

Large data distribution, Reliable multicast, Virtualization, Resource
estimation

I. INTRODUCTION
HE Internet and cloud computing services are growing
increasingly popular. At the same time, user applications

of decentralized architecture such as peer-to-peer (P2P), have
also grown in popularity. The technologies underlying those
applications and services construct large-scale distributed
systems, which have complex mechanisms. Developers
therefore must verify not only simulation evaluation but also
emulation evaluation using actual program code on target
scale network environments. Thus, the importance of network
testbeds for verifying such technologies and applications is
growing, and the scalability requirements of network testbeds
are increasing beyond those currently used.

The StarBED Project[1] has developed experiment support
software (hereinafter called the “ESS”) called SpringOS,
which supports operations of testbed experiments. SpringOS
has achieved some positive results in conducting experiments,
though we often encounter some sort of stumbling block when
constructing an experiment environment on network testbed.
Basically, the scale of experiment environment is limited by

S.Yasuda is with the Japan Advanced Institute of Science and Technology
, 1-1 Asahidai Nomi, Ishikawa, Japan (corresponding author to provide

phone: +81-761-51-1699(1327); e-mail: s-yasuda@jaist.ac.jp).
K.Akashi is with the Japan Advanced Institute of Science and Technology
, 1-1 Asahidai Nomi, Ishikawa, Japan (e-mail: k_akashi@jaist.ac.jp).
M.Enomoto is with the Nara Institute of Science and Technology
, 8916-5 Takayama Ikoma, Nara, Japan (e-mail: masatoshi-e@is.naist.jp).
S.Miwa is with the National Institute of Information and Communications

Technology
, 2-12 Asahidai Nomi, Ishikawa, Japan (e-mail: danna@nict.go.jp).
Y.Shinoda is with the Japan Advanced Institute of Science and Technology
, 1-1 Asahidai Nomi, Ishikawa, Japan (e-mail: k_akashi@jaist.ac.jp).

number of physical nodes which the experimenters utilize.
Thus, the experimenters utilize virturalization technology for
expanding the scalability of their experiment. However, it
increases the service requests from experiment nodes to
management servers. One-sided approach for expanding the
scale of experiment nodes triggers failure. As a result, it
decreases the ESS’s reliability and expands the cost for
experiment.

The experimenter takes advantage of virtual machines in
network testbed to expand the scale of experiment
environment. Expanding the scalability of experimental
environments using virtual machines requires multiplexing
much more virtual machines by allocating resources onto each
virtual machine appropriately. Generally, the roles of several
experiment nodes are different. Consequently, it will be excess
or deficiency of resources if the experimenter evenly allocates
resources to all virtual machines. Hence we need mechanism
to allocate and provision the computer resources such as
memory, CPU and network traffic if the experimenter utilizes
virtual machine. Current ESS does not have enough function
such as failure avoidance, failure recovery and resource
allocation for huge-scale experiment environment. As a result,
it is difficult to support experimenter’s operations.

In this paper, we investigate the technical requirements of
experiment support software for huge-scale network
environment by analysis and considerations.

II. RELATED WORKS

A. Typical Testbeds
In research and development area, various testbeds such as

Emulab[2],[3], PlanetLab[4],[5], and StarBED[1] are used to
validate network applications or technologies over an
experiment environment. The major problem is cost in
constructing experiment environments on a large number of
nodes and network equipments. Moreover, cost is also needed
to maintain testbed equipments.

Most of these testbeds have supporting software that helps
in constructing the target experiment environment and
conducting network experiments on it. PlanetLab has
supporting software such as PlanetLab Central (PLC) and
CoDeploy[6], while StarBED has SpringOS[7],[8],[9].
SpringOS is a particularly compelling software suite
consisting of a dozen modules, each with special roles.

Technical Requirements of Experiment Support
Software for Huge-Scale Network Environment

Shingo Yasuda, Kunio Akashi, Masatoshi Enomoto, Shinsuke Miwa, and Yoichi Shinoda

T

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

99

B. StarBED and SpringOS
StarBED is a testbed which includes about 1000PCs and

many switches, and the all nodes are interconnected. All
StarBED PC nodes have a sort of Remote Management
Interface(hereinafter called “RMI”) such as Wake on LAN
(WoL)[10], Intelligent Platform Management
Interface(IPMI)[11] and HP Integrated Lights-Out(ILO)[12].
StarBED provides various services which manage facilities
and basic service softwares such as DHCP, DNS, NTP, File
Server and external(internet) access. Moreover, in the
StarBED project, SpringOS is developed for dozen functions
such as resource management, network configuration and
driving the experiment based on scenario. Many
experimenters can construct the targeted experiment
environment by using SpringOS in the StarBED, which is
available to conduct the experiment.

Many research projects conducted experiments using a few
hundred of physical nodes in recent years in StarBED. In
addition, some research projects conducted experiments with
over 10,000 virtual nodes in StarBED using virtualization
technology[15].

C. Construction Procedure Using SpringOS
In order to construct the experimental environment, the

experimenter needs to install OS or application on physical
nodes of StarBED, distribute the data such as configuration
file or virtual node OS image, and configure the network
topology. There is common procedure to construct an
experimental environment what we will describe in this
section. In addition, it becomes popular to construct an
experimental environment using virtualization technologies in
recent years. Thus this section describes construction
procedure using virtualization technologies on StarBED.

1) Software Installation on the Nodes
In order to conduct experiments, the experimenter needs to

install OS and application software on physical nodes. There
are two methods for it.

a) The experimenter installs OS and application software on
one physical node. This process is making a template
diskimage of the experimental node. After that, experimenter
distributes that template diskimage to other physical nodes.
Here, SpringOS has function, which distribute that template to
other nodes.

b) The experimenter creates network boot OS image and
installs OS and application on one physical node. After that, it
is booted by network boot. Network boot means diskless boot
by network services. Most poplar technology is Preboot
Execution Environment(PXE)[13] Boot. All of StarBED
physical nodes have network interface card which includes
function of PXE Boot.

2) Network Configuration
The experimenter needs target network topology for the

experiment. In StarBED, the experimenter can configure the
network topology by VLAN without changing the physical
topology. In addition, SpringOS can configures VLAN
settings of switches for the experiment environment.

3) Scenario Driving
After the construction of experiment environment,

experimenter can experiment on the environment. SpringOS
has function of experiment execution which utilizes scenario.
Scenario consists of command lists and timing triggers.
SpringOS distributes scenarios to each experiment node, and a
scenario execution program running on the experiment nodes
executes the commands in the scenario. This mechanism can
also synchronized scenario execution which utilizes passing
messages.

D. Large Data Distribution
One of major roles of ESS is distributing certain OS images

and installing them on each node. SpringOS, for instance, uses
FTP to transfer the data. SpringOS version 1.5 is able to
distribute an 870 MB disk image among 230 nodes in about
2,200 seconds [14]. The elapsed time for 50 nodes is 1,000
seconds and it increases if the number of nodes increases. That
paper [14] describes the reason as “FTP server-side problem,
including NIC’s capacity or HDD reading speed”. Many
research projects in recent years have conducted experiments
using a few hundred physical nodes in StarBED. Some
research projects have also conducted experiments with over
10,000 virtual nodes in StarBED using virtualization
technologies such as KVM and Xen [15]. The disk image
distribution elapsed time therefore significantly affects
construction of the experiment environment.

Frisbee [16] designed and evaluated a scalable disk
distribution system. They conducted an experiment to
distribute an OS disk image to 80 nodes with reliable multicast
for evaluating system writability. For that experiment
environment, the sender server interconnected with client
nodes via 100 Mbps Ethernet. Gigabit Ethernet has become
popular in recent years. StarBED thus also utilizes it for all
experiment nodes and utilizes 10 Gigabit Ethernet in some
parts of the management network. The writing speed of the
common computer’s hard disk is slower than Gigabit Ethernet,
so disk writing speed can lead to a bottle-neck in large data
distribution. Common computers, operating systems and
applications have a buffer for disk writing, but its
effectiveness is limited by memory size, so we need to
validate the effect of the buffer on large data distribution.

III. CATEGORIZING THE ERRORS
This section describes issues of ESS’s operation failure

when constructing the experimental environment on StarBED.
The experimenter encounters various troubles while
constructing the environment. At first, we describe major
troubles when constructing the experimental environment on
StarBED. Figure 1 shows the number of successfully booted
nodes in startup nodes using PXE boot in StarBED. Table 2
lists experimental condition, and Table 1 lists experiment node
specifications.

This is a basic performance in StarBED facilities because
this experiment does not use any failure recovery mechanism
and operation except SpringOS’s mechanism. There are few
nodes which can’t startup normally in the case of over 50

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

100

nodes. Furthermore, in the case of 230 nodes, the result
describes the success rate in wide range.

There are three reasons to get such result: (1) lacking
reliabilities of RMI, (2) management service failure such as
collision of path to management server (3) network service
overload when starting physical nodes.

A. Reliability of RMI
The RMI problem appears when starting physical nodes. In

most cases, there are two problems; (1) no response, (2)
difference between response from RMI and actual statement
of RMI. Moreover, there is a case that sender disconnected
from RMI abnormally when RMI with type of connection
oriented communication. It is also categorized as RMI
problem. In this case it is likely caused by packet loss or a
certain kind of bugs happened in hardware overload. Usually
it is possible to recover by retrying the same process.

By contrast, even though network is not overloaded, there is
also the case that error is occurred. Moreover, the case of
difference between response from RMI and actual statement
of RMI occurs when the experimenter or ESS sends many
commands in a short period. These problems are likely caused
by design failure of RMI hardware. This phenomenon occurs
in three products of different manufacturers that we are using.
We define this phenomenon as synchronization problem
between software and hardware in RMI product. It seems that
RMI product needs an interval to change the hardware state
after receiving command. When the experimenter executes
next command, the above phenomenon does not appear by
setting the intervals for 10 seconds or more since last
command.

B. Problems of Management Server
The problems of management server are experimental

management server errors that nodes can’t be serviced such as
DHCP and NFS. It is a matter of a service software error,
which is not a hardware error. When the experimenter controls
the experimental nodes, the above phenomenon does not
appear by controlling the intervals or distributing service
requests to the servers.

Hence, We proposed and implemented a mechanism called
mount point redirection, as shown in Figure 2. All experiment
nodes are installed on the NFS server in this mechanism. In
addition to insert a few seconds as an interval between each

booting command. Due to this, there are nodes that already
have same data which are required. When boot experiment
nodes, manager node redirect NFS server address which
already have requested data to request node. When many
nodes request same data, this mechanism makes NFS server
load distribution.

C. Problems of Hardware
The problems of hardware are errors occurred when the

hardware detects the breakdown such as CPU error, power
supply trouble and disk trouble. These errors can be tentative
or not. The experimenter can recover the tentative error by
restarting the system. The experimenter needs to judge if it is

Fig. 1 Number of Successfully booted nodes

Table. 1 Node Specifications

Figure 1: Number of Successfully booted nodes

conducted experiments using a few hundred physi-
cal nodes in StarBED. Some research projects have
also conducted experiments with over 10,000 virtual
nodes in StarBED using virtualization technologies
such as KVM and Xen [15]. The disk image distribu-
tion elapsed time therefore significantly affects con-
struction of the experiment environment.

Frisbee [16] designed and evaluated a scalable
disk distribution system. They conducted an experi-
ment to distribute an OS disk image to 80 nodes with
reliable multicast for evaluating system writability.
For that experiment environment, the sender server
interconnected with client nodes via 100 Mbps Eth-
ernet. Gigabit Ethernet has become popular in recent
years. StarBED thus also utilizes it for all experiment
nodes and utilizes 10 Gigabit Ethernet in some parts
of the management network. The writing speed of the
common computer’s hard disk is slower than Gigabit
Ethernet, so disk writing speed can lead to a bottle-
neck in large data distribution. Common computers,
operating systems and applications have a buffer for
disk writing, but its effectiveness is limited by mem-
ory size, so we need to validate the effect of the buffer
on large data distribution.

3 Categorizing the Errors
This section describes issues of ESS’s operation fail-
ure when constructing the experimental environment
on StarBED. The experimenter encounters various
troubles while constructing the environment. At first,
we describe major troubles when constructing the ex-
perimental environment on StarBED. Figure 1 shows
the number of successfully booted nodes in startup
nodes using PXE boot in StarBED. Table 2 lists ex-
perimental condition.

This is a basic performance in StarBED facilities.

Table 1: Node Specifications
Server CPU Memory Disk OS
TFTP/
DHCP

Xeon
E5405 2GB - Solaris 10

NFS
Xeon
E5405 16 GB - Solaris 10

Group H
Xeon
X3350 8 GB

SATA
160 GB -

Table 2: Experiment Conditions
Node Group Group H
No. of Nodes 1, 50, 100, 150, 230

Boot Type PXE Boot
OS Debian Linux Custom
OS Image Size 193MB

No. of NFS Servers 1
No. of TFTP
&DHCP Servers 1 (2 in 1)

Because this experiment does not use any failure re-
covery mechanism and operation except SpringOS’s
mechanism. There are few nodes which can’t startup
normally in the case of over 50 nodes. Furthermore, in
the case of 230 nodes, the result describes the success
rate in wide range.

There are three reasons to get such result; (1)
lacking reliabilities of RMI, (2) management service
failure such as collision of path to management server
(3) network service overload when starting physical
nodes.

3.1 Reliability of RMI

The RMI problem appears when starting physical
nodes. In most cases, there are two problems; (1) no
response, (2) difference between response from RMI
and actual statement of RMI. Moreover, there is a case
that sender disconnected from RMI abnormally when
RMI with type of connection oriented communica-
tion. It is also categorized as RMI problem. In this
case it is likely caused by packet loss or a certain kind
of bugs happened in hardware overload. Usually it is
possible to recover by retrying the same process.

By contrast, even though network is not over-
loaded, there is also the case that error is occurred.
Moreover, the case of difference between response
from RMI and actual statement of RMI occurs when

Table. 2 Experiment Conditions

Figure 1: Number of Successfully booted nodes

conducted experiments using a few hundred physi-
cal nodes in StarBED. Some research projects have
also conducted experiments with over 10,000 virtual
nodes in StarBED using virtualization technologies
such as KVM and Xen [15]. The disk image distribu-
tion elapsed time therefore significantly affects con-
struction of the experiment environment.

Frisbee [16] designed and evaluated a scalable
disk distribution system. They conducted an experi-
ment to distribute an OS disk image to 80 nodes with
reliable multicast for evaluating system writability.
For that experiment environment, the sender server
interconnected with client nodes via 100 Mbps Eth-
ernet. Gigabit Ethernet has become popular in recent
years. StarBED thus also utilizes it for all experiment
nodes and utilizes 10 Gigabit Ethernet in some parts
of the management network. The writing speed of the
common computer’s hard disk is slower than Gigabit
Ethernet, so disk writing speed can lead to a bottle-
neck in large data distribution. Common computers,
operating systems and applications have a buffer for
disk writing, but its effectiveness is limited by mem-
ory size, so we need to validate the effect of the buffer
on large data distribution.

3 Categorizing the Errors
This section describes issues of ESS’s operation fail-
ure when constructing the experimental environment
on StarBED. The experimenter encounters various
troubles while constructing the environment. At first,
we describe major troubles when constructing the ex-
perimental environment on StarBED. Figure 1 shows
the number of successfully booted nodes in startup
nodes using PXE boot in StarBED. Table 2 lists ex-
perimental condition.

This is a basic performance in StarBED facilities.

Table 1: Node Specifications
Server CPU Memory Disk OS
TFTP/
DHCP

Xeon
E5405 2GB - Solaris 10

NFS
Xeon
E5405 16 GB - Solaris 10

Group H
Xeon
X3350 8 GB

SATA
160 GB -

Table 2: Experiment Conditions
Node Group Group H
No. of Nodes 1, 50, 100, 150, 230

Boot Type PXE Boot
OS Debian Linux Custom
OS Image Size 193MB

No. of NFS Servers 1
No. of TFTP
&DHCP Servers 1 (2 in 1)

Because this experiment does not use any failure re-
covery mechanism and operation except SpringOS’s
mechanism. There are few nodes which can’t startup
normally in the case of over 50 nodes. Furthermore, in
the case of 230 nodes, the result describes the success
rate in wide range.

There are three reasons to get such result; (1)
lacking reliabilities of RMI, (2) management service
failure such as collision of path to management server
(3) network service overload when starting physical
nodes.

3.1 Reliability of RMI

The RMI problem appears when starting physical
nodes. In most cases, there are two problems; (1) no
response, (2) difference between response from RMI
and actual statement of RMI. Moreover, there is a case
that sender disconnected from RMI abnormally when
RMI with type of connection oriented communica-
tion. It is also categorized as RMI problem. In this
case it is likely caused by packet loss or a certain kind
of bugs happened in hardware overload. Usually it is
possible to recover by retrying the same process.

By contrast, even though network is not over-
loaded, there is also the case that error is occurred.
Moreover, the case of difference between response
from RMI and actual statement of RMI occurs when

Request NFS
Server's Address

Node B(Starting)

Node A(Startup)

Node C(Starting)

Manager Node

Default NFS Server

Notice of Start up

Node A

Default NFS Server

Node B(Starting)

Node A(Startup)

Node C(Starting)

Manager Node

Default NFS Server

Mount NFS root directory

Mount NFS root directory

Fig. 2 Mount Point Redirection

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

101

the tentative error or not by trying to restart the system. If it is
not tentative error, the experimenter decides to exclude that
node from experimental nodes. It can decrease the number of
physical nodes for the experiment. Therefore the experimenter
needs to construct a certain numbers of spare nodes in advance
in order to replace broken nodes with them.

IV. RMI FAILURE RECOVERY
In section III.A, we describe reliability of RMI. Current

RMIs do not have enough reliability in large-scale network
testbed because it utilizes UDP packet for communication and
so on. Nevertheless RMI is most basic and important feature
for ESS. Hence we should enhance the reliability of RMI
control.

A. RMI Command Procedures
When controlling the RMI, the experimenter needs to

consider the following points as described in section III.A.
• Retry when the connection terminates abnormally.
• Set enough time for message interval.
• Confirm node’s statement to same as operation
command.
We propose simple mechanisms based on these conditions.

Figure 3 shows state transition diagram of operation “Get
Power Status”. It retransmits when sender gets no response or
connection error occurs. However, it resends the message until
three times because the reactivation process will not end if
trouble is not temporal. This diagram will be same for “Power
Reset”. Moreover, manager server manages the electrical
power control and start confirmation of a physical node. Next,
in order to confirm if operation works as per command, the
procedure to check state variation of power supply in physical
is necessary. Figure 4 shows state transition diagram “Set
Power On”. At first, it confirms the power state of target node.
If the power statement is off, it sends command of “Power
On”. After send command, it reconfirms the power state of
target node, and resend command of “Power On” again if the
power state is off. But, it resends until three times too due to
same reason of “Get Power Statement”. Since the operation
of changing power state is same in both “Set Power On” and
“Set Power Off”, the diagrams will be the same.

V. MULTICAST DATA DISTRIBUTION
In case of the experimenter utilize virtualization technology

in his experiment. The physical nodes are virtual machine host
nodes, and the experimenter must distribute a virtual node disk
image to these nodes. If all virtual machine host nodes have
booted normally, the NFS service experiences a bottleneck in
distribute large amounts of data such as virtual node disk
images to a large number of physical nodes, so we proposed
using reliable multicast for large amounts of data distribution
in the testbed. Thus we conducted data transfer experiments.
In this work, we used “Makuosan”, a software “Multicast
All-Kinds of Updating Operation for Servers on Administered
Network”[19], in the experiment. This supports reliability by
NACK-Based retransmission. Figure 5 shows the result of the
experiments, Table 3 lists experiment conditions, and Table 1

lists experiment node specifications. The NACK-based
retransmission method has a problem of NACK implosion, so
the required time becomes longer while the number of receiver
nodes increases. The sender node receives a burst
retransmission request from receiver nodes in this experiment.
This is a serious problem and we are interested in the reasons

Get Power Status

Node is ON/OFF
or

False (count = 3)

Connection Error
or

Not Responding
/ count += 1

Request
Power Status

Fig. 3 State transition diagram of command sender for

getting power status

Power ON

Node is ON or
False (count = 3 or count2 = 3)

Set Power
ON

Connection Error
or

Not Responding
/ count += 1 Node is OFF

True/count2 += 1

Connection Error
or

Not Responding
/ count += 1

Get Power
Status

False (count = 3)

Fig. 4 State transition diagram of command sender for

changing power to on

Fig. 5 Required Time for Distribution

Table. 3 Experiment Conditions
Request NFS

Server's Address

Node B(Starting)

Node A(Startup)

Node C(Starting)

Manager Node

Default NFS Server

Notice of Start up

Node A

Default NFS Server

Node B(Starting)

Node A(Startup)

Node C(Starting)

Manager Node

Default NFS Server

Mount NFS root directory

Mount NFS root directory

Figure 4: Mount Point Redirection

Figure 5: Required Time for Distribution

5 Multicast Data Distribution
In case of the experimenter utilize virtualization tech-
nology in his experiment. The physical nodes are vir-
tual machine host nodes, and the experimenter must
distribute a virtual node disk image to these nodes. If
all virtual machine host nodes have booted normally,
the NFS service experiences a bottleneck in distribute
large amounts of data such as virtual node disk images
to a large number of physical nodes, so we proposed
using reliable multicast for large amounts of data dis-
tribution in the testbed. Thus we conducted data trans-
fer experiments. In this work, we used “Makuosan”,
a software “Multicast All-Kinds of Updating Opera-
tion for Servers on Administered Network” [19], in
the experiment. This supports reliability by NACK-
Based retransmission. Figure 5 shows the result of

Table 3: Experiment Conditions
Node Group Group H

No. of Sender Nodes 1

No. of Receiver Nodes 1, 50, 100, 150, 230

Distribute Data Size 2.7 Gbytes

Experiment Node’s OS Debian Linux

Makuosan Version 1.3.1

Disk

Disk

1Gbps

1Gbps

Sender

Receiver

Sender
Program

Disk

Receiver
Program

Disk Disk

Receiver
Program

Receiver
Program

Receiver
Program

Figure 6: Flow of Multicast Data Transfer

the experiments, Table 3 lists experiment conditions,
and Table 1 lists experiment node specifications. The
NACK-based retransmission method has a problem
of NACK implosion, so the required time becomes
longer while the number of receiver nodes increases.
The sender node receives a burst retransmission re-
quest from receiver nodes in this experiment. This is
a serious problem and we are interested in the reasons
behind it.

5.1 Analysis of the Bottleneck
Packet loss usually occurs at a low rate in a high-
performance and closed network such as StarBED. As
mentioned above, the sender node often receives burst
retransmission requests from receiver nodes. Accord-
ingly, there are some bottlenecks in this type of net-
work environment. We therefore conducted some ex-
periments to analyze the reasons for this.

5.1.1 Reasons for Retransmission Occurrence

Packets are obviously dropped on the path between
sender and receiver due to a burst retransmission re-
quest, so we experimented on analyzing the packet
loss point on the path between sender and receiver

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

102

behind it.

A. Analysis of the Bottleneck
Packet loss usually occurs at a low rate in a high-

performance and closed network such as StarBED. As
mentioned above, the sender node often receives burst
retransmission requests from receiver nodes. Accordingly,
there are some bottlenecks in this type of network
environment. We therefore conducted some experiments to
analyze the reasons for this.

1) Reasons for Retransmission Occurrence
Packets are obviously dropped on the path between sender

and receiver due to a burst retransmission request, so we
experimented on analyzing the packet loss point on the path
between sender and receiver nodes, as shown in Figure 6. This
shows the flow of IP multicast data transfer. The sender node
interconnects with the network switch by 1 Gb Ethernet, and 1
Gb Ethernet integrates the switch with each receiver node.
Packets are sent from sender nodes to receiver nodes via link
local multicast. The total transfer size is 100 MB. There are 90
receiver nodes and only one sender node. Table 3 lists the
experiment node specifications. A sent packet includes: field
of data length (4 bytes), field of packet sequence number (4
bytes), and variable field of data. The length of the data field
is written in the field of data length, and its longest length is
1400 bytes. The sender program is written in Ruby. The
sender program has high data performance of about 800 Mbps.

The measurement points include the sender node’s upstream
mirror port and the receive node’s interface. The tcpdump
program captures data. As results we found that packet loss is
not observed at the mirror port. The switch did not drop the
packets for packet switching at over 800 Mbps of throughput
utilizing unicast UDP packets.

Figure 7 shows the experiment’s results. The Y 1 axis
shows the received packet sequence number, and the Y 2 axis
shows the packet loss rate. The X axis shows time transition.
We do not show the packet loss of the sender mirror port in
the graph because it is not observed. We confirmed the basic
performance of this experiment environment. The sender sent
all packets for about 1 second. The receiver nodes received the
packets with over a 90% packet loss rate with 0.1 seconds
delay until the sending process ends. The sequence number of
all packets received by 90 nodes was also the same. This result
seems to show the major reason for packet loss in IP multicast.
A specification or configuration issue of the network switch
can, however, cause this result.

2) HDD Writing Speed
The next reason for the bottleneck is the transfer speed to

write to or read the disk if the network can pass the traffic at
up to full speed. As shown in Figure 6, the sender node has a
local disk (HDD), as do all receiver nodes. The sender
program reads transport data from the local disk. The receiver
program writes received data to the local disk. The writing
speed of an HDD or any other storage medium is generally
slower than the reading speed. The receiver program will
continue dropping packets if the data receiving speed is faster
than the disk writing speed. The disk writing speed also differs
due to the disk position of data writing.

Modern computers have a buffer for disk writing due to the
buffer writing performance from the slowness of the disk

writing speed. We therefore experimented with two types of
scenarios to analyze the effect of the disk writing speed. The
first experiment was for analyzing the effects of disk writing
speed by the writing buffer and difference of disk writing
speed due to the position of data writing. We utilized one node
of StarBED Group H in this experiment and using Python
wrote a simple program for disk writing. Table 1 shows the
node specifications. The program write timestamp is acquired
by timeObject.time() with dummy data to the local disk. The
data length is 1472 Bytes one time and 8 GB total data size.
The next line of fileObject.write() is fileObject.flush() in the
program due to analyzing the basic performance of the disk.
We divide the hard disk into 10 partitions for changing the
writing position. The program writes 10 times in each
partition.

Figure 8 shows the experiment results. The Y axis shows
the disk writing speed. The X axis shows the time (in seconds).
There are peaks of disk writing speed until 15 seconds. This is
the effect of a low-layer buffer such as the cache in the HDD.

The second experiment was for writing the received packets
to the local disk in order to analyze the effect of the disk
writing speed. We utilized two nodes in this experiment as
sender and receiver. These are from Group H, as shown in
Table 1. The sender program sends 8 GB data by using unicast
UDP packets to the receiver. The receiver program writes the
received data on the local disk. The sender has a function of
flow control for transport speed. We measure written data

Disk

Disk

1Gbps

1Gbps

Sender

Receiver

Sender
Program

Disk

Receiver
Program

Disk Disk

Receiver
Program

Receiver
Program

Receiver
Program

Fig. 6 Flow of Multicast Data Transfer

 0

 20000

 40000

 60000

 80000

Se
qu

en
ce

 N
um

be
r

Mirror Port
Receiver

0 2 4 6 8 10 0
 20
 40
 60
 80
 100

Pa
ck

et
 lo

ss
 ra

te
[%

]

Time[s]

Receiver’s Packet Loss

Fig.7 Packet Loss Rate

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

103

blocks on the receiver’s local disk by three bandwidth
conditions.

Figure 9 shows the experiment results. Each point
represents the average of 10 experiments over an 80 MB
window. This figure also only shows 4 GB in front of 8 GB
sending data. The Y axis shows the packet writing loss rate.
The X axis shows the transfer data position. The loss rate of
written data is low and almost unchanged, and even the sender
program sends data at 100 Mbps and 300 Mbps. In contrast,
there are elbows of writing loss rate in the case of 900 Mbps,
so the writing loss rate is over 60% after the elbow.

Figure 10 shows the average and standard deviation of 10
times in the case of 900 Mbps. The writing loss rate is
different at each point in time, which suggests that writing loss
data block is different in each node.

These two experiments identified the shift of throughput
during large data distribution. In addition, these experiments
also identified the difference between disk writing loss and
packet loss in network switch. Data block of disk writing are
different block of each node.

3) Disk and Network Aware Data Distribution
We proposed utilizing reliable multicast so that large data

files such as virtual node disk images are distributed to
experiment nodes. We describe the requirements of reliable
multicast for large data distribution in a testbed. These are as
follows:

• Disk speed and network aware congestion control
mechanism;

• Multi-network sibling recovery mechanism;
These mechanisms will contribute to optimizing large data

distribution in a centralized testbed.

VI. RESOURCE USAGE ESTIMATION
In previous sections, we described technical requirements

for failure recovery and inhibition. In this section, we discuss
ESS functions that is needed for huge-scale experiment
environment which utilizes virtualization technology. The
experimenters take advantage of virtual machines in network
testbed to expand the scale of experiment environments.
Expanding the scalability of experiment environments using
virtual machines requires multiplexing much more virtual
machines by appropriately allocating resources onto each
virtual machine.

A. Resource Allocation
In huge-scale experiments, the experimenter need to

consider resource allocation including CPU, memory, network
resources and so on. Generally, the role of several experiment
nodes are different. Consequently, it will be excess or
deficiency of resources if the experimenter allocates resources
to all virtual machines evenly. Thus the experimenter
describes enough quotas of resources into virtual machine’s
configuration files for each machine. But in a huge-scale
experiment environment, the experimenter must describe
many configuration files and distribute them to each
experiment node.

Hence we proposed mechanism for resource allocation from
one configuration file in our previous work[22],[23]. In this
implementation, the experimenter can describe resource
information of each virtual machine by XML format. On the
other hand, the experimenter must decide its quotas of
resource allocation for each virtual machine by
own-experience.

B. Roles of ESS
There are researches for resource provisioning to allocate

the optimum resources without experimenter-experience.
Deng[24] proposed estimation approach for bgpd by
equation-of-state model of BGP update message.
XENebula[15] proposed measurement based memory resource

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120

W
rit

in
g

ra
te

[M
By

te
]

Time[s]

1st partition
5th partition

10th partition

Fig.8 Disk Writing Performance

 0

 20

 40

 60

 80

 100

 120

 0 1024 2048 3072 4096

W
rit

in
g

lo
ss

 ra
te

[%
]

Length of sent data[MByte]

100Mbps
300Mbps
900Mbps

Fig. 9 Average of DDisk Writing Loss Rate

 0

 20

 40

 60

 80

 100

 0 1024 2048 3072 4096

W
rit

in
g

lo
ss

 ra
te

[%
]

Length of sent data[MByte]

900Mbps

Fig. 10 Disk Writing Loss Rate and SD (900Mbps)

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

104

allocation method.
Whereas, these approaches depend on several target

implementation. Roles of ESS is to support for every
experiments; therefore, required features for ESS should only
support resource allocation. Hence ESS should have
mechanism to describe the resource allocation simply such as
our previous work[22],[23]. In addition ESS should also have
resource state logger in experiment nodes to support the
experimenter’s configuration of resource quotas.

VII. CONCLUSION
This paper cites technical requirement for ESS to support

huge-scale experiment environment which utilize
virtualization technology. We categorize the errors
experimenter encountered. As a result, we describe the needs
for reliability of RMI, server load distribution technique and
traffic efficiency. We proposed three technical requirements
for these problems: (1) implementation of NFS server mount
point redirection for NFS server load distribution, (2) simple
state transition diagram for reliable communication with RMI
and, (3) disk-speed and network aware large data distribution
mechanism which utilizes reliable multicast for traffic
efficiency.

In addition, we cite the issues of resource usage estimation
for virtual machine, and describe the need for simple
description mechanism of resource allocation. Furthermore we
also describe the need for resource state logger in experiment
nodes to support experimenter’s configuration of resource
quotas.

These mechanisms and functions of resource allocation will
contribute to optimize reliable construct of huge-scale
experiment environment and conduct their experiments in
centralized testbed.

ACKNOWLEDGMENT
The authors thank Assistant Professor H.Hazeyama from

Nara Institute of Science and Technology for his insightful
comments and suggestions. The authors also thank Assistant
Professor D.Miyamoto from the University of Tokyo for his
insightful comments and suggestions. A part of this research
was received generous support from T.Inoue, Ph.D. T.Miyachi,
Ph.D. K.Chinen, H.Nakai, M.I.Tariq, Ph.D. LATT Khin Thida
and Ph.D. Y.Takano.

REFERENCES
[1] StarBED Project

http://www.starbed.org
[2] Emulab

http://www.emulab.net
[3] B. White, J.Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M.

Hibler, C. Barb, and A. Joglekar. An integrated experiment environment
for distributed systems and networks, pp 255-270. USENIXASSOC,
Dec. 2002.

[4] Planet-Lab
http://www.planet-lab.org

[5] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for
Introducing Disruptive Technology into the Internet, In HotNets-I ‘02,
Oct. 2002

[6] A Scalable Deployment Service for PlanetLab
http://codeen.cs.princeton.edu/codeploy/

[7] T. Miyachi, K. Chinen, and Y. Shinoda. Automatic Configuration and
Execution of Internet Experiments on an Actual Node-based Testbed. In
International Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities(Tridentcom 2005), Feb.
2005.

[8] K. Chinen, T. Miyachi, and Y. Shinoda. A Rendezvous in Network
Experiment - Case Study of Kuroyuri. In International Conference on
Testbeds and Research Infrastructures for the Development of Networks
and Communities(Tridentcom 2006), Mar. 2006.

[9] T.Miyachi, K. Chinen, and Y. Shinoda. StarBED and SpringOS:
Large-scale General Purpose Network Testbed and Supporting Software.
In International Conference on Performance Evaluation Methodlogies
and Tools(Valuetools 2006), Oct. 2006.

[10] Magic Packet Technology White Paper
http://support.amd.com/us/EmbeddedTechDocs/20213.pdf

[11] Intelligent Platform Management Interface
http://www.intel.com/design/servers/ipmi/

[12] iLO(Integrated Lights-Out 2)
http://h18004.www1.hp.com/products/servers/management/remotemgmt
.html

[13] Preboot Execution Environment (PXE) Specification
http://www.intel.com/design/archives/wfm/downloads/pxespec.htm

[14] T. Miyachi, T. Nakagawa, K. Chinen, S. Miwa and Y. Shinoda,
StarBED and SpringOS Architectures and their Performance,
Tridentcom 2011, Apr, 2011.

[15] S. Miwa, M. Suzuki,H, Hazeyama, S, Uda, T, Miyachi, Y, Kadobayashi
and Y. Shinoda, Experiences in emulating 10K AS topology with
massive VM multiplexing, Proceedings of The First ACM SIGCOMM
Workshop on Virtualized Infrastructure Systems and
Architectures(VISA 2009), Aug, 2009.

[16] M.Hibler, L.Stoller, J.Lepreau, R.Ricci and C.Barb. Fast, Scalable Disk
Imaging with Frisbee, In Proc. of the 2003 USENIX Annual Technical
Conference, pp.283-296, Jun, 2003.

[17] A. Mankin, A. Romanow, S. Bradner and V. Paxson, IETF Criteria for
Evaluating Reliable Multicast Transport and Application Protocols,
RFC2357, Jun, 1998.

[18] B. Whetten, L. Vicisano, R. Kermode, M. Handley, S. Floyd and M.
Luby, Reliable Multicast Transport Building Blocks for One-to-Many
Bulk-Data Transfer, RFC3048, Jan, 2001.

[19] Makuosan(Multicasts All-Kinds of Updating Operation for Servers on
Administered Network)
http://lab.klab.org/wiki/Makuosan (in Japanese)

[20] B. Adamson, C. Bormann, M. Handley and J. Macker,
Negative-acknowledgment (NACK)- Oriented Reliable Multicast
(NORM) Protocol, RFC3940, Nov, 2004.

[21] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, A Reliable
Multicast Framework for Light-weight Sessions and Application Level
Framing, IEEE/ACM Transactions on Networking, Dec 1997, Volume 5,
Number 6, pp. 784- 803.

[22] S. Miwa,T. Miyachi,M. Eto, M. Yoshizumi, Y. Shinoda, Design and
Implementation of an Isolated Sandbox with Mimetic Internet used to
Analyze Malwares, DETER Community Workshop on Cyber Security
Experimentation and Test 2007 (DETER07), 2007.8.

[23] S. Miwa, T. Miyachi, M. Eto, M. Yoshizumi, Y. Shinoda, Design Issues
of an Isolated Sandbox used to Analyze Malwares, In proceedings of
Second International Workshop on Security(IWSEC2007), LNCS 4752
Advances in Information and Computer Security, ISBN 978-3-
540-75650-7, pp.13-27, 2007.10.

[24] W. Deng, P. Zhu, X. Lu, and B. Plattner. On Evaluating BGP Routing
Stress Attack. Journal of Communicasions, 5(1):13-22, Jan, 2010.

S. Yasuda (M’11-) is a doctoral student at Japan Advanced Institute of
Science and Technology, Japan. His research interests include Network
Testbed, Delay Tolerant Networking, Wireless Network Emulation, and
E-Learning System. He is working on StarBED Project.

K. Akashi is a doctoral student at Japan Advanced Institute of Science and
Technology, Japan. His research interests include Network Testbed, and
Network Emulation. He is working on StarBED Project.

M. Enomoto is a doctoral student at Nara Advanced Institute of Science and
Technology, Japan. His research interests include Network Testbed, Testbed

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

105

Migration, and Computer Resource Allocation. He is working on WIDE
Project.

S. Miwa is a director of the Hokuriku StarBED Technology Center in
National Institute of Communications Technology. He received his Ph.D.
from Japan Advanced Institute of Science and Technology, Japan, in 1999.
His research interests include Network Testbed, Network Emulation, and
Network Security.

Y. Shinoda is a Professor in Japan Advanced Institute of Science and
Technology. He received his Ph.D. from Tokyo Institute of Technology, Japan,
in 1989. His research interests include Distributed and Parallel Computing,
Networking Systems, Operating Systems, and Information Environment.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

106

