
 

 

  

Abstract—In the case of continuous affine systems, an oscillating 
behavior, due to the presence of pairs of complex eigenvalues in the 

spectrum of the system matrix, is considered. The control problem 

consists of damping the oscillations and tracking a piecewise constant 

reference signal. A control solution is proposed, based on pole 

placement combined with the internal model principle. Sufficient 

conditions for the controller existence are deduced and some issues 

concerning fixed and variable step simulations approaches are 

discussed. The results are extended to piecewise affine hybrid 

systems, composed of a set of piecewise affine systems and a 

switching strategy based on a state space partition.  

 

Keywords—affine systems, controllability, discrete systems, 
internal model, hybrid systems, pole placement, tracking.  

I. INTRODUCTION 

HERE is an increasing interest, in recent years, in the 

study of different parts of an automobile: suspension 

system [1], brake system [2], power train [3] etc. Hybrid 

systems, describing the interaction between time-driven and 

even-based dynamics are often used [4]-[10]. Piecewise affine 

systems represent a class of hybrid systems frequently 

encountered as modeling approximations of a large class of 

nonlinearities [4] arising both in control engineering [5], [6] 

and biological modeling [7], [8]. The control of oscillations is 

an important objective for hybrid piecewise affine systems, 

generally associated with driving quality and comfort in the 

evolution of automotive systems [9]. 

In order to analyze and control complex piecewise affine 

nonlinear dynamics, a prior study of affine systems is relevant 

for the description of the local behavior of the hybrid system 

[3]. This paper proposes a control approach for an affine 

system, ensuring oscillations damping and the tracking of a 

piecewise constant reference input. The two objectives are 

reached, under certain assumptions, using a classic pole 

placement procedure combined with the internal model 

principle. For simplicity, in order to analyze strictly the impact 

of the closed loop pole allocation, it is assumed that the 

process state is known; however, a state estimator can be 
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synthesized in a straightforward manner and embedded in the 

controller. The control procedure is then extended, through an 

example, to a piecewise affine system composed of two 

oscillating affine systems and a switching strategy based on a 

state space partition. 

The paper is structured as follows. Section II presents a 

modal approach for oscillations damping in a class of affine 

systems, illustrated by a simulation example. Section III 

extends, through a simulation example, the modal control 

approach. Concluding remarks are finally discussed. 

II. OSCILLATIONS CONTROL FOR AN AFFINE SYSTEM  

This section introduces a control problem for a single 

continuous affine system, which represents a starting point for 

developing a control approach for a piecewise affine hybrid 

system. 

A. The affine model and the control problem 

Consider the continuous-time affine system 

 

fbuAxx ++=ɺ , xcy T= ,                          (1) 

 

with nx R∈  the continuous state, u a scalar-valued input 
signal, y the scalar output and A, )0(≠b  and )0(≠f  real 

matrices of appropriate dimensions, respectively. Denote 

)(AΛ  the set of eigenvalues of A. 

Assumption 1   

(a) The matrix A has at least one pair of complex 

eigenvalues, i.e. )()( Aj Λ∈β±α∃ .  

(b) The pair ),( bA  in (1) is controllable [11].  

(c) The pair ),( AcT  in (1) is observable. 

(d) Consider also a class of piecewise-constant exogenous 

signals, R→],0[: Tr , 
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where R∈ir , si :1= , and the time intervals between any two 
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consecutive switching moments it , 1:1 −= si , may not be 

equal, respectively. 

 

Problem 1  

Given the affine system (1) satisfying the Assumption 1 and 

an exogenous signal r (2), find a control law ),( rxu  s.t. in 

closed loop:  

(i) the system is stable and the oscillations [12] of the output 

y are damped and  

(ii) the output y tracks the reference signal (2). 

B. The control system: pole assignment, internal model 
and extended system 

The first part of the control objective can be realized by a 

pole assignment strategy, implemented as a static feedback 

control law, while the second part of the control objective 

requires - for zero asymptotic tracking error - the presence of 

an internal model of the exogenous signal. Since the reference 

signal (2) is a combination of delayed step signals, the tracking 

is ensured by an integrator as internal model. This solution is 

implemented in the control structure depicted in Fig.1, with the 

state equations 

 

,

,

rxcz

fbuAxx
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ɺ

ɺ

                                         (3) 

 

output signal xcy T= , and tracking error yr −=ε . 

 

 
Fig.1 control structure for the affine system in Problem 2 

 

Remark 1. Note that condition (3) is stronger than 

condition (i) in Problem 1. In order to achieve the first part of 

the control objective, Assumption 2 can be relaxed: the 

oscillations can still be damped in closed loop if not all 

eigenvalues of ),( bA  are controllable, but the uncontrollable 

eigenvalues are real and stable. In this case, the uncontrollable 

“part” produces neither oscillations nor instability and, after a 

structural decomposition, the feedback matrix 
T
ok  - with 

appropriate reduced dimensions – can be applied only to the 

controllable part, assumed to generate output oscillations. 

 

Define the extended affine system of order )1( +n  

 

rgfubxAx eeeeee +++=ɺ ,                           (4) 

 

where TT
e zxx ][=  is the extended state, u is the control 

input, r is the reference signal to be tracked and the system 
matrices are 
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(5) 

 

and consider the following problem associated to Problem 1. 

 

Problem 2  

Given:  

(i) the system (4) - (5), with ),( bA  satisfying Assumption 1 

and 
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and  

(ii) a set eΛ  of )1( +n  strictly negative real numbers, find a 

control law 
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so that  
 

e
T
eee kbA Λ=+Λ )( .                         (8) 

 

 In order to show that solving Problem 2 drives to a solution 

to Problem 1, two aspects have to be proved: firstly, the fact 

that the pole placement for ),( ee bA  is possible, provided that 

Assumption (b) is true and, secondly, the fact that the control 

system (4),(5) with the control law (7),(8), can track a 

reference signal from the class (2), i.e. that no steady state 

error occurs.  

The solution to the first part of the control objective is based 

on the next result. 

Lemma. If the pair ),( bA , with nnA ×∈R  and nb R∈ , is 

controllable and ),,(
TcbA  satisfies (9), then the pair ),( ee bA , 

defined in (5), is also controllable. 

 

Proof. Controllability is equivalent, for single input - single 
output systems, to the non-singularity of the controllability 

matrix. Hence, the controllability matrix of the pair ),( bA is 

defined by 

u z ε r 
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The above matrix can be written in the form 
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which, in view of (6) and of 0det ≠R , results also non-

singular. 

The controllability of the extended pair ),( ee bA  is 

necessary and sufficient for pole assignment, but, obviously, if 
),( bA  in (1) is not controllable, but the uncontrollable 

eigenvalues of A are real and stable then the uncontrollable 
“part” produces neither oscillations nor instability and, after a 

structural decomposition, the pole assignment procedure can 

be applied for the controllable “part”. In other words, a 

solution to Problem 2 is also a solution to Problem 1; however, 

a solution to Problem 1 can still be obtained in more relaxed 

conditions, as specified above. 

The second part of the control objective concerns the 

asymptotic error behavior, for a reference signal from the class 

(2). Denote 

 

)}({)( tyLsy = , )}({)( 11 tuLsu = , )}({)( tLs ε=ε ,   

(11) 

)}({)( trLsr =  

 

 the Laplace transformed of the corresponding time signals in 

Fig.1, respectively. Also, note that for the closed loop matrix 

  
T
oo bkAA += ,                                  (12) 

 

the spectrum eoA Λ⊂Λ )(  is stable. Then, for zero initial 

conditions 0)0( =ex , the Laplace transformed of the affine 

system state in Fig. 1 is 
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After some computation 
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Then, for  

 

)(1)( trtr i ⋅= ,                              (16) 

 

with the Laplace transformed  

 

srsr i=)( , 0>ir ,                            (17) 

 

the stationary output value is  

 

i
s

rssyy ==∞
→

)(lim)(
0

                         (18) 

 

and the resulting the steady state error is 0)( =∞ε . 

The control procedure solving Problem 2 can be 

summarized as follows. 

 

Modal control algorithm for affine systems 

Input: the n order model (1) with ),,( TcbA  in observable 

canonical form, the reference signal (2), and desired closed 

loop spectrum  

 

1:1}0|{ +=<λλ=Λ niiie .                  (19) 

 
Output: the feedback matrix  
 

][ ϕ= T
o

T
e kk                               (20) 

 

in (7).  

1. If the pair ),( bA  is controllable, then go to step 2. Else, 

stop. 

2. If the condition (6) is satisfied, then go to step 3. Else, 

stop. 

3. Build the matrices (5) of the extended system (4). 

4. For the pair ),( ee bA  build the feedback matrix (20). 

5. Given  

 

1:1}0|{ −=<λλ=Λ njjestjestest ,               (21) 

 

 the control law (7) is implemented using a minimal 

observer for the process state x in (3). 
6. Stop. 

Remark 2 If ),( bA  in (1) is not controllable, but the 

uncontrollable eigenvalues of A are real and stable then, 

when solving Problem 2, Remark 1 can be taken into account. 

Also, if the condition (6) is not satisfied, for example due to 

the sensors placement (modelled by the output matrix 
Tc ), 

then a reconfiguration of the sensors system can be tried. 

C. A simulation example – an affine system  

Consider the second order affine system (1) in observable 

canonical form, with the matrices 
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]10[=Tc , 10 <ζ< . 

 

The output of the system defined by (1) and (14) has to 

become stable, with no oscillations and to track the signal 

R→],0[: Tr , 
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The matrices defined in (22) satisfy condition (6). The 

matrices of the extended system (4) are 
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(24) 

 

and the desired closed loop spectrum is  

 

}10,2,1{ −−−=Λ e .                        (25) 

 

The resulting extended feedback matrix is, for 1.0=ζ ,  

 

]20318.12[][ −−=ϕ= T
o

T
e kk .              (26) 

 

In order to avoid possible Zeno behavior [13], in the 

presence of switching, a discrete time simulation model is 

defined by 

 

dddddd fubxAx ++=+ )1( , 

 

d
T
dd xcy = ,                                 (27)  

 

where, denoting 0>h  the sampling step and introducing the 

matrices in (22),  

 

)exp(AhAd = , bdAb
h

d ⋅θθ= ∫
0

)exp( , 

(28) 

                              hffd ⋅= , TT
d cc = , 

 

and the discrete variables are  

 

)()( khxkxd = , )()( khukud = , with …,1,0=k .           (29) 

 

 In this regard, an already classic example in the literature of 

automotive control is the mixed logical dynamical approach 

discussed in [14]. 

 Denote  

 
T
eeeoe kbAA += .                            (30) 

 

The simulation model of the closed loop system without 

observer is  

 

dedededoeded rgfxAx ++=+ )1( , 

(31) 

ed
T
edd xcy = , 

 

where, 

 

)exp( hAA oeoed = , hff eed ⋅= , hgg eed ⋅= , T
e

T
ed cc = , (32) 

 

and, for any 0>k , the sampled signals are  

 

)()( khxkx eed = , )()( khrkrd = .               (33) 

 

With the simulation values 

 

30=T , 001.0=h , 01 =r , 22 =r , 13 =r , 51 =t ,  

152 =t , 1.0=ζ ,                                                                 (34) 

  

the open loop evolution of the affine system (27) with the 

discrete input signal associated to (23) is depicted in Fig.2. 

The evolution of the closed loop system (27) with the same 

discrete input signal associated to (23) is depicted in Fig.3. 
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Fig. 2 simulation of the discrete affine system (27) with sampled 

piecewise constant input (23) and parameters (34) 
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Fig. 3 simulation of the discrete control system (27) with sampled 

piecewise constant input (23) and parameters (34); the process state 

is assumed to be known 

 

In what concerns the simulation, for arbitrary initial state 

conditions, of the free continuous affine systems, variable step 
methods can be successfully applied. Fig. 4 (up) represents the 

phase portrait of the free discrete affine system (31), and the 

trajectory evolves towards the stationary point of the 

continuous affine stable system (1), given by 
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Remark 3 In the simulation experiment, it was assumed, 

for simplicity, that the entire process state is available for 

building the control law (7). However, in practice, the 

feedback matrix (26) has to be applied to an estimation of the 

unmeasured process state. In order to build a minimal observer 

for the system, with eigenvalue 0<λ est , rewrite the matrices 

(22) in the partitioned form 
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where 2.021 −=ζ−=A , 11 =b , 101 =f  and the rest results 

by identification. 

The continuous time minimal observer is 

 

LfMuHyJww +++=ɺ , Lywx −=1
ˆ ,            (36) 

 

with 

21 LAAJ += , 21 LbbM += , 21 Lfff L += ,        (37) 

                

               4231 LALLAALAH +−+−= , 

 

and L chosen s.t.  
 

}{)( estJ λ=σ .                           (38) 
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Fig. 4 phase portraits: the free discrete affine system (23) 

with 0=du , T
dx ]11[)0( =  (up) and the continous extended 

system (26) with 0=r , T
ex ]011[)0( = , simulated with ode45 

(down). 

 

 On the other side, the phase portrait depicted in Fig. 4 

(down), associated to the first two components of the free 

extended state vector in (31) - the controlled affine process -, 

with matrices given in (22) and (26), is obtained by using the 

MATLAB routine ode45, based on the Runge-Kutta method. 

However, the simulation results of the discrete affine systems 

and of the corresponding continuous time model, simulated 

with variable step integration methods, may slightly differ, due 

to the approximation introduced by the sampling procedure.  

 The feedback law (7) is implemented, in continuous time, in 

the form 

 

zyxu 2031ˆ8.12 1 +−−= ,                          (39) 
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and the simulation model comprises the discrete dynamics of 

the extended system (4) and of the observer (36), respectively.  

Evidently, a difference in the simulated behavior, compared 

to Fig. 3, is obtained only if there is a disturbance in the 

process dynamics, in order to alter the initial condition or the 

measured signal y. 

III. OSCILLATIONS CONTROL FOR A PIECEWISE AFFINE SYSTEM  

This section presents, through a simulation example, an 

extension of the oscillations control procedure for affine 

systems to piecewise affine systems, hence to a class of hybrid 

systems.  

A. The piecewise affine system as a hybrid automaton  

Consider the hybrid automaton with the structure depicted 

in Fig. 5(a), with the local continuous dynamics given, in each 

location, by the affine model (1) with the matrices 
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and the partition based discrete dynamics 
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Fig. 5 hybrid automaton in open loop (a) and closed loop (b) 

 

The simulated behavior of the open loop hybrid automaton 

with control input  
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is given in Fig. 6. 

The control objective is the oscillations damping of the 

system measured output 

 

2xy = ,                                           (43) 

 

while tracking the reference signal )()( ⋅=⋅ ur , with )(⋅u  

specified in (42). The desired closed loop spectrum is eΛ  

(25). 
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Fig. 6 simulated dynamics of the hybrid automaton in Fig. 4(a) 

 

By applying, in each location, the steps 1-4 of the Control 

algorithm described in Section II, and assuming that the entire 

process state is available –i.e., for simplicity, no state observer 

is build and the feedback matrices are applied directly to the 

process state x– one obtains the closed loop hybrid automaton 
in Fig. 5(b), where matrices of the extended system (4) are 
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and the closed loop matrices are: 
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eieeioei kbAA += , 2,1=i ,                           (45) 

 

with the corresponding feedback matrices 
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T
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and  
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T
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respectively. The simulated behavior of the closed loop hybrid 

automaton is presented in Fig. 7. 
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Fig. 7 simulated dynamics of the hybrid automaton in Fig. 4(b) 

IV. CONCLUSIONS 

The study of affine systems, as subsystems of piecewise 

affine hybrid systems, is important for understanding the 

overall complex system behavior. Also, the presence of the 

affine term imposes specific control approaches, which slightly 

differ from the classic linear control strategies. The control 

problem considered in this paper has an objective frequently 

encountered in the automotive systems literature: oscillations 

damping and reference tracking.  

The proposed modal control approach is based on the 

controllability of the classic linear system associated to the 

affine system and implies a combination of a classic pole 

placement procedure – driving to a closed loop stable and 

aperiodic behavior – and of the internal model principle.  

The two strategies are unified by introducing the extended 

affine system model, which aggregates the state equations of 

the affine process and of the internal model, respectively. 

Then, provided that an additional rank condition is fulfilled – 

related to the controllability of the extended system – it is 

proved that an extended pole placement procedure can be 

applied and implemented into the control system.  

A control problem implying sufficient conditions for the 

solution of the original control problem is introduced and 

solved by the design of a feedback pole placement matrix. The 

implementation of the control solution has to incorporate also 

a minimal state estimator adapted to the affine model.  

The simulation experiments are based on fixed step 

discretized models associated to the continuous time original 

affine systems. However, special care has to be taken when 

interpreting the results, due to the approximation introduced 

by the sampling procedure, despite the fact that this aspect is 

not generally detailed in the automotive systems literature. 

The modal control approach can be successfully extended 

from affine to piecewise affine systems, as illustrated by the 

simulation example in Section III. It is important to emphasize 

that, in this case, a single desired closed loop pole assignment 

is chosen for each local continuous dynamics. Also, despite the 

fact that, naturally, the local feedback matrices may differ –

depending on the distinct local process dynamics – the internal 

model in the controller is common, because it is designed 

according to the exogenous signals.  

In the proposed simulation examples, a state observer can 

easily be incorporated to the controller.  

The proposed modal approach for oscillations damping can 

be tested, as an alternate control procedure [9], for automotive 

systems, such as driveline oscillations damping.  
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