
 

 

  
Abstract—Network testbed has developed experiment software 

which supports operations of testbed experiments. In recent years, the 
experimenters utilize virtualization technologies such as KVM and 
Xen to expand the scale of experimental environment. By contrast, 
current experiment support software does not have enough functions 
for such an experiment environment. As a result, the experimenters 
often encounter some sort of stumbling block when constructing 
huge-scale experiment environment. In this paper, we investigate the 
technical requirements of experiment support software for huge-scale 
network environment by analyses and considerations. 
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I. INTRODUCTION 
HE Internet and cloud computing services are growing 
increasingly popular. At the same time, user applications 

of decentralized architecture such as peer-to-peer (P2P), have 
also grown in popularity. The technologies underlying those 
applications and services construct large-scale distributed 
systems, which have complex mechanisms. Developers 
therefore must verify not only simulation evaluation but also 
emulation evaluation using actual program code on target 
scale network environments. Thus, the importance of network 
testbeds for verifying such technologies and applications is 
growing, and the scalability requirements of network testbeds 
are increasing beyond those currently used. 

The StarBED Project[1] has developed experiment support 
software (hereinafter called the “ESS”) called SpringOS, 
which supports operations of testbed experiments. SpringOS 
has achieved some positive results in conducting experiments, 
though we often encounter some sort of stumbling block when 
constructing an experiment environment on network testbed. 
Basically, the scale of experiment environment is limited by 
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number of physical nodes which the experimenters utilize. 
Thus, the experimenters utilize virturalization technology for 
expanding the scalability of their experiment. However, it 
increases the service requests from experiment nodes to 
management servers. One-sided approach for expanding the 
scale of experiment nodes triggers failure. As a result, it 
decreases the ESS’s reliability and expands the cost for 
experiment. 

The experimenter takes advantage of virtual machines in 
network testbed to expand the scale of experiment 
environment. Expanding the scalability of experimental 
environments using virtual machines requires multiplexing 
much more virtual machines by allocating resources onto each 
virtual machine appropriately. Generally, the roles of several 
experiment nodes are different. Consequently, it will be excess 
or deficiency of resources if the experimenter evenly allocates 
resources to all virtual machines. Hence we need mechanism 
to allocate and provision the computer resources such as 
memory, CPU and network traffic if the experimenter utilizes 
virtual machine. Current ESS does not have enough function 
such as failure avoidance, failure recovery and resource 
allocation for huge-scale experiment environment. As a result, 
it is difficult to support experimenter’s operations. 

In this paper, we investigate the technical requirements of 
experiment support software for huge-scale network 
environment by analysis and considerations. 

 

II. RELATED WORKS 

A. Typical Testbeds 
In research and development area, various testbeds such as 

Emulab[2],[3], PlanetLab[4],[5], and StarBED[1] are used to 
validate network applications or technologies over an 
experiment environment. The major problem is cost in 
constructing experiment environments on a large number of 
nodes and network equipments. Moreover, cost is also needed 
to maintain testbed equipments. 

Most of these testbeds have supporting software that helps 
in constructing the target experiment environment and 
conducting network experiments on it. PlanetLab has 
supporting software such as PlanetLab Central (PLC) and 
CoDeploy[6], while StarBED has SpringOS[7],[8],[9]. 
SpringOS is a particularly compelling software suite 
consisting of a dozen modules, each with special roles.  
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B. StarBED and SpringOS 
StarBED is a testbed which includes about 1000PCs and 

many switches, and the all nodes are interconnected. All 
StarBED PC nodes have a sort of Remote Management 
Interface(hereinafter called “RMI”) such as Wake on LAN 
(WoL)[10], Intelligent Platform Management 
Interface(IPMI)[11] and HP Integrated Lights-Out(ILO)[12]. 
StarBED provides various services which manage facilities 
and basic service softwares such as DHCP, DNS, NTP, File 
Server and external(internet) access. Moreover, in the 
StarBED project, SpringOS is developed for dozen functions 
such as resource management, network configuration and 
driving the experiment based on scenario. Many 
experimenters can construct the targeted experiment 
environment by using SpringOS in the StarBED, which is 
available to conduct the experiment. 

Many research projects conducted experiments using a few 
hundred of physical nodes in recent years in StarBED. In 
addition, some research projects conducted experiments with 
over 10,000 virtual nodes in StarBED using virtualization 
technology[15]. 

C. Construction Procedure Using SpringOS 
In order to construct the experimental environment, the 

experimenter needs to install OS or application on physical 
nodes of StarBED, distribute the data such as configuration 
file or virtual node OS image, and configure the network 
topology. There is common procedure to construct an 
experimental environment what we will describe in this 
section. In addition, it becomes popular to construct an 
experimental environment using virtualization technologies in 
recent years. Thus this section describes construction 
procedure using virtualization technologies on StarBED. 

1) Software Installation on the Nodes 
In order to conduct experiments, the experimenter needs to 

install OS and application software on physical nodes. There 
are two methods for it. 

a) The experimenter installs OS and application software on 
one physical node. This process is making a template 
diskimage of the experimental node. After that, experimenter 
distributes that template diskimage to other physical nodes. 
Here, SpringOS has function, which distribute that template to 
other nodes. 

b) The experimenter creates network boot OS image and 
installs OS and application on one physical node. After that, it 
is booted by network boot. Network boot means diskless boot 
by network services. Most poplar technology is Preboot 
Execution Environment(PXE)[13] Boot. All of StarBED 
physical nodes have network interface card which includes 
function of PXE Boot. 

2) Network Configuration 
The experimenter needs target network topology for the 

experiment. In StarBED, the experimenter can configure the 
network topology by VLAN without changing the physical 
topology. In addition, SpringOS can configures VLAN 
settings of switches for the experiment environment. 

3) Scenario Driving 
After the construction of experiment environment, 

experimenter can experiment on the environment. SpringOS 
has function of experiment execution which utilizes scenario. 
Scenario consists of command lists and timing triggers. 
SpringOS distributes scenarios to each experiment node, and a 
scenario execution program running on the experiment nodes 
executes the commands in the scenario. This mechanism can 
also synchronized scenario execution which utilizes passing 
messages. 
 

D. Large Data Distribution 
One of major roles of ESS is distributing certain OS images 

and installing them on each node. SpringOS, for instance, uses 
FTP to transfer the data. SpringOS version 1.5 is able to 
distribute an 870 MB disk image among 230 nodes in about 
2,200 seconds [14]. The elapsed time for 50 nodes is 1,000 
seconds and it increases if the number of nodes increases. That 
paper [14] describes the reason as “FTP server-side problem, 
including NIC’s capacity or HDD reading speed”. Many 
research projects in recent years have conducted experiments 
using a few hundred physical nodes in StarBED. Some 
research projects have also conducted experiments with over 
10,000 virtual nodes in StarBED using virtualization 
technologies such as KVM and Xen [15]. The disk image 
distribution elapsed time therefore significantly affects 
construction of the experiment environment. 

Frisbee [16] designed and evaluated a scalable disk 
distribution system. They conducted an experiment to 
distribute an OS disk image to 80 nodes with reliable multicast 
for evaluating system writability. For that experiment 
environment, the sender server interconnected with client 
nodes via 100 Mbps Ethernet. Gigabit Ethernet has become 
popular in recent years. StarBED thus also utilizes it for all 
experiment nodes and utilizes 10 Gigabit Ethernet in some 
parts of the management network. The writing speed of the 
common computer’s hard disk is slower than Gigabit Ethernet, 
so disk writing speed can lead to a bottle-neck in large data 
distribution. Common computers, operating systems and 
applications have a buffer for disk writing, but its 
effectiveness is limited by memory size, so we need to 
validate the effect of the buffer on large data distribution. 

III. CATEGORIZING THE ERRORS 
This section describes issues of ESS’s operation failure 

when constructing the experimental environment on StarBED. 
The experimenter encounters various troubles while 
constructing the environment. At first, we describe major 
troubles when constructing the experimental environment on 
StarBED. Figure 1 shows the number of successfully booted 
nodes in startup nodes using PXE boot in StarBED. Table 2 
lists experimental condition, and Table 1 lists experiment node 
specifications. 

This is a basic performance in StarBED facilities because 
this experiment does not use any failure recovery mechanism 
and operation except SpringOS’s mechanism. There are few 
nodes which can’t startup normally in the case of over 50 
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nodes. Furthermore, in the case of 230 nodes, the result  
describes the success rate in wide range. 

There are three reasons to get such result: (1) lacking 
reliabilities of RMI, (2) management service failure such as 
collision of path to management server (3) network service 
overload when starting physical nodes. 

A. Reliability of RMI 
The RMI problem appears when starting physical nodes. In 

most cases, there are two problems; (1) no response, (2) 
difference between response from RMI and actual statement 
of RMI. Moreover, there is a case that sender disconnected 
from RMI abnormally when RMI with type of connection 
oriented communication. It is also categorized as RMI 
problem. In this case it is likely caused by packet loss or a 
certain kind of bugs happened in hardware overload. Usually 
it is possible to recover by retrying the same process. 

By contrast, even though network is not overloaded, there is 
also the case that error is occurred. Moreover, the case of 
difference between response from RMI and actual statement 
of RMI occurs when the experimenter or ESS sends many 
commands in a short period. These problems are likely caused 
by design failure of RMI hardware. This phenomenon occurs 
in three products of different manufacturers that we are using. 
We define this phenomenon as synchronization problem 
between software and hardware in RMI product. It seems that 
RMI product needs an interval to change the hardware state 
after receiving command. When the experimenter executes 
next command, the above phenomenon does not appear by 
setting the intervals for 10 seconds or more since last 
command. 

B. Problems of Management Server 
The problems of management server are experimental 

management server errors that nodes can’t be serviced such as 
DHCP and NFS. It is a matter of a service software error, 
which is not a hardware error. When the experimenter controls 
the experimental nodes, the above phenomenon does not 
appear by controlling the intervals or distributing service 
requests to the servers. 

Hence, We proposed and implemented a mechanism called 
mount point redirection, as shown in Figure 2. All experiment 
nodes are installed on the NFS server in this mechanism. In 
addition to insert a few seconds as an interval between each 

booting command. Due to this, there are nodes that already 
have same data which are required. When boot experiment 
nodes, manager node redirect NFS server address which 
already have requested data to request node. When many 
nodes request same data, this mechanism makes NFS server 
load distribution. 

C. Problems of Hardware 
The problems of hardware are errors occurred when the 

hardware detects the breakdown such as CPU error, power 
supply trouble and disk trouble. These errors can be tentative 
or not. The experimenter can recover the tentative error by 
restarting the system. The experimenter needs to judge if it is 
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Figure 1: Number of Successfully booted nodes

conducted experiments using a few hundred physi-
cal nodes in StarBED. Some research projects have
also conducted experiments with over 10,000 virtual
nodes in StarBED using virtualization technologies
such as KVM and Xen [15]. The disk image distribu-
tion elapsed time therefore significantly affects con-
struction of the experiment environment.

Frisbee [16] designed and evaluated a scalable
disk distribution system. They conducted an experi-
ment to distribute an OS disk image to 80 nodes with
reliable multicast for evaluating system writability.
For that experiment environment, the sender server
interconnected with client nodes via 100 Mbps Eth-
ernet. Gigabit Ethernet has become popular in recent
years. StarBED thus also utilizes it for all experiment
nodes and utilizes 10 Gigabit Ethernet in some parts
of the management network. The writing speed of the
common computer’s hard disk is slower than Gigabit
Ethernet, so disk writing speed can lead to a bottle-
neck in large data distribution. Common computers,
operating systems and applications have a buffer for
disk writing, but its effectiveness is limited by mem-
ory size, so we need to validate the effect of the buffer
on large data distribution.

3 Categorizing the Errors
This section describes issues of ESS’s operation fail-
ure when constructing the experimental environment
on StarBED. The experimenter encounters various
troubles while constructing the environment. At first,
we describe major troubles when constructing the ex-
perimental environment on StarBED. Figure 1 shows
the number of successfully booted nodes in startup
nodes using PXE boot in StarBED. Table 2 lists ex-
perimental condition.

This is a basic performance in StarBED facilities.

Table 1: Node Specifications
Server CPU Memory Disk OS
TFTP/
DHCP

Xeon
E5405 2GB - Solaris 10

NFS
Xeon
E5405 16 GB - Solaris 10

Group H
Xeon
X3350 8 GB

SATA
160 GB -

Table 2: Experiment Conditions
Node Group Group H
No. of Nodes 1, 50, 100, 150, 230

Boot Type PXE Boot
OS Debian Linux Custom
OS Image Size 193MB

No. of NFS Servers 1
No. of TFTP
&DHCP Servers 1 (2 in 1)

Because this experiment does not use any failure re-
covery mechanism and operation except SpringOS’s
mechanism. There are few nodes which can’t startup
normally in the case of over 50 nodes. Furthermore, in
the case of 230 nodes, the result describes the success
rate in wide range.

There are three reasons to get such result; (1)
lacking reliabilities of RMI, (2) management service
failure such as collision of path to management server
(3) network service overload when starting physical
nodes.

3.1 Reliability of RMI

The RMI problem appears when starting physical
nodes. In most cases, there are two problems; (1) no
response, (2) difference between response from RMI
and actual statement of RMI. Moreover, there is a case
that sender disconnected from RMI abnormally when
RMI with type of connection oriented communica-
tion. It is also categorized as RMI problem. In this
case it is likely caused by packet loss or a certain kind
of bugs happened in hardware overload. Usually it is
possible to recover by retrying the same process.

By contrast, even though network is not over-
loaded, there is also the case that error is occurred.
Moreover, the case of difference between response
from RMI and actual statement of RMI occurs when
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the tentative error or not by trying to restart the system. If it is 
not tentative error, the experimenter decides to exclude that 
node from experimental nodes. It can decrease the number of 
physical nodes for the experiment. Therefore the experimenter 
needs to construct a certain numbers of spare nodes in advance 
in order to replace broken nodes with them. 

IV. RMI FAILURE RECOVERY 
In section III.A, we describe reliability of RMI. Current 

RMIs do not have enough reliability in large-scale network 
testbed because it utilizes UDP packet for communication and 
so on. Nevertheless RMI is most basic and important feature 
for ESS. Hence we should enhance the reliability of RMI 
control. 

A. RMI Command Procedures 
When controlling the RMI, the experimenter needs to 

consider the following points as described in section III.A. 
• Retry when the connection terminates abnormally. 
• Set enough time for message interval. 
• Confirm node’s statement to same as operation 
command. 
We propose simple mechanisms based on these conditions. 

Figure 3 shows state transition diagram of operation “Get 
Power Status”. It retransmits when sender gets no response or 
connection error occurs. However, it resends the message until 
three times because the reactivation process will not end if 
trouble is not temporal. This diagram will be same for “Power 
Reset”. Moreover, manager server manages the electrical 
power control and start confirmation of a physical node. Next, 
in order to confirm if operation works as per command, the 
procedure to check state variation of power supply in physical 
is necessary. Figure 4 shows state transition diagram “Set 
Power On”. At first, it confirms the power state of target node. 
If the power statement is off, it sends command of “Power 
On”. After send command, it reconfirms the power state of 
target node, and resend command of “Power On” again if the 
power state is off. But, it resends until three times too due to 
same reason of “Get Power Statement”. Since the operation 
of changing power state is same in both “Set Power On” and 
“Set Power Off”, the diagrams will be the same. 
 

V. MULTICAST DATA DISTRIBUTION 
In case of the experimenter utilize virtualization technology 

in his experiment. The physical nodes are virtual machine host 
nodes, and the experimenter must distribute a virtual node disk 
image to these nodes. If all virtual machine host nodes have 
booted normally, the NFS service experiences a bottleneck in 
distribute large amounts of data such as virtual node disk 
images to a large number of physical nodes, so we proposed 
using reliable multicast for large amounts of data distribution 
in the testbed. Thus we conducted data transfer experiments. 
In this work, we used “Makuosan”, a software “Multicast 
All-Kinds of Updating Operation for Servers on Administered 
Network”[19], in the experiment. This supports reliability by 
NACK-Based retransmission. Figure 5 shows the result of the 
experiments, Table 3 lists experiment conditions, and Table 1 

lists experiment node specifications. The NACK-based 
retransmission method has a problem of NACK implosion, so 
the required time becomes longer while the number of receiver 
nodes increases. The sender node receives a burst 
retransmission request from receiver nodes in this experiment. 
This is a serious problem and we are interested in the reasons 
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5 Multicast Data Distribution
In case of the experimenter utilize virtualization tech-
nology in his experiment. The physical nodes are vir-
tual machine host nodes, and the experimenter must
distribute a virtual node disk image to these nodes. If
all virtual machine host nodes have booted normally,
the NFS service experiences a bottleneck in distribute
large amounts of data such as virtual node disk images
to a large number of physical nodes, so we proposed
using reliable multicast for large amounts of data dis-
tribution in the testbed. Thus we conducted data trans-
fer experiments. In this work, we used “Makuosan”,
a software “Multicast All-Kinds of Updating Opera-
tion for Servers on Administered Network” [19], in
the experiment. This supports reliability by NACK-
Based retransmission. Figure 5 shows the result of

Table 3: Experiment Conditions
Node Group Group H

No. of Sender Nodes 1

No. of Receiver Nodes 1, 50, 100, 150, 230

Distribute Data Size 2.7 Gbytes

Experiment Node’s OS Debian Linux

Makuosan Version 1.3.1

Disk

Disk

1Gbps

1Gbps

Sender

Receiver

Sender
Program

Disk

Receiver
Program

Disk Disk

Receiver
Program

Receiver
Program

Receiver
Program

Figure 6: Flow of Multicast Data Transfer

the experiments, Table 3 lists experiment conditions,
and Table 1 lists experiment node specifications. The
NACK-based retransmission method has a problem
of NACK implosion, so the required time becomes
longer while the number of receiver nodes increases.
The sender node receives a burst retransmission re-
quest from receiver nodes in this experiment. This is
a serious problem and we are interested in the reasons
behind it.

5.1 Analysis of the Bottleneck
Packet loss usually occurs at a low rate in a high-
performance and closed network such as StarBED. As
mentioned above, the sender node often receives burst
retransmission requests from receiver nodes. Accord-
ingly, there are some bottlenecks in this type of net-
work environment. We therefore conducted some ex-
periments to analyze the reasons for this.

5.1.1 Reasons for Retransmission Occurrence

Packets are obviously dropped on the path between
sender and receiver due to a burst retransmission re-
quest, so we experimented on analyzing the packet
loss point on the path between sender and receiver
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behind it. 

A. Analysis of the Bottleneck 
Packet loss usually occurs at a low rate in a high- 

performance and closed network such as StarBED. As 
mentioned above, the sender node often receives burst 
retransmission requests from receiver nodes. Accordingly, 
there are some bottlenecks in this type of network 
environment. We therefore conducted some experiments to 
analyze the reasons for this. 

1) Reasons for Retransmission Occurrence 
Packets are obviously dropped on the path between sender 

and receiver due to a burst retransmission request, so we 
experimented on analyzing the packet loss point on the path 
between sender and receiver nodes, as shown in Figure 6. This 
shows the flow of IP multicast data transfer. The sender node 
interconnects with the network switch by 1 Gb Ethernet, and 1 
Gb Ethernet integrates the switch with each receiver node. 
Packets are sent from sender nodes to receiver nodes via link 
local multicast. The total transfer size is 100 MB. There are 90 
receiver nodes and only one sender node. Table 3 lists the 
experiment node specifications. A sent packet includes: field 
of data length (4 bytes), field of packet sequence number (4 
bytes), and variable field of data. The length of the data field 
is written in the field of data length, and its longest length is 
1400 bytes. The sender program is written in Ruby. The 
sender program has high data performance of about 800 Mbps. 

The measurement points include the sender node’s upstream 
mirror port and the receive node’s interface. The tcpdump 
program captures data. As results we found that packet loss is 
not observed at the mirror port. The switch did not drop the 
packets for packet switching at over 800 Mbps of throughput 
utilizing unicast UDP packets. 

Figure 7 shows the experiment’s results. The Y 1 axis 
shows the received packet sequence number, and the Y 2 axis 
shows the packet loss rate. The X axis shows time transition. 
We do not show the packet loss of the sender mirror port in 
the graph because it is not observed. We confirmed the basic 
performance of this experiment environment. The sender sent 
all packets for about 1 second. The receiver nodes received the 
packets with over a 90% packet loss rate with 0.1 seconds 
delay until the sending process ends. The sequence number of 
all packets received by 90 nodes was also the same. This result 
seems to show the major reason for packet loss in IP multicast. 
A specification or configuration issue of the network switch 
can, however, cause this result. 

2) HDD Writing Speed 
The next reason for the bottleneck is the transfer speed to 

write to or read the disk if the network can pass the traffic at 
up to full speed. As shown in Figure 6, the sender node has a 
local disk (HDD), as do all receiver nodes. The sender 
program reads transport data from the local disk. The receiver 
program writes received data to the local disk. The writing 
speed of an HDD or any other storage medium is generally 
slower than the reading speed. The receiver program will 
continue dropping packets if the data receiving speed is faster 
than the disk writing speed. The disk writing speed also differs 
due to the disk position of data writing. 

Modern computers have a buffer for disk writing due to the 
buffer writing performance from the slowness of the disk 

writing speed. We therefore experimented with two types of 
scenarios to analyze the effect of the disk writing speed. The 
first experiment was for analyzing the effects of disk writing 
speed by the writing buffer and difference of disk writing 
speed due to the position of data writing. We utilized one node 
of StarBED Group H in this experiment and using Python 
wrote a simple program for disk writing. Table 1 shows the 
node specifications. The program write timestamp is acquired 
by timeObject.time() with dummy data to the local disk. The 
data length is 1472 Bytes one time and 8 GB total data size. 
The next line of fileObject.write() is fileObject.flush() in the 
program due to analyzing the basic performance of the disk. 
We divide the hard disk into 10 partitions for changing the 
writing position. The program writes 10 times in each 
partition. 

Figure 8 shows the experiment results. The Y axis shows 
the disk writing speed. The X axis shows the time (in seconds). 
There are peaks of disk writing speed until 15 seconds. This is 
the effect of a low-layer buffer such as the cache in the HDD. 

The second experiment was for writing the received packets 
to the local disk in order to analyze the effect of the disk 
writing speed. We utilized two nodes in this experiment as 
sender and receiver. These are from Group H, as shown in 
Table 1. The sender program sends 8 GB data by using unicast 
UDP packets to the receiver. The receiver program writes the 
received data on the local disk. The sender has a function of 
flow control for transport speed. We measure written data 
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blocks on the receiver’s local disk by three bandwidth 
conditions. 

Figure 9 shows the experiment results. Each point 
represents the average of 10 experiments over an 80 MB 
window. This figure also only shows 4 GB in front of 8 GB 
sending data. The Y axis shows the packet writing loss rate. 
The X axis shows the transfer data position. The loss rate of 
written data is low and almost unchanged, and even the sender 
program sends data at 100 Mbps and 300 Mbps. In contrast, 
there are elbows of writing loss rate in the case of 900 Mbps, 
so the writing loss rate is over 60% after the elbow. 

Figure 10 shows the average and standard deviation of 10 
times in the case of 900 Mbps. The writing loss rate is 
different at each point in time, which suggests that writing loss 
data block is different in each node. 

These two experiments identified the shift of throughput 
during large data distribution. In addition, these experiments 
also identified the difference between disk writing loss and 
packet loss in network switch. Data block of disk writing are 
different block of each node. 

3) Disk and Network Aware Data Distribution 
We proposed utilizing reliable multicast so that large data 

files such as virtual node disk images are distributed to 
experiment nodes. We describe the requirements of reliable 
multicast for large data distribution in a testbed. These are as 
follows: 

• Disk speed and network aware congestion control 
mechanism; 

• Multi-network sibling recovery mechanism; 
These mechanisms will contribute to optimizing large data 

distribution in a centralized testbed. 

VI. RESOURCE USAGE ESTIMATION 
In previous sections, we described technical requirements 

for failure recovery and inhibition. In this section, we discuss 
ESS functions that is needed for huge-scale experiment 
environment which utilizes virtualization technology. The 
experimenters take advantage of virtual machines in network 
testbed to expand the scale of experiment environments. 
Expanding the scalability of experiment environments using 
virtual machines requires multiplexing much more virtual 
machines by appropriately allocating resources onto each 
virtual machine. 

A. Resource Allocation  
In huge-scale experiments, the experimenter need to 

consider resource allocation including CPU, memory, network 
resources and so on. Generally, the role of several experiment 
nodes are different. Consequently, it will be excess or 
deficiency of resources if the experimenter allocates resources 
to all virtual machines evenly. Thus the experimenter 
describes enough quotas of resources into virtual machine’s 
configuration files for each machine. But in a huge-scale 
experiment environment, the experimenter must describe 
many configuration files and distribute them to each 
experiment node. 

Hence we proposed mechanism for resource allocation from 
one configuration file in our previous work[22],[23]. In this 
implementation, the experimenter can describe resource 
information of each virtual machine by XML format. On the 
other hand, the experimenter must decide its quotas of 
resource allocation for each virtual machine by 
own-experience. 

B. Roles of ESS 
There are researches for resource provisioning to allocate 

the optimum resources without experimenter-experience. 
Deng[24] proposed estimation approach for bgpd by 
equation-of-state model of BGP update message. 
XENebula[15] proposed measurement based memory resource 
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allocation method. 
Whereas, these approaches depend on several target 

implementation. Roles of ESS is to support for every 
experiments; therefore, required features for ESS should only 
support resource allocation. Hence ESS should have 
mechanism to describe the resource allocation simply such as 
our previous work[22],[23]. In addition ESS should also have 
resource state logger in experiment nodes to support the 
experimenter’s configuration of resource quotas. 

VII. CONCLUSION 
This paper cites technical requirement for ESS to support 

huge-scale experiment environment which utilize 
virtualization technology. We categorize the errors 
experimenter encountered. As a result, we describe the needs 
for reliability of RMI, server load distribution technique and 
traffic efficiency. We proposed three technical requirements 
for these problems: (1) implementation of NFS server mount 
point redirection for NFS server load distribution, (2) simple 
state transition diagram for reliable communication with RMI 
and, (3) disk-speed and network aware large data distribution 
mechanism which utilizes reliable multicast for traffic 
efficiency. 

In addition, we cite the issues of resource usage estimation 
for virtual machine, and describe the need for simple 
description mechanism of resource allocation. Furthermore we 
also describe the need for resource state logger in experiment 
nodes to support experimenter’s configuration of resource 
quotas. 

These mechanisms and functions of resource allocation will 
contribute to optimize reliable construct of huge-scale 
experiment environment and conduct their experiments in 
centralized testbed. 
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