

Abstract— This paper introduces a new approach, based on state

machines, for distributed frameworks, that is able to support both
distributed simulation and computational steering. The framework
makes use of a Distributed Chunk-based Flow Management
System (DCFMS) having as main benefits the logical
partitioning and data localization information. The
architectures and implementation details of the two systems as
well as integrative experimental results are briefly discussed.

Keywords— distributed framework, chunk based data flow, state

machines

I. INTRODUCTION

UNNING complex applications in today’s world is more
and more a matter of integration of efficient

infrastructures and good computational techniques. Cluster and
grid simulation applications that employ parallel computing
techniques (i.e. MPI, OPENMP) [1, 2] to simulate real
processes are just a common example. Modeling and
simulation have become key phases for a wide spectrum of
applications in modern research. In contrast with the study of a
real system, whose advantage is the accuracy of the evaluation,
but who might become destructive, dangerous, and expensive,
the study of a model is easier, safer and cheaper. Modeling, as
a general term, denotes the process that offers an abstract
representation of a system, which allows, in turn, through its
study, the formulation of valid conclusions on the real system.
Simulation generally refers to the numerical evaluation of a
model. When dealing with a complex system whose analytical
solution is hard to be determined, simulating the system’s
behavior on a model could be the only solution left. The
outcome of a simulation may be analyzed in a separate post-
processing step (for instance by viewing the results in a
separate visualization application), and, based on intermediate
results, a decision can be made to change simulation
parameters for another computational period. In order to
increase the efficiency, new techniques for live visualization
and steering have emerged allowing simulation and
visualization to be performed simultaneously. If online
visualization refers to the ability to immediately observe the

Dr. Mihai Mocanu, Cosmin Poteraş and Constantin Petrişor are with the

Department of Software Engineering at the University of Craiova, Romania.
Contact e-mail: {mmocanu, cpoteras}@software.ucv.ro

Additional financial support for this work has been provided to Cosmin
Poteras by AMPOSDRU grant 109/25.09.2008

processing steps during the simulation, this in turn allows for
computational steering to influence the computation of the
simulation during runtime on a cluster, grid and even on a
supercomputer. They are meant together to dynamically steer
the parameters of a parallel simulation, increasing not only the
interactivity but also the efficiency of the overall process.
Visualization is the process of exploring, transforming and
rendering of data through images, with the goal to offer a
thorough and deep understanding of data. It is a complex field
of study in our days, including elements of computer graphics,
digital image processing, computational geometry, numerical
analysis, statistics, and studies on human perception.
Computational steering is a process of manual intervention on
an autonomous computational system, with the goal to analyze
and modify outputs. It is a very common technique in
numerical evaluation, used to guide a computational process
towards regions of interest. Apart from this pure applicative
perspective, computational steering can be examined from a
broader technical perspective; for instance, we may consider
the modification of memory amount available for a process,
with the goal to observe and influence the effects over the
execution time. This paper deals with the concept especially in
the latter, broader sense. The taxonomy of the concept also
includes: program steering, which has been defined as the
capability to control the execution of resource-intensive, long
running programs (this may imply modifications of program
state, starting and stalling program execution, etc.), data
steering (which implies the management of data output,
alteration of resource allocations etc.), and dynamic steering
(which requires the user to monitor program or system state
and have the ability to make changes, through “add-ons”
routine calls or data structures interaction in the code).
Interactive simulation combined with visualization has
undergone a major development and it is now widely used. Up
to the late 80s, simulation had been considered a tedious and
time consuming process, mainly due to the lack of interactivity
with the ongoing simulation process: the researcher had to
exhaustively execute the simulation for all input data sets and
he could only analyze data as a post-simulation phase, even if
in some cases the simulation process reveals useless results
from the beginning. When the need of interactivity became
obvious, research also concentrated on developing simulation
frameworks with visualization and steering capabilities, so that
an ongoing simulation could be immediately observed and
guided. The development of distributed simulation and

A Distributed Design for Computational
Steering with High Availability of Data

Cosmin Marian Poteras, Mihai Mocanu and Constantin Petrişor

R

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

52

steering frameworks, able to support run-time adjustments and
live visualization, has not been an easy task. Extensive surveys
of research in this area were carried out in over the last two
decades [3, 4], however not many of the projects led to
practical tools. Some of the most relevant frameworks for
distributed simulation and computational steering, for the
scope of this paper, may be considered: COVS[1],
RealityGrid, CUMULVS and CSE. COVS[7] (Collaborative
Onlline Visualization and Communication) is a framework that
encapsulates common visualization frameworks (VTK,
AVS/Express), steering technologies (VISIT, gViz, ICENI) as
well as communication libraries (VISIT, PV3) that carry out
the data transportation and steering commands. This multi-
framework integration allows COVS to run simulations
independently from visualization and communication tasks.
RealityGrid [8, 9] is an API library consisting mainly from two
modules. The former is responsible for offering steering
capabilities and the latter provides tools for dedicated client
applications. RealityGrid uses check-pointing techniques for
supporting steering commands. CUMULVS (Collaborative
User Migration, User Library for Visualization and Steering)
[10, 11] has been developed at Oak Ridge National Laboratory
and has been designed for the development of collaborative
on-line and interactive simulation and visualization. The power
of this platform consists in the advanced recovery techniques,
the tasks migration support and check-pointing. CSE
(Computational Steering Environment) [12, 13] has been
developed at the Center for Mathematics and Computer
Science, in Amsterdam. It uses a centralized architecture
around a replicated Data Manager that is able to carry out
steering commands and coordinate the simulation tasks. The
Data Manager from CSE leads us to an important problem in
the analysis of these efforts: data availability. The
computations may be dramatically slowed down by the
acquiring of data. Dataflow processing is at the same time the
most appropriate model of programming and a crucial factor
for achieving the desired performance. Existing systems like
BitTorrent and Apache Hadoop Distributed File System
implement a parallel dataflow style of programming which
provide the data required by a distributed application’s
processes in the most efficient way. The BitTorrent Protocol
[14] establishes peer-to-peer data transfer connections between
a group of hosts, allowing them to download and upload data
inside the group simultaneously. The torrents systems that
implement BitTorrent protocol use a central tracker that is able
to provide information about peers holding the data of interest.
Once this data reaches the client application, it tries to connect
to all peers and retrieve the data of interest. However, it is up
to the client to establish the upload and download priorities.
Torrents systems might be a good choice for distributed
environments, especially for those based on slower networks.
However, the main disadvantages of torrent systems are
related to the centralized nature of the torrents tracker as well
as leaving the entire transfer algorithms and priorities up to the
client application which might cause important delays if the

transfers trading algorithm chooses to serve a peer that might
have a lower priority at the application level. The centralized
nature of the tracker concentrates the reliability around the
tracker; if the tracker goes down, the entire system becomes
not functional. Torrents are mainly systems that transfer files
in distributed environments in raw format without any logical
partitioning of the data. Such logical partitioning might often
prove to be very important. For example if an imaging
application needs a certain rectangle of an image it would have
to download the entire file and then extract the rectangle by
itself instead of just downloading the rectangular area and
avoid transferring unnecessary parts of the file The Hadoop
Distributed File System has been designed as part of Apache
Hadoop [15] distributed systems framework. Hadoop has been
built upon the Google’s Map-Reduce architecture as well as
HDFS file system. HDFS proved to be scalable, and portable.
It uses a TCP/IP layer for internal communication and RPC for
client requests. The HDFS has been designed to handle very
large files that are sent across hosts in chunks. Data nodes can
cooperate with each other in order to provide data balancing
and replication. The file system depends closely on a central
node, the name node whose main task is to manage
information related to directory namespace. HDFS offers a
very important feature for computational load balancing,
namely it can provide data location information allowing the
application to migrate the processing tasks towards data, than
transferring data towards processing task over the network [4].
The main drawback of HDFS seems to be the centralized
architecture built around the name node. Failure of the name
node implies failure of the entire system. There are still
available techniques for replication and recovering of the
name node, but this might cause unacceptable delays in a high
performance application. Due to the well known diversity and
complexity of distributed models, choosing the appropriate
design for a system like ours is not an easy task. Besides of the
usual requirements imposed to a distributed system, like
scalability, flexibility, extensibility, portability, we added
support for load balancing and tasks migration, and safety
features. For this we concluded to a design that merges
together parallel mapping of tasks in the form of state
machines, able to be deployed in a robust way over a network,
and parallel dataflow handling, separated into a standalone
module whose main role is to acquire, store and provide the
data required by the application’s processes in the most
efficient way. We will describe in this paper only the design of
the two modules.
The rest of the paper is organized as follows. Section II
describes the design and implementation details of the State
Machines Based Distributed System (SMBDS) [5]. Section III
introduces the conceptual model for Distributed Chunks Flow
Management System (DCFMS) [6] while section IV describes
the main implementation details of DCFMS. Section V
explains how the two systems can work together and presents
integrative experimental results. Section VI concludes the
paper and presents our future thoughts.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

53

II. STATE-MACHINES FRAMEWORK DESIGN AND

IMPLEMENTATION

It is very common that many domains impose very strict
requirements for software. For example, medicine requires
very high safety standards as well as high performance
environments due to the incompatibility of this field with
errors and instability. Imagine the dramatic effects of an error
occurred in a software application that assists a surgery. That
could become fatal. To improve the reliability and safety, one
has to make sure that at any moment the software is in a
consistent state. A good practice would be to analyze all
possible states prior to the system development and by
ensuring the system’s reaction is appropriate in any state. All
these constraints lead us to the idea of representing tasks as
finite state machines.

State machines can provide code safety, robustness,
traceability, excludes erroneous states and inconsistencies
while providing a simple and well structured “package” for
representing complex tasks. Being represented as “packages”,
tasks are encapsulated and can easily migrate in distributed
environments. Tasks migration together with live monitoring
of the distributed environment reveals new possibilities for
defining dynamic load balancing algorithms.

We propose in this paper a new design model for distributed
simulation environments whose architecture is illustrated in
fig.1. The model has been implemented as a class library that
reduces considerably the applications development time. Our
model consists of five main modules: Simulation Module,
Control and Communication Module, Visualization Module,
Shared Memory Module and Client Application.

Fig. 1. The structure of the proposed distributed system.

The processing is being performed by the simulation
processes. They are represented as state machines, and there
can be run as many processes as each host can handle
efficiently. The shared memory module can comply either to a
distributed form or a centralized one. Its main goal is to store
the system’s parameters which usually realize the
computational steering. The control and communication
module handles data flow as well as monitoring and migration
jobs. It is responsible for acquiring input data, forwarding

output data to the visualization filters, synchronizing access to
the shared memory while monitoring the system’s resources
and loads and realizing machines’ migration whenever
necessary. The control and communication module is able to
rise the computational steering to a new level by allowing the
user to manually specify simulation processes migration.
There will be only one instance of the control and
communication module on each host. The visualization
module is responsible for translating simulation’s output which
usually is in a raw format into a more appropriate format for
visualization. The client application initializes, monitors,
controls (steers) and analyzes the simulation.

The architecture is based on the theoretical model of a state
machine: a state machine is a quintuple

where is the set of input parameters (input alphabet, finite,
non empty), S is the set of states, is the initial state, is the

states transition function and F is the set of final

states. The architecture has ensures the separation between
machine code and machine data

The library consists of a set of abstract classes and
interfaces that allow the developer to define the machine’s
algorithm by extending/implementing the proper methods. The
library’s engine automatically manages the state machines and
their migration.

StateMachineData

+List<IInputParameter> parameters
+TranzitionTable transitionTable
+int currentState
+ID
+Type
+List<int> finalStates

TranzitionTable

+statesMapping

+getNextState()

TypedParameter

+equals(object value)

IParameter

StateMachine

+StateMachineData data

+performComputation()
-threadedRun()

StateMachinesManager

+StateMachine unpackStateMachine(StateMachineData)
+StateMachineData packMachine()
+void RunMachine(StateMachine)
+mpiSendMachine()
+mpiReceiveMachine()

StateMachineX

+performComputation()

StateMachineY

+performComputation()

1. instantiate StateMachineData:ID=1, Type=X

1. instantiate StateMachineData:ID=2;Type=Y

2. create and run

2.create and run

Fig. 2. The Library’s architecture and workflow.

The main class of the platform is the StateMachine class. It

is an abstract class which serves as base class for every type of
state machine required by the application (StateMachineX,
StateMachineY). It handles the states succession and
computations by employing the performComputation method
together with the states transition table. The
performComputation method will be overridden by the derived
types and it will hold all custom algorithms specific to each

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

54

state. StateMachine class starts computations by invoking the
method passing as parameters the initial state, performs
computations associated with this state and retrieves the
output. The states transition table is being checked for the next
state and the process continues in the same manner.

Data is being separated from code by using
StateMachineData objects. StateMachineData holds all
relevant information about the machine: parameters, current
state, transition table, machine identifier – unique in the entire
environment, the machine type (StateMachineX,
StateMachineY), final states, etc. All these can be extended by
deriving the StateMachineData class.

The transition table (TransitionTable) its represented as a
mapping between pairs <parameters, state> and future state.
The transition is performed by method getNextState which
retrieves the next state based on the current state and the
output values of the parameters from the current state.

For flexibility reasons the parameters have been interfaced
by the IParameter interface leaving its implementation up to
the developer. IParameter offers getter and setter methods as
well as parameters matching methods.

The state machines’ management is ensured by the “brain”
class, which is StateMachinesManager. Its role is to manage
all the machines running on a host. It is able to monitor the
system, to ensure data availability, to create, run and migrate
machines to and from other hosts. The most important tasks
performed by the StateMachinesManager are related to tasks
migration and load balancing. These tasks are performed by
the following methods: packMachine() – prepares the machine
for migration, unpackMachine() – prepares machine for
resuming the processing on the new host, mpiSendMachine() –
sends the machine to other host, and mpiReceiveMachine() –
receives the machine from another host, and RunMachine() –
which resumes the processing. Each host in the distributed
environment will run one instance of the state machines
manager.

Considering the above implementation details we can
enumerate the steps needed for implementing distributed
simulation applications on top of the framework.

• Defining the parameters of the system (implementing
IParameter)

• Defining all types of machines needed. For each type, a
new derived class will be created inheriting the class
StateMachines. The method performComputation will
hold the processing algorithms.

• TransitionTable class will be instantiated and populated
with mappings of type <<parameter, current state>,
future state>

StateMachinesManager will be instantiated and run on each
host.

III. DISTRIBUTED CHUNKS FLOW MANAGEMENT SYSTEM.
CONCEPTUAL MODEL

The proposed DCFMS, whose model is illustrated in Figure

3, is supposed to offer the following features:
� Cost. Better price/performance as long as commodity

hardware is used for the component computers.
� Portability. A cross-platform system design that does not

require special system priviledges for running
� Extensibility. Easy to do, because of its modular design
� Scalability. Hosts can be added at run-time, and storage

capacity can be increased incrementally
� Run-time storage updates, abstract communication API
� Customizable data handling for all data types, etc.

Fig. 3 The DCFMS design model

The entire model has been built around one key element, the
data chunk. It usually represents a file partition but it can also
be any data object required by the application’s processes.
Besides the data piece itself, a data chunk also contains meta-
information describing the data piece, like: size, location
inside source file, the data type, timestamp of latest update or
the class that handles chunks of its type. Thus, the most
important contribution of DCFMS is the way it handles chunks
of different types in an abstract mode without actually
knowing what is inside the chunk, leaving the data partitioning
up to the application level. This is very important from an
application perspective, allowing it to map data chunks to
processing tasks very efficiently. No restrictions are imposed
by the DCFMS on data partitioning.

The bridge between the abstract representation of data
chunks and their actual type is the Type Manager. It is able to
make use of external classes (defined at the application level)
where all the file type specific functionality can reside. The
classes are dynamically loaded whenever the application layer
needs partitioning, files reconstruction as well as information
related to the collection of chunks (i.e. the number of chunks).
It is the applications' developer task to implement the data
chunks handler classes. The DCFMS only provides a set of
interfaces that help to implement the partitioning logic.

For example, one might need to handle two types of files in
their distributed application: image files and text files. In case
of the image files a data chunk might be represented by a

DISTRIBUTED ENVIRONMENT

FILES
MANAGER

Data Chunks
Meta-info

Discovery Unit

Data Types
Manager

External API Internal API

Hosts 1, … N Application

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

55

rectangular region of the initial image. Multiple such chunks
can cover the entire image. An image can be split into
rectangular chunks by dynamically invoking the image
partitioning method. In case a node needs an entire file that is
spread all across the system, DCFMS can acquire all its
chunks from different hosts and recompose the image by
dynamically invoking the image reconstruction method. In
case of a text file, the chunks can take the form of paragraphs,
or pages, or simply and array of characters of a certain size. In
a similar way the files can be dynamically partitioned and
reconstructed. Later in this paper we will discuss the
development effort involved in writing such classes.

The proposed DCFMS is able to scale up dynamically at run
time without using a central node. This functionality is
achieved by the Discovery Unit which broadcasts and listens
to discovery messages. There are two API interfaces that allow
DCFMS nodes to communicate with each other and also with
the client application.

IV. DCFMS - METHODS AND ALGORITHMS

A. Data synchronization

A key feature in any distributed system that handles large
amount of data is keeping data synchronized. Spreading data
around the network while keeping it up to date uses events.
Each node that has updated a data chunk must broadcast to all
other nodes that he is aware of about the changes, and event
handlers update the timestamp of the affected data. Depending
on the nodes connectivity there are two choices:
� No event retransmission – the ideal situation when the

network bandwidth allows 1 to 1 connections between any
two nodes in the system; it is enough to broadcast an
update event once to all other nodes in the system.

Fig. 4 Retransmission not needed for event propagation.

� Event retransmission – when there is at least one node not
interconnected with all other nodes in the system. To
make sure that node is always notified about update
events, retransmission is necessary; to stop infinite loop of
update events nodes employ timestamps (whenever an
update event time stamped in the past it will be ignored)

 Fig.5.Events retransmission

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

56

B. Data flow

The flow algorithm is based on availability tables. We will
analyze a concrete scenario. Lets assume DCFMS consists of
nodes N0, N1, … Nn, and let node N0 be interested in aquiring
data chunks C1, C2, … Cm. N0 will broadcast a request for
C1,...Cm to the entire DCFMS. Nodes N1...Nn reply back to N0
with a subset of C1,....Cm that they host. As soon as replys
arrive, N0 builds a chunks availability matrix having as rows
the nodes N1....Nn and as columns chunks C1...Cm. (Ni,Cj) gets
valued 1 if the chunk Cj is available on host Ni, otherwise it
gets valued 0. N0's main goal is to establish as many
connections as possible, but not more than one connection per
serving host (at most n-1 connections at a time). Chunks
availability responses are performed in an asynchronous
manner so that N0 won't have to wait for all responses before
proceeding with transfers. Instead it will establish connections
as the responses arrive, overlapping chunks transfer with
availability requests. Whenever a chunk transfer completes,
the External API will be informed about it and the client
application can start processing the newly acquired data.

As chunks might spread across DCFMS while N0 transfers
its chunks, the availability matrix will be constantly updated by
sending new availability requests whenever a chunk transfer
completes and N0 has established less than n-1 connections
(free download slots available).

C. Data partitioning

As previously mentioned, the user is able to retrieve exactly
the data of interest causing an important reduction of the
amount of data that travels through the network. A data chunk
is basically any logic unit of data extracted from a data set
(usually a file) according to a certain algorithm that reflects the
application’s needs.

The data extraction is based on the most simple principle:
request – answer. The application places queries against
DCFMS, queries are broadcasted in the entire system, each
node invokes the appropriate chunker (the one associated with
the request’s type), the chunker extracts the logical piece of
data according to its internal algorithm (custom algorithm
designed to serve the application environment’s needs), and
ultimately it replies back with the data chunk.

D. Support for load balancing

In distributed applications it often happens that the
processing of a data chunk requires less time than the transfer
of the data itself. For this reason it might be a good practice to
migrate the processing task towards the data than transferring
data to the processing host. DCFMS is able to provide through
its external API locating information about the data it holds
(data aware system). It is the application's task to query the
system for data location information and migrate the
processing tasks throughout the nodes in order to reduce or
eliminate the data transfer time.

E. Developer's task: Implementing Chunker classes

Chunker classes define how files or data objects are split

into data chunks. A chunker class is a class that implements a
Chunker interface defining the following content:

a. Requests structures
b. Response structures
c. Data Requests handlers
d. Meta-Data Requests handlers (ensuring data-awareness)
An important feature of the system is that not all nodes need

to hold all chunker classes known by the system. They only
need the chunkers associated with the data they serve. If
unknown type of data is requeste the node can dynamically
load its associated chunker ar run-time.

V. INTEGRATIVE RESULTS

Figure 6 illustrates the integration of the two modules:

SMBDS and DCFMS.

Fig. 6. SMBDS and DCFMS integration

Ideally each host would run one instance of each system.

However this is not a constraint. For maximum performance it
is recommended that each SMBDS process should be bound to
a local DCFMS process. In what follows we will consider that
this condition is being satisfied on all hosts. SMBDS will
manage the execution of state machines acquiring data for
their execution via the external API interface of DCFMS.

Once integrated, we are interested to evaluate the real
performance and efficiency of the two modules. Recall that the
main benefits of the two integrated modules are: load
balancing by migrating tasks, logical partitioning of the data,
and data awareness (localization) feature.

For obtaining an overview of these features, there will be
compared the performance evaluations for two types of
execution: the former execution which makes use of the
features above and the latter which would instead use an
uniform distribution of the work load involved without making

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

57

use of any of the above features.
It has been developed an image processing application

whose main goal was to give an overview on the gain
introduced by the features above. The processing algorithm
applies gaussian filters on images, but this is irrelevant in our
study. We are only interested on the improvement of the
performance indicators following the two execution types.

The load balancing in our experiments made use of a very
simple algorithm based on our observation that the transfer
time of a data chunk between two hosts is N times longer than
its processing time. There will be associated costs for each
state machine. For example if a state machine needs to process
a chunk of data that is not locally available, it will be
associated a cost of N+1 (N for the transfer, 1 for the
processing). The load balancing algorithm tries to keep hosts’
costs as balanced as possible.

In our experiments each host will run in parallel five state
machines, each machine having as job the processing of
9.2MB of image data.

As experimental environment it has been used a high speed
Myrinet network with a bandwidth of 4 Gbps and 7 identical
hosts (Intel Core 2 Duo E5200, 1GB of RAM memory).

We have observed that on this environment, the transfer
time of a data chunk is about twice longer that the processing
time of the same data chunk. That means we have used a cost
factor of 3 for a state machine that needs to transfer its data,
and a cost of 1 for a state machine that needs to process locally
available data.

For evaluating the system we have considered four
scenarios, as follows:

Scenario 1: All 7 hosts hold the entire data collection. In
this scenario all machines will have a cost of 1 since they can
access their associated data set locally.

Scenario 2: Five hosts hold the entire data collection. In this
scenario two hosts will try to migrate a part of their tasks while
transferring data for the rest of their machines.

Scenario 3: Three hosts hold the entire data collection. In
this scenario four hosts will try to migrate a part of their tasks
towards the data holding hosts while transferring the data for
the rest of their machines.

Scenario 4: Only one host will hold the entire data set. This
is the worst scenario as six hosts will have to acquire data for
most of their machines. Only few machines will be migrated
on the data holding host.

For each scenario there will be measured the data transfer
time and the processing time for each host, as well as the total
execution time.

Lets examine the results for each scenario.

A. Scenario 1: All hosts hold the entire data collection

In table 1 we can examine the results. In this scenario the

state machines migration is useless as data can be accessed
locally by all machines and the processing jobs are equally
distributed on all hosts.

TABLE 1. RESULTS FOR SCENARIO 1.

Host State
Machine
s sent

State
Machines
received

Data
transfers
time(ms)

Processing
Time (ms)

Execution
time (ms)

1 0 0 0 151 151
2 0 0 0 149 149
3 0 0 0 145 145
4 0 0 0 152 152
5 0 0 0 157 157
6 0 0 0 159 159
7 0 0 0 152 162
Total execution time: 162 ms
Data transferred: 0 MB

B. Scenario 2: Five hosts hold the entire data collection

In this scenario each of the two hosts not holding any data

have migrated 3 of their tasks towards the data holding hosts.
Table 2 presents the results for this scenario while table 3

presents the results for a statical run (not involving tasks
migration) while figure 7 and 8 give a graphical overview of
table 2 and 3.

TABLE 2. RESULTS FOR SCENARIO 2 – TASKS MIGRATION

Host State
Machines
sent

State
Machines
received

Data
transfers
time(ms)

Processi
ng Time
(ms)

Execution
time (ms)

1 3 0 169 68 237
2 3 0 178 74 252
3 0 2 0 191 191
4 0 1 0 184 184
5 0 1 0 180 180
6 0 1 0 202 202
7 0 1 0 198 198
Total execution time: 252 ms
Data transferred: 36.8 MB

TABLE 3. RESULTS FOR SCENARIO 2 – NO TASKS MIGRATION

Host
Transfer
time (ms)

Processing
time (ms)

Execution
time (ms)

1 209 143 352
2 221 137 358
3 0 163 163
4 0 142 142
5 0 148 148
6 0 161 161
7 0 138 138

Total execution time: 358 ms

Data transferred: 92 MB

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

58

0

50

100

150

200

250

300

350

400

Host

1

Host

3

Host

5

Host

7

Execution

time (ms) -

tasks

migration

Execution

time (ms) - no

tasks

migration

z
Figure 7. Scenario 2 processing results

Figure 8. Scenario 2 data transfers.

We can observe that in this scenario there is a 29% gain in
terms of processing times and a 60% reduction of the data
transferred trough the network.

C. Scenarion 3. Three hosts hold the entire data collection

In this scenario each of the four hosts not holding any data

have migrated 2 of their tasks towards the data holding hosts.
Table 4 presents the results for this scenario while table 5

presents the results for a statical run (not involving tasks
migration) while figure 9 and 10 give a graphical overview of
table 4 and 5.

TABLE 4. RESULTS FOR SCENARIO 3 – TASKS MIGRATION

Host State
Machines
sent

State
Machines
received

Data
transfers
time(ms)

Processing
Time (ms)

Execution
time (ms)

1 2 0 202 84 286
2 2 0 213 81 294
3 2 0 198 83 281
4 2 0 207 86 293
5 0 3 0 245 245
6 0 2 0 211 211
7 0 3 0 239 239
Total execution time: 294 ms
Data transferred: 110.4 MB

TABLE 5. RESULTS FOR SCENARIO 3 – NO TASKS M IGRATION

Host
Transfer time
(ms)

Processing
time (ms)

Execution
time (ms)

1 214 149 363
2 237 157 394
3 188 134 322
4 225 156 381
5 0 150 150
6 0 154 154
7 0 163 163
Total execution time: 394 ms
Data transferred: 184 MB

0

50

100

150

200

250

300

350

400

450

Execution time

(ms) - tasks

migration

Execution time

(ms) - no tasks

migration

 Figure 9. Scenario 3 processing results.

0

10

20

30

40

50

60

70

80

90

100

Host 1

Transferred

data (MB) -

tasks

migration

Transferred

data (MB) -

no tasks

migration

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

59

0

20

40

60

80

100

120

140

160

180

200

Host 1

Transferred

data (MB) -

tasks

migration

Transferred

data (MB) -

no tasks

migration

Figure 10. Scenario 3 data transfers.

We can observe that in this scenario there is a 25% gain in
terms of processing times and a 40% reduction of the data
transferred trough the network.

D. Scenario 4. One host holds the entire data collection

In this scenario each of the six hosts not holding any data

have migrated one of their tasks towards the data holding
hosts.

Table 6 presents the results for this scenario while table 7
presents the results for a statical run (not involving tasks
migration) while figure 11 and 12 give a graphical overview of
table 6 and 7.

TABLE 6.RESULTS FOR SCENARIO 4 – TASKS M IGRATION

Host State
Machines
sent

State
Machines
received

Data
transfers
time(ms)

Processing
Time (ms)

Execution
time (ms)

1 1 0 238 115 353
2 1 0 260 124 384
3 1 0 242 121 363
4 1 0 263 132 395
5 1 0 267 139 406
6 1 0 235 126 361
7 0 6 0 314 314
Total execution time 406 ms
Data transferred: 220.8 MB

TABLE 6.RESULTS FOR SCENARIO 4 – NO TASKS MIGRATION

Host
Transfer
time (ms)

Processing
time (ms)

Execution
time (ms)

1 223 121 344
2 243 132 375
3 246 137 383
4 253 157 410
5 263 129 392
6 248 119 367
7 0 155 155
Total execution time 410
Data transferred: 276 MB

0

50

100

150

200

250

300

350

400

450

Execution time

(ms) - tasks

migration

Execution time

(ms) - no tasks

migration

Figure 11. Scenario 4 processing results.

0

50

100

150

200

250

300

Host 1

Transferred

data (MB) -

tasks

migration

Transferred

data (MB) -

no tasks

migration

Figure 12. Scenario 4 data transfers

In this scenario one could notice an insignificant
improvement in terms of processing time. Instead there is a
20% gain in terms of data transferred trough the network.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

60

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a new distributed architecture based
on state machines concept. The framework has been designed
especially for applications requiring high data availability.

The platform is composed by two independent modules
SMBDS and DCFMS interconnected via an API interface.

The architecture proved to be scalable, flexible and reduces
the development time considerably by providing an engine for
state machines management and migration.

Important contributions of the system relate to: custom
logical partitioning defined at the application level (abstractly
handling) and load balancing support due to the data
awareness (data location information) feature while
maintaining a high data availability.

The system has been experimentally evaluated in a very
high speed network (Myrinet). Two types of executions have
been considered: the former type employed the migration, data
localization and logical partitioning features, while the latter
didn’t. Results for both execution types have been compared in
four different scenarios.

The features introduced by the system improved the
execution time with up to 30% while reducing data transfers
over the network by up to 60%.

Future directions in the development of the system may
include the hosts’ speed ranking which could become
significant when deciding the source hosts, or the network
traffic monitoring which could help deciding the route that
should be followed for a faster download.

Besides steering the simulation processes the researcher
shall be able to also steer data storage, or alter data held by the
DCFMS while simulation is running. Apart from other existing
systems, like Dryad [16], designed as a general-purpose
distributed execution engine for coarse-grain data-parallel
applications, our system will try to look for speed at all levels,
and use also the fine-grain data parallelism. Some similarities
will be maintained, such as those related to an application
ability to discover the size and placement of data at run time,
scalability, extensibility and ability to reconfigure the
computation graph as the computation progresses, to make
efficient use of the available resources.

REFERENCES

[1] Tadashu Watanabe - Numerical Simulation of Flow Field in and around
a Droplet in an Acoustic Standing Wave, Recent Advances in Fluid
Mechanics and Heat & Mass Transfer, pp170-175, ISBN 978-1-61804-
026-8, WSEAS, Florence, Italy, August 23-25, 2011

[2] Hong Chen, Weimin Zheng, Aiqing Zhang - Parallelization and I/O
Optimization for a 3-D Plasma Simulation Code, Recent Advances in
Computers, Proceedings of the 13th WSEAS International Conference
on COMPUTERS (part of the 13th WSEAS CSCC Multiconference),
ISBN 978-960-474-099-4, Rodos, Greece, July 23-25, 2009

[3] W. Gu, J. Vetter and K. Schwann. An annotated Bibliography of
Interactive Program Steering, SIGPLAN Notices 29 (1994), pp. 140-148
and Technical Report GIT-CC-94-15 (Georgia Institute of Technology)

[4] R.J. Allan and M. Ashworth. A Survey of Distributed Computing,
Computational Grid, Meta-computing and Network Information Tools,
available from http://www.ukhec.ac.uk/publications/reports/survey.pdf

[5] Cosmin M. Poteras, Mihai L. Mocanu - A State Machine-Based Parallel
Paradigm Applied in the Design of a Visualization and Steering

Framework, Recent Researches in Applied Informatics, Proceedings of
the 2nd International conference on Applied Informatics and Computing
Theory (AICT '11), ISBN : 978-1-61804-034-3, pp232-236, WSEAS,
Prague, Czech Republic, September 26-28, 2011

[6] Mihai L. Mocanu, Cosmin M. Poteras, Constantin S. Petrisor -
Improving Parallel Data Flow Support in a Visualization and Steering
Environment, Recent Researches in Applied Informatics, Proceedings of
the 2nd International conference on Applied Informatics and Computing
Theory (AICT '11), ISBN : 978-1-61804-034-3, pp226-231, WSEAS,
Prague, Czech Republic, September 26-28, 2011

[7] Morris Riedel, Wolfgang Frings, Sonja Habbinga, Thomas Eickermann,
Daniel Mallmann, Achim Streit, Felix Wolf, Thomas Lippert, Andreas
Ernst, Rainer Spurzem: Extending the collaborative online visualization
and steering framework for computational Grids with attribute-based
authorization. GRID 2008: 104-111

[8] S. Jha, S. Pickles, and A. Porter. A Computational Steering API for
Scientific Grid Applications: Design, Implementation and Lessons. In
Workshop on Grid Application Programming Interfaces, Brussels,
Belgium, Sept. 2004.

[9] J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L.
Pinning and A. R. Porter, Computational Steering in RealityGrid,
Proceedings of the UK e-Science All Hands Meeting, September 2-4,
2003

[10] J. A. Kohl and P. M. Papadopoulos. Efficient and Flexible Fault
Tolerance and Migration of Scientific Simulations Using CUMULVS.
In 2nd SIGMETRICS Symposium on Parallel and Distributed Tools,
Welches, OR, Aug. 1998.

[11] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS:
Providing Fault-Tolerance, Visualization and Steering of Parallel
Applications. Intl. Journal of High Performance Computing
Applications, 11(3):224-236, Aug. 1997.

[12] J.J. van Wijk and R. van Liere. An environment for computational
steering. In G.M. Nielson, H. M¨uller, and H. Hagen, editors, Scientific
Visualization: Overviews, Methodologies, and Techniques, pages 89–
110. Computer Society Press, 1997.

[13] R. van Liere, J.D. Mulder, and J.J. van Wijk. Computational steering.
Future Generation Computer Systems, 12(5):441–450, April 1997.

[14] B. Cohen. The BitTorrent Protocol Specification, BitTorrent.org. (10-
Jan-2008)

[15] The Apache™ Hadoop™ project, http://hadoop.apache.org/
[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly. Dryad: Distributed

Data-Parallel Programs from Sequential Building Blocks, EuroSys -
European Conference on Computer Systems, Lisbon, Portugal, March
21-23, 2007, pp. 59-72

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

61

