

Abstract— Dynamically reconfigurable systems can provide wide-
ranging support to processors as an adjunct to their usual Instruction
Set Architectures. We describe the basic architectural features of an
out-of-core dynamically reconfigurable fabric having predictive
reconfiguration. The Out-Of-Core Reconfigurable Fabric (OOCRF)
is intended for eventual extra-ISA support in a multicore architecture.
In this paper we focus on the basic architectural structure of the fabric
as it relates to a single core and give some simple examples of its use
in (multi) register to (multi) register vector processing. In particular
we introduce the notion of a composite configuration block and show
how prefetching of configuration controls can be tied to standard
instruction stream speculation. We also consider certain issues that
can arise when a Dynamically Reconfigurable Fabric (DRF) is shared
in a multicore system. We briefly describe three architectures
supporting different multithreading models, and describe the role of
authenticating locks for providing some form of hardware-based
secured access to the DRF.

Keywords— Authenticating Locks, Dynamically Reconfigurable

Fabric, Efficiency, and Configuration Caches.

I. INTRODUCTION
Dynamically Reconfigurable Fabric (DRF) is a hardware
device which can be configured dynamically to provide
additional support to processors by providing a

mechanism for implementing an algorithm in hardware. In this
paper we are concerned with certain issues which arise when
such a DRF is to be provided to a multicore system as an out-
of-core service. We accept that we have control over the core's
Instruction Set Architecture (ISA) and thus are able to specify
a subset of the ISA which targets the DRF and configure any
additional hardware support we deem necessary. We are
interested in the design of such a DRF under a number of
different circumstances, particularly as such a design would
relate to the standard multithreading models (coarse, fine and
simultaneous). Controlling access to the DRF is a particularly
interesting problem, and in this paper we describe one such
approach based on a simple authenticating lock mechanism.

Generally, the modern reconfigurable architecture emerged
as a result of the development of the Field Programmable Gate
Array (FPGAs), and they remain a popular choice to be used
with processors in reconfigurable systems [1] because of their
cheap price, flexibility, and programmability [2]. In [3], there
is a description of various approaches to reconfigurable
computing emphasizing the adaptability of these systems.

M. M. Abu-Faraj is with the Department of Computer Information
Systems, The University of Jordan, Aqaba, 77110 Jordan (e-mail:
m.abufaraj@ ju.edu.jo).

However, the tradeoff between flexibility and functionality
usually indicates that the improvements are not as high as they
can be in Application-Specific Instruction Set Processors
(ASIPs) [4] or Application-Specific Integrated Circuits
(ASICs) [5].

A discussion of the comparative pros and cons between the
general purpose CPU, the ASIP or ASIC and the intermediate
DRF can be found in [4], [6]. Clearly, there is a cost-
performance tradeoff in deploying a DRF in place of (e.g.) an
ASIC, since it likely that the ASIC will be faster for any given
algorithm than the DRF and will likely have a lower gate
count. Formalizing a cost/efficiency metric for DRFs is itself
an interesting area and one we turn to (albeit very briefly) at
the end of this paper.

Our concern in paper is with the exposition of the initial
architectural issues subtending an out-of-core dynamically
reconfigurable fabric (OOCRF) which will ultimately be
shared by a number of risc (or post-risc) cores (although here
we ignore all multicore issues). The intention is to provide
dynamically-reconfigured assistance to the cores, which we
take to be OOO in design, having a simple core ISA along the
lines of an Open RISC core [7] with additional simple
extensions to this ISA in support of the OOCRF. The OOCRF
itself we envisage as being essentially a load/store architecture
based around vectorial register-register functions i.e., such that
OOCRF supports computations of the form 𝑅!"# = 𝑓!𝑅!"
where 𝑅!"# and 𝑅!" are vectorial registers and the 𝑓! belong to
a restricted class of operations. Specifically, we do not
perceive the OOCRF as being an essentially general-purpose
dynamically reconfigurable fabric (and therefore the OOCRF
lacks some of the more general features of the FPGA).
Instead, two issues motivate us: the role of the OOCRF in
multimedia, imaging, visualization and simulation with (e.g.)
specific interest in quasi-DSP applications, and the desire to
maximize configuration efficiency 𝐸! .

II. RELATED WORK
Dynamically reconfigurable architectures have a long

history both as stand-alone alternatives to classical static
architectures or as assistive architectures [8], [9] and, as befits
the maturity of the subject, have a long and impressive
literature which is too large to be other than sampled here, and
so we restrict our attention to three representative examples
which have a bearing on this work.

Interest in dynamically reconfigurable systems has been
renewed with the advent of large-scale reconfigurable FPGAs
and we now see a variety of reasons for their deployment
including such diverse applications as array processors for

Design Considerations of a Large Granule
Dynamic Reconfigurable Fabric

Mua’ad M. Abu-Faraj

A

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

116

wireless broadband technologies [10], cryptography [11] and
more embedded applications (such as automotive applications
[12]).

Reconfigurable computing has found applications in a wide
variety of areas [13] and as a result has a large literature dating
back over decades. It is impossible to cover the field
adequately in a paper of this size, and so we restrict our
attention to three representative examples, which have a
bearing on this work.

Chimaera [14] is an example of a reconfigurable system that
works together with a host processor as a tightly coupled unit,
with direct access to its register file in order to decrease
communication time. The reconfigurable fabric consists of
FPGA logic designed to support high-performance
computations. Hence, its reconfiguration granularity is fine.
The reconfigurable array is connected to a MIPS R4000
processor. In [15] GARP was introduced as a reconfigurable
system attached to a MIPS II processor as a co- processor. It
can also be considered as a loosely coupled Reconfigurable
System. GARP also uses FPGA logic for the reconfigurable
fabric, so it can again be considered as a fine grained
reconfigurable array. REMARC [16] consists of a
reconfigurable unit coupled to a MIPS II ISA based RISC
machine. REMARC is arguably a loosely coupled
reconfigurable architecture. We began our design based on the
REMARC array structure, although we rapidly diverged from
the REMARC system.

III. CORE MICROARCHITECTURE OVERVIEW
The core microarchitecture is shown in Fig. 1 below:

Fig. 1 Core Microarchitecture

The architecture is schematically shown as a standard Out-

Of-Core (OOO) superscalar core [17], [18] with an in-order
front end and completion/retirement under control of a reorder
buffer. Two components associated with the OOCRF are
shown in core (and should be considered as conventionally
dispatchable functional units within the core). The CMRS
(Configuration Manager Reservation Station) and ICCM (In-
Core Configuration Manager) present the OOCRF to the core,
and in some senses act as an in-core proxy for the OOCRF. As

shown later, the CMRS/ICCM pair are effectively simplified
load/store units, treating the OOCRF almost as an independent
component of the memory hierarchy. Interactions between the
OOCRF and the in-core ICCM as well as the
ROB/Completion manager are mediated by the OCCM (Out-
Of Core Configuration Control Manager) (see below).
Configuration control is driven into the OOCRF via the
Configuration Controller (CC) which sets up the data
pathways in the OOCRF corresponding to the current
configured function 𝑓 !. Finally, in the instruction fetch
pathway we have a configuration prediction mechanism
attached to the standard fetch pathway (Configuration/Prefetch
Manager) which attempts to prefetch configuration control
data for caching into the Configuration Control Cache which
is in turn associated with a small Configuration Control
Victim Cache (CCVC).

IV. OOCRF INSTRUCTION SET ARCHITECTURE
Interactions with the OOCRF are fundamentally those of a

load/store architecture (carrying conventional order
constraints). The core ISA sees the OOCRF as having three
ports: a set of in vector registers, a set of out vector registers
and a configuration control block (CCB) which is a data
structure defining both the configuration and timing.
(Although all examples configuration functions we show
below are combinatorial, there is no reason to so restrict the
OOCRF).

Under the current architecture, the data ports to the OOCRF
consist of two unidirectional vector register sets (srcVRF and
dstVRF) as shown in Fig. 2.

Fig. 2 OOCRF Register Architecture

Depending on the configuration set into the OOCRF, the

vector register file(s) appear as any (restricted) partition of
1024 (bits) relative to the elements {128,64,32,16,8} which
correspond to the data types complex double (𝐶!), complex
single/float double/int double (𝐶!𝐹!𝐼!), float single/integer
single (𝐹! 𝐼!), halfword fixed point (𝑓𝑃!) and byte (B). The
vector register files therefore correspond to a (full) data
transfer of 128 bytes, and we expect that vector data will be
cache block aligned, even when the cache line is less than 128
bytes. Data transfer from the memory hierarchy or processor
register files into or out of the vector registers is controlled by
the ICCM coordinating with the OCCM.

Equivalently, configuration control data must be transferred
from memory to the OOCRF CC (Configuration Controller)
via the OCCM. The situation here is somewhat different from
the straightforward vector register accesses, in that

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

117

configuration control data is cached by the
Configuration Control Cache (CCC) supported by

Configuration Control Victim Cache (CCVC) (see section V
below).

Notice that there is a direct path from the dstVRF to the
srcVRF. In a number of DSP applications we have been
exploring, we have noticed a number of occasions in which
consecutive functions apply to consecutive outputs i.e., the
frequent occurrence of composite functions of the form

𝑤 = 𝑓!(𝑓!!!(… 𝑓! 𝑣 …)) (1)
leading us to include the pushback instruction dstTOsrc below.

These considerations lead to a relatively straightforward
extension to the core ISA, with effectively eight new
instructions (there are error conditions not discussed here) of
the generic form:
LDCCM CCBi

LDCpCCM CCB1 of n
LDsrcVRF MpAddress
MVsrcVRF RFile
ExCfg
STdstVRF MpAddress
MVdstVRF RFile
dstTOsrc

--corresponding to the actions of loading the configuration
defined by the ith CCB (memory à CCM), loading the first
block of a composite CCB (see Section V below), loading the
source vector register file (memàsrcVRF), moving (copying)
core register data to the srcVRF (RFileàVRF), enabling
execution in the OOCRF, the respective dstVRF store
(memory) and copy (core registers) and the dstVRF to srcVRF
operation described above.

V. CONFIGURATION CACHES AND SPECULATION
A central thesis of our approach is that the OOCRF fabric

exhibit coarse-grained reconfiguration i.e. the reconfigurable
components are at the level of (relatively) sophisticated
functional units (floating point adders/multipliers, integer
adders/multipliers) rather than the fine-grained reconfiguration
(gates/CLBs) that can be found in FPGAs. Thus, although the
total gate count in the OOCRF is expected to be quite high,
configuration control (i.e., the designation of a functional path
from the srcVRF to the dstVRF via the OOCRF) essentially
boils down to data steering in 8,16,32 and 64 bit quantities
(the 128-bit complex double data type being only 2 64-bit
double floating point data types with complex arithmetic
explicit in the configuration control). Depending on the
density of the OOCRF and its component makeup, the data
steering size of the configuration control can be quite small.
Although not quite fully correct, data steering configuration
control can be thought of as that assignment of multiplexor
steering bits which enables the construction of a (possibly
sequential) path from srcVRF to dstVRF in the OOCRF. With
this in mind, a configuration control block (CCB), consisting
of the data steering block (DSB) and associated finite state
machine block (FSMB) are small relative to fine-grained
reconfigurable systems.

The notion that the reconfiguration fabric is coarse-grained
rather than fine-grained (FPGA- like) has a significant impact

on the strategy we use to prefetch and cache configurations.
Our situation is considerably simpler than the caching and
prefetching models described by Hauck and Li and colleagues
[19], [20], [21] which are suited for more general FPGA
environments. Specifically, unlike the Hauck-Li models, our
configuration control blocks (CCBs) are constant in size, and
therefore suffer no variation in load latency beyond that
caused by the memory hierarchy itself. Similarly, since our
reconfigurable fabric is coarse-grained rather than fine-
grained, our CCBs (depending on the coarse-grained fabric we
are considering) subtend few cache lines. Moreover, we do not
use the reconfigurable fabric itself to store the configurations;
since our fabric is not that of an FPGA, actual reconfiguration
time is not as significant as it is in the FPGA case. While we
admire the prefetching techniques described in [21], both the
static model (with explicit prefetch instructions) and the
dynamic models (pure and hybrid) are overly complex for our
requirements. In fact, we believe we can tie configuration
prefetching (and caching) to the standard instruction fetch
core, and thereby greatly simplify the associated prefetch
hardware (which is already mostly present in the IF stage of
the core pipeline). Finally, we note that since we prefetch to a
configuration cache and not to the configuration fabric itself, a
prefetch error for us is more akin to a data prefetch error than
an instruction stream prefetch error.

CCBs are therefore cached in the Configuration Control
Cache (CCC) and its associated victim cache (CCVC), with
the intention of prefetching CCBs preparatory to their use in
the OOCRF. Although data prefetching is important in
vectorial systems, it transpires that in composite vectorial
processes of the form 𝑤 = 𝑓!(𝑓!!!(… 𝑓! 𝑣 …)) given
previously, VRF register definition (load) from the core is the
exceptional load while VFR register definition from the
OOCRF destination registers is the more common srcVFR
load. Under these circumstances, the most costly miss is not
the data miss, but the miss on the required CCB for the k’th
function 𝑓!.

As shown in Fig. 1, we have tied configuration prefetching
to the instruction stream speculation mechanisms. To do this,
we introduce the concept of the composite CCB which is
simply the CCB described above together with a linking data
structure from CCB I to CCB i+1 in the composite chain.
Prefetching then reduces to attempting to ensure that as much
of the composite CCB is cached prior to any repeated
execution of the first functional configuration in the composite
sequence. One way to do this is to speculate on the prefetching
of the composite chain by associating composite chains with
the basic block that each composite chain appears in. We note
of course that configuration speculation is more closely akin to
data prefetching and, being non-binding, is only a
performance issue if the speculation is incorrect. Thus the
OCCM has no need of any form of speculative recovery
process.

As shown below in Fig. 3, the configuration prefetch
mechanism is tied to a conventional branch predictor, which
(in the case given) is a modified Yeh-Patt 2-level predictor
[22].

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

118

Fig. 3 Configuration Speculation

VI. GENERAL ARCHITECTURE CONSIDERATIONS
As indicated previously, we are concerned with sharing a

DRF in a multicore system. In fact, the actual structure of the
DRF (in terms of its core reconfigurable components) is of
little interest to us (at least for this paper); we are not
concerned if the basic reconfigurable entities are at the level of
the FPGA logic block or at the level of a REMARC-like
subprocessor. Perhaps the one area where the structure of the
DRF could become important would be in the relationship of
the DRF to the multithreading model the DRF best supports.
We argue (but concede opposing viewpoints) that there might
be three DRF architectures which would best suit each of the
coarse grained, fine grained and simultaneous multithreading
models. In a coarse-grained environment, it is not
unreasonable to assume that configurations swap in and out of
the DRF at about the granularity of the thread swaps, and so a
coarse- grained DRF might be deployed in multicycle activity
(e.g., in a functional transform such as a wavelet transform).
On the other hand, a fine-grained core architecture might
expect results from the DRF during the fine-grained quanta,
and so the DRF might be expected to host algorithms which
terminate in a few cycles at most (e.g., perhaps a round of an
encryption algorithm such as AES). By the same token, cores
supporting simultaneous multithreading might expect the DRF
to be able to return results within one or two cycles, and so the
DRF functionality might be more suited to simple ISA
extensions (e.g., an instruction to swap bytes and XOR the
swapped lower byte with a mask). To this end we propose
three increasingly complex models for the DRF, each of which
is a superset of the preceding model in the sense that anything
the preceding model could accomplish could be accomplished
by the succeeding model but at greater cost and lower
efficiency (see Section VIII). In this paper, we are concerned
principally with the sharing mechanism as it relates to these
three models. We began our models with a simple example of
an Out-Of-Core DRF supporting a single core [23].

The position of the DRF relative to the processor dictates to
a large extent the protocols for accessing the DRF in a shared
environment. Evidently, an in-core DRF (i.e., a DRF designed
as an in-core functional unit) is not sharable between cores. At
the other extreme, one could place the DRF out in the I/O
space, to be configured and have data written to and read from
it as if it were an I/O device (e.g., as an FPGA might get
attached). Sharing protocols (access to all or part of the DRF)
could then be devolved to the operating system, and rogue

access could be inhibited in the usual way (e.g., by requiring
the processor be in a supervisor mode). The drawback here is
that long access times would be involved in accessing the
DRF via the operating system which mitigates against its use
as an ISA extension tool. (Evidently, if the DRF is conceived
as supporting very long- haul processes (hundreds to
thousands of cycles, such as supporting massive data
encryption) then the cost of routing via the operating system
no longer counts). On the other hand, if access to the DRF at
(or near) single-cycle processor core speeds is desired, then
the DRF must be brought closer to the processor cores and
outwith the control of the operating system. In a sense, the
DRF can be thought of as having a position relative to the
cores as a shared (L2/L3) cache might have (although they are
different architectural entities). We refer to such a DRF as an
Out-Of- Reconfigurable Fabric (OOCRF), and an example of
such a design for a single- core system can be found in [23].
This now raises the issue of access protocols to the DRF
which must be implemented by the DRF itself.

The reason we propose all three models below (rather than a
single encompassing model) is driven by the design goals of
the cores together with the cost/efficiency of the DRF itself.
Every gate in the DRF not dedicated to computation (i.e.,
every gate in the DRF dedicated solely to the provision of
dynamic reconfiguration or to (e.g.) access controls) is a gate
which reduces the overall efficiency of the DRF relative to a
single dedicated circuit performing the same task (see Section
VIII below). If the cores are designed as coarse-grained
multithreading systems, the increased cost and lower
efficiency of a fabric which can support simultaneous
multithreading is unwarranted. An example of a DRF
functional block is given in Fig 4 below. Again we stress that
the actual design of such a block is of less importance to us
than the issues subtending the sharing of such blocks, but the
simple model shown in Fig. 4 allows us to concretize certain
aspects of the sharing models of Section VII. We see the basic
sequence involved in using a DRF (or part thereof) as follows:

• Obtain permission to access (all or part of) the DRF;
• Configure (all or part of) the DRF access has been

granted to;
• Load data into the DRF;
• Issue an ENABLE command;
• Read data from the DRF on completion of the

algorithm;
• Unlock that part of the DRF permission had been

granted for.

 Throughout the above steps, we assume (see Section
VII) that access to the DRF is gated based on appropriate
permission having been granted. We now look at the
above steps (other than obtaining access rights) in the
light of Fig. 4. Configuring the DRF means setting the
various data and control pathways to accomplish the
specific task requested. The architecture which supports
this is not shown in Fig. 4. I/O is done via uniquely
addressable staging registers which are available at both
the input and output. The relationship between registers
and components of the DRF can be steered using an input

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

119

(output) steering network. We are not concerned with
how a user of the DRF identifies that a process loaded
into the DRF has terminated; however, one simple
mechanism for determining if an n-cycle process has
completed would be the provision of read/writable count
down register decremented every clock cycle by the DRF.
The user would be expected to know (and load) the
correct number of cycles.

Fig. 4 Toroidally Connected DR Array with Common Data Bus

VII. MODELS
We consider three scenarios; where the cores are designed

to support coarse-grained multithreading, where they are
designed to support fine-grained multithreading, and where
they are designed to support simultaneous multithreading. In
all cases, we need to prevent collisions in the DRF either from
multiple threads under the same context or from threads
arising in different contexts. Referring to the actions in
Section VI above, we see that configuration, data loading and
unloading, enabling and unlocking are all areas where
collisions can occur. Since no OS support can be provided, the
DRF must provide at least basic support to avoid such
collisions.

Central to all models is the notion of the authenticating
lock. This is a hardware construct constructed within the
Locking Manager of the DRF with explicit ISA support in the
cores themselves. An authenticating lock is essentially a
multivalued semaphore where the granted value (here called
ID) is a unique ID assigned by the Locking Manager if access
to the requested resource(s) within the DRF has been granted.
The ISA (and the DRF) must support an atomic primitive of
the form:

RequestLock DRF_Resource, ID
where DRF_Resource is a DRF Resource identifier (or pointer
to a data structure containing a list of such resources – see

models 2A and 2B below). ID is a random integer returned by
the Locking Manager to the caller (generated in our models by
a Linear Feedback Shift Register(s) (LSFR) within the
Locking Manager). A sufficiently large LFSR (32 bits) is still
(gate wise) relatively inexpensive and although its use (below)
is not secure in any strict sense of that word, it would still
require an assailing process determined to circumvent standard
access protocols to the DRF to attempt to identify the ID
within a (relatively) large space of such IDs (2!-1 for an n-bit
maximum LSFR). Once an ID has been granted, all
subsequent accesses to the DRF must be gated by the Locking
Manager which checks the gating ID against the ID reported
by the requesting processors. Thus (for example), loading a
configuration into the DRF (in whole or in part) involves an
instruction of the form:

LoadConfiguration,Configuration,DRF_Resource, ID
where ID is the same ID provided to the process by the DRF.

For simplicity, we assume that the DRF consists of a
toroidally-connected array of elements of the form given in
Fig. 4. I/O to/from the array elements is gated via a Common
Data Bus, while inter-element connectivity is permitted by
cardinal-neighbor connections. As holds for the standard I/O,
inter-element I/O can only be set up provided the Lock
Manager has released the appropriate locks to the requesting
process.

A. Model 1
Model 1 is the simplest model, where single cores have total

access to the DRF at any one time, as shown in Fig. 4. Here, a
single global lock controls all access to the entire DRF. This
model is best suited for coarse-grained multithreading, which
means only one processor has access to the DRF. Thus our
assumption for this model is that one processor (thread
context, see below) has total access to the DRF for the
duration of a coarse-grained swap quantum (see Section VI).
While this model allows one processor to access the DRF, it
can be simply extended to permit multiple threads from a
single core to access the DRF under a [<lock by core> <lock
by thread>*] protocol. The Lock Manager here merely has to
track one lock for the entire system, and is thus simpler and
cheaper than the Lock Managers in the remaining two models
below.

B. Model 2A
Models 2A and 2B differ only in their degree of complexity

relative to the Locking Manager. The architectural argument
for the distinction between them relates again to the threading
models; in case 2A, we assume fine-grained multithreading,
and thus fine-grained use of the DRF. This leads us to assume
that the DRF should be partitionable into large subsets to
accommodate the extent of DRF resources that a process
completing in 10s of cycles might need. In model 2B, we
assume simultaneous multithreading, and thus we expect
processes in the DRF to execute only for a few cycles at most
and so we permit even finer partitioning of the DRF.
Otherwise the models coincide. It will be clear at the end that
Model 1⊂ Model 2A ⊂ Model 2B. Fig. 2 (Model 2A) shows a
DRF shared between 4 different processes (thread contexts)
with the Lock Manager controlling access on a per-row basis.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

120

Fig. 5 Model 2A

C. Model 2B

Fig. 6 shows the architecture of model 2B. Here, the
partitioning granularity and locking granularity are at their
finest, with concomitant increases in complexity and cost and
decrease in efficiency. In this model the processor locks only
the exact number of logic blocks it needs to execute the
application assigned to it. Here, each logic block has an
associated lock (and so the locking is at the finest granularity
possible) and processors can request either specific groups of
logic blocks, or (with significant increased complexity)
specific patterns of grouping of logic blocks. To see the
difference, note that a specific grouping might be “blocks (1,1)
(1,2), and (1,3)” while a specific pattern might be “any three
neighbor-connected blocks in a row”.

Architecture 2B raises (in general) the interesting possibility
of dynamic re-assignment within the DRF i.e., the re-mapping
of assigned subsets of blocks to new assigned subsets of
blocks in such a way as to preserve the requested
communication topology of the original assignment but in
addition permitting a new assignment to be layered into the
DRF. This is (generally) a difficult problem related to the
graph isomorphism problem.

Fig. 6 Model 2B

VIII. EFFICIENCY METRICS
Usually, the performance of a dynamically reconfigurable

system is measured against a particular algorithm or a suite of
such algorithms which have been implemented on the DRF.
Thus, one might compare the speed with which Algorithm A
runs to completion on a CPU (ASIC/APIC) against the DRF.
This does not serve to justify our argument that different
models of a DRF might be appropriate for different
multithreading architectures, and so we refer to a simple
efficiency measure for DRFs we introduced in [23]. Here, the
efficiency 𝐸! , can be defined as follows:

𝐸! =
!!

!!!!!
 (2)

where 𝐺! is the gate count associated with functional
components in the DRF and 𝐺! is the gate count associated
with components in the DRF whose only role is enabling
reconfiguration. Clearly, Ec relates the overall cost of the DRF
against its purely support infrastructure. When the granularity
of the DRF elements is fine (on the order of a few gates/logic
blocks) increasing the partitionable complexity of the DRF
(Model 2B) can have catastrophic effects on the efficiency.
For an 𝑛×𝑛 array-connected DRF as shown in Fig. 4, Fig. 5,
and Fig. 6, the partition complexity has order 𝑂 1 , 𝑂 𝑛 , and
𝑂 𝑛! respectively for models 1, 2A and 2B, and so the
impact on the efficiency above varies as 𝑂 1 , 𝑂 𝑛 , and
𝑂 𝑛! respectively. For constant 𝐺!=10 and 𝐺!=5, this effect
is shown in Fig. 7. Note that Models 1 and 2A are
asymptotically equivalent, while Model 2B has a constant
efficiency (losing the gains accrued by Models 1 and 2A by
virtue of its quadratic partition complexity).

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

121

Fig. 7 Efficiency for the 3 Models

IX. CONCLUSION
In this paper we have described the basic architectural

structure of an out-of-core reconfigurable fabric organized at a
coarse-grained level of configuration granularity interacting
with the OOO core as a load-store architecture. Critical parts
of the architecture are motivated by the observation that in
certain DSP applications for which the reconfigurable fabric
was initially considered the sequence of configuration events
followed a composite rule. Thus the architecture supports
direct remapping of its destination to source vector registers,
and in particular, the notion of composite configuration block
prefetching tied to instruction speculation is a direct result of
this observation. We have also demonstrated 3 DRF
architectures suitable for shared deployment in a multicore
system and shown how a simple access protocol for these
architectures can be provided using an authenticating lock. We
justify the architectural models by appealing to a simple
efficiency metric.

REFERENCES
[1] R. D. Wittig, "OneChip: An FPGA Processor With Reconfigurable

Logic," in IEEE Symposium on FPGAs for Custom Computing
Machines, 1995, pp. 126-135.

[2] M. B. Gokhale and P. S. Graham, Reconfigurable Computing:
Accelerating Computation with Field- Programmable Gate Arrays:
Springer, 2005.

[3] L. Carro and A. Fi, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques: Springer, 2010.

[4] M. Platzner and N. Wehn, Dynamically Reconfigurable Systems:
Architectures, Design Methods and Applications: Springer, 2010.

[5] M. Smith, Application-Specific Integrated Circuits: Addison-Wesley
Professional, 1997.

[6] K. Compton and S. Hauck, "Reconfigurable computing: a survey of
systems and software," ACM Comput. Surv., vol. 34, pp. 171-210, 2002.

[7] Open Risc, http://opencores.org/openrisc (retrieved October 2013).
[8] I. R. Greenshields, A Dynamically Reconfigurable Vector-Slice

Processor, Proc. IEE Part E, 129(5), pp. 207-215, 1982.
[9] I. R. Greenshields, A Dynamically Reconfigurable Multimodal

Architecture for Image Processing in Parallel Processing for Computer
Vision and Display, eds. P.M. Dew, R.A. Earnshaw and T.R. Heywood,
Addison-Wesley, Reading MA, pp. 153-165, 1989.

[10] W. Han, Y. Yi, M. Muir, I. Nousias, T. Arslan, and A.T. Erdogan,
Multicore Architectures With Dynamically Reconfigurable Array
Processors for Wireless Broadband Technologies, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol. 28 No.
12 pp. 1830-1843, 2009.

[11] I. Damaj, M. Itani, and H. Diab, Serpent Cryptography on Static and
Dynamic Reconfigurable Hardware, Proc. Of the IEEE Int. Conf. on
Computer Systems and Applications pp. 680-684, 2006.

[12] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J.
Lucka, Dynamic and Partial FPGA Exploitation, Proc. IEEE Vol. 95,
No. 2, pp.438—452, 2007.

[13] P.-A. Hsiung, M. D. Santambrogio, and C.-H. Huang, Reconfigurable
System Design and Verification: CRC Press, 2009.

[14] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, "The Chimaera
reconfigurable functional unit," in IEEE Symposium on FPGAs for
Custom Computing Machines, pp. 87-96,1997.

[15] J. R. Hauser and J. Wawrzynek, "Garp: A MIPS Processor with a
Reconfigurable Coprocessor," in IEEE Symposium on FPGAs for
Custom Computing Machines, 1997, pp. 12 - 21.

[16] T. Miyamori and K. Olukotun, "REMARC:Reconfigurable Multimedia
Array Coprocessor," IEICE Transactions on Information and Systems
E82-D, pp. 389-397, 1998.

[17] J. P. Shen, and M. Lipasti, Modern Processor Design, McGraw-Hill,
New York NY, 2005.

[18] J. L. Hennessy, J.L. and D.A. Patterson, Computer Architecture A
Quantitative Approach (Fourth Edition), Elsevier Morgan Kaufmann,
San Francisco CA, 2007.

[19] S. Hauck, Configuration prefetch for single context reconfigurable
processors, Proc. 1998 ACM/SIGDA Sixth International Symposium on
Field Programmable Gate Arrays pp. 65-74, 1998.

[20] Z. Li, K. Compton, and S. Hauck, Configuration caching management
techniques for reconfigurable computing, IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa Valley, CA, pp.22-
36, 2000.

[21] Z. Li, and S. Hauck, Configuration prefetching techniques for partial
reconfigurable coprocessor with relocation and defragmentation, Proc.
2002 ACM/SIGDA Tenth Int. Symposium on Field-Programmable gate
arrays, pp. 187- 195, 2002.

[22] Yeh, T.Y. and Y.N. Patt, Two-level adaptive training branch prediction,
Proc. 24’th Annual Int. Symposium on Microarchitecture, pp. 51-61,
1991.

[23] M. Abu-Faraj and I. Greenshields, "Architectural Considerations for an
Out-Of-Core Dynamically Reconfigurable Fabric," in 1st Int’l
Conference on Advanced Computing and Communications, pp. 52-
57,2010.

Mua’ad M. Abu-Faraj received the B.Eng. degree in computer engineering
from Mu’tah University, Mu’tah, Jordan, in 2004, the M.Sc. degree in

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

122

computer and network engineering from Sheffield Hallam University,
Sheffield, UK, in 2005, and the M.Sc. and Ph.D. degrees in computer science
and engineering from the University of Connecticut, Storrs, Connecticut,
USA, in 2012.

He is, at present, assistant professor at the University of Jordan, Aqaba,
Jordan. He is currently serving as reviewer for the IEEE Micro, IEEE
Transactions on Computers, Journal of Supercomputing, and International
Journal of Computers and Their Applications (IJCA). His research interests
include computer architecture, reconfigurable hardware, cryptography, and
wireless networking.

Dr. Abu-Faraj is a member of the IEEE, ISCA (International Society of
Computers and their Applications), and JEA (Jordan Engineers Association).

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 7, 2013

123

