
 

 

  
Abstract— This paper introduces a new approach, based on state 

machines, for distributed frameworks, that is able to support both 
distributed simulation and computational steering. The framework 
makes use of a Distributed Chunk-based Flow Management 
System (DCFMS) having as main benefits the logical 
partitioning and data localization information. The 
architectures and implementation details of the two systems as 
well as integrative experimental results are briefly discussed.  
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I. INTRODUCTION 

UNNING complex applications in today’s world is more 
and more a matter of integration of efficient 

infrastructures and good computational techniques. Cluster and 
grid simulation applications that employ parallel computing 
techniques (i.e. MPI, OPENMP) [1, 2] to simulate real 
processes are just a common example. Modeling and 
simulation have become key phases for a wide spectrum of 
applications in modern research. In contrast with the study of a 
real system, whose advantage is the accuracy of the evaluation, 
but who might become destructive, dangerous, and expensive, 
the study of a model is easier, safer and cheaper. Modeling, as 
a general term, denotes the process that offers an abstract 
representation of a system, which allows, in turn, through its 
study, the formulation of valid conclusions on the real system. 
Simulation generally refers to the numerical evaluation of a 
model. When dealing with a complex system whose analytical 
solution is hard to be determined, simulating the system’s 
behavior on a model could be the only solution left. The 
outcome of a simulation may be analyzed in a separate post-
processing step (for instance by viewing the results in a 
separate visualization application), and, based on intermediate 
results, a decision can be made to change simulation 
parameters for another computational period. In order to 
increase the efficiency, new techniques for live visualization 
and steering have emerged allowing simulation and 
visualization to be performed simultaneously. If online 
visualization refers to the ability to immediately observe the 
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processing steps during the simulation, this in turn allows for 
computational steering to influence the computation of the 
simulation during runtime on a cluster, grid and even on a 
supercomputer. They are meant together to dynamically steer 
the parameters of a parallel simulation, increasing not only the 
interactivity but also the efficiency of the overall process. 
Visualization is the process of exploring, transforming and 
rendering of data through images, with the goal to offer a 
thorough and deep understanding of data. It is a complex field 
of study in our days, including elements of computer graphics, 
digital image processing, computational geometry, numerical 
analysis, statistics, and studies on human perception. 
Computational steering is a process of manual intervention on 
an autonomous computational system, with the goal to analyze 
and modify outputs. It is a very common technique in 
numerical evaluation, used to guide a computational process 
towards regions of interest. Apart from this pure applicative 
perspective, computational steering can be examined from a 
broader technical perspective; for instance, we may consider 
the modification of memory amount available for a process, 
with the goal to observe and influence the effects over the 
execution time. This paper deals with the concept especially in 
the latter, broader sense. The taxonomy of the concept also 
includes: program steering, which has been defined as the 
capability to control the execution of resource-intensive, long 
running programs (this may imply modifications of program 
state, starting and stalling program execution, etc.), data 
steering (which implies the management of data output, 
alteration of resource allocations etc.), and dynamic steering 
(which requires the user to monitor program or system state 
and have the ability to make changes, through “add-ons” 
routine calls or data structures interaction in the code). 
Interactive simulation combined with visualization has 
undergone a major development and it is now widely used. Up 
to the late 80s, simulation had been considered a tedious and 
time consuming process, mainly due to the lack of interactivity 
with the ongoing simulation process: the researcher had to 
exhaustively execute the simulation for all input data sets and 
he could only analyze data as a post-simulation phase, even if 
in some cases the simulation process reveals useless results 
from the beginning. When the need of interactivity became 
obvious, research also concentrated on developing simulation 
frameworks with visualization and steering capabilities, so that 
an ongoing simulation could be immediately observed and 
guided. The development of distributed simulation and 
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steering frameworks, able to support run-time adjustments and 
live visualization, has not been an easy task. Extensive surveys 
of research in this area were carried out in over the last two 
decades [3, 4], however not many of the projects led to 
practical tools. Some of the most relevant frameworks for 
distributed simulation and computational steering, for the 
scope of this paper, may be considered: COVS[1], 
RealityGrid, CUMULVS and CSE. COVS[7] (Collaborative 
Onlline Visualization and Communication) is a framework that 
encapsulates common visualization frameworks (VTK, 
AVS/Express), steering technologies (VISIT, gViz, ICENI) as 
well as communication libraries (VISIT, PV3) that carry out 
the data transportation and steering commands. This multi-
framework integration allows COVS to run simulations 
independently from visualization and communication tasks. 
RealityGrid [8, 9] is an API library consisting mainly from two 
modules. The former is responsible for offering steering 
capabilities and the latter provides tools for dedicated client 
applications. RealityGrid uses check-pointing techniques for 
supporting steering commands. CUMULVS (Collaborative 
User Migration, User Library for Visualization and Steering) 
[10, 11] has been developed at Oak Ridge National Laboratory 
and has been designed for the development of collaborative 
on-line and interactive simulation and visualization. The power 
of this platform consists in the advanced recovery techniques, 
the tasks migration support and check-pointing. CSE 
(Computational Steering Environment) [12, 13] has been 
developed at the Center for Mathematics and Computer 
Science, in Amsterdam. It uses a centralized architecture 
around a replicated Data Manager that is able to carry out 
steering commands and coordinate the simulation tasks. The 
Data Manager from CSE leads us to an important problem in 
the analysis of these efforts: data availability. The 
computations may be dramatically slowed down by the 
acquiring of data. Dataflow processing is at the same time the 
most appropriate model of programming and a crucial factor 
for achieving the desired performance. Existing systems like 
BitTorrent and Apache Hadoop Distributed File System 
implement a parallel dataflow style of programming which 
provide the data required by a distributed application’s 
processes in the most efficient way. The BitTorrent Protocol 
[14] establishes peer-to-peer data transfer connections between 
a group of hosts, allowing them to download and upload data 
inside the group simultaneously. The torrents systems that 
implement BitTorrent protocol use a central tracker that is able 
to provide information about peers holding the data of interest. 
Once this data reaches the client application, it tries to connect 
to all peers and retrieve the data of interest. However, it is up 
to the client to establish the upload and download priorities. 
Torrents systems might be a good choice for distributed 
environments, especially for those based on slower networks. 
However, the main disadvantages of torrent systems are 
related to the centralized nature of the torrents tracker as well 
as leaving the entire transfer algorithms and priorities up to the 
client application which might cause important delays if the 

transfers trading algorithm chooses to serve a peer that might 
have a lower priority at the application level. The centralized 
nature of the tracker concentrates the reliability around the 
tracker; if the tracker goes down, the entire system becomes 
not functional. Torrents are mainly systems that transfer files 
in distributed environments in raw format without any logical 
partitioning of the data. Such logical partitioning might often 
prove to be very important. For example if an imaging 
application needs a certain rectangle of an image it would have 
to download the entire file and then extract the rectangle by 
itself instead of just downloading the rectangular area and 
avoid transferring unnecessary parts of the file The Hadoop  
Distributed File System has been designed as part of Apache 
Hadoop [15] distributed systems framework. Hadoop has been 
built upon the Google’s Map-Reduce architecture as well as 
HDFS file system. HDFS proved to be scalable, and portable. 
It uses a TCP/IP layer for internal communication and RPC for 
client requests. The HDFS has been designed to handle very 
large files that are sent across hosts in chunks. Data nodes can 
cooperate with each other in order to provide data balancing 
and replication. The file system depends closely on a central 
node, the name node whose main task is to manage 
information related to directory namespace. HDFS offers a 
very important feature for computational load balancing, 
namely it can provide data location information allowing the 
application to migrate the processing tasks towards data, than 
transferring data towards processing task over the network [4]. 
The main drawback of HDFS seems to be the centralized 
architecture built around the name node. Failure of the name 
node implies failure of the entire system. There are still 
available techniques for replication and recovering of the 
name node, but this might cause unacceptable delays in a high 
performance application. Due to the well known diversity and 
complexity of distributed models, choosing the appropriate 
design for a system like ours is not an easy task. Besides of the 
usual requirements imposed to a distributed system, like 
scalability, flexibility, extensibility, portability, we added 
support for load balancing and tasks migration, and safety 
features. For this we concluded to a design that merges 
together parallel mapping of tasks in the form of state 
machines, able to be deployed in a robust way over a network, 
and parallel dataflow handling, separated into a standalone 
module whose main role is to acquire, store and provide the 
data required by the application’s processes in the most 
efficient way. We will describe in this paper only the design of 
the two modules.  
The rest of the paper is organized as follows. Section II 
describes the design and implementation details of the State 
Machines Based Distributed System (SMBDS) [5]. Section III 
introduces the conceptual model for Distributed Chunks Flow 
Management System (DCFMS) [6] while section IV describes 
the main implementation details of DCFMS. Section V 
explains how the two systems can work together and presents 
integrative experimental results. Section VI concludes the 
paper and presents our future thoughts. 
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II. STATE-MACHINES FRAMEWORK DESIGN AND 

IMPLEMENTATION 

It is very common that many domains impose very strict 
requirements for software. For example, medicine requires 
very high safety standards as well as high performance 
environments due to the incompatibility of this field with 
errors and instability. Imagine the dramatic effects of an error 
occurred in a software application that assists a surgery. That 
could become fatal. To improve the reliability and safety, one 
has to make sure that at any moment the software is in a 
consistent state. A good practice would be to analyze all 
possible states prior to the system development and by 
ensuring the system’s reaction is appropriate in any state. All 
these constraints lead us to the idea of representing tasks as 
finite state machines. 

State machines can provide code safety, robustness, 
traceability, excludes erroneous states and inconsistencies 
while providing a simple and well structured “package” for 
representing complex tasks. Being represented as “packages”, 
tasks are encapsulated and can easily migrate in distributed 
environments. Tasks migration together with live monitoring 
of the distributed environment reveals new possibilities for 
defining dynamic load balancing algorithms. 

We propose in this paper a new design model for distributed 
simulation environments whose architecture is illustrated in 
fig.1. The model has been implemented as a class library that 
reduces considerably the applications development time. Our 
model consists of five main modules: Simulation Module, 
Control and Communication Module, Visualization Module, 
Shared Memory Module and Client Application. 

 

 
Fig. 1. The structure of the proposed distributed system. 

 

The processing is being performed by the simulation 
processes. They are represented as state machines, and there 
can be run as many processes as each host can handle 
efficiently. The shared memory module can comply either to a 
distributed form or a centralized one. Its main goal is to store 
the system’s parameters which usually realize the 
computational steering. The control and communication 
module handles data flow as well as monitoring and migration 
jobs. It is responsible for acquiring input data, forwarding 

output data to the visualization filters, synchronizing access to 
the shared memory while monitoring the system’s resources 
and loads and realizing machines’ migration whenever 
necessary. The control and communication module is able to 
rise the computational steering to a new level by allowing the 
user to manually specify simulation processes migration.  
There will be only one instance of the control and 
communication module on each host. The visualization 
module is responsible for translating simulation’s output which 
usually is in a raw format into a more appropriate format for 
visualization. The client application initializes, monitors, 
controls (steers) and analyzes the simulation. 

The architecture is based on the theoretical model of a state 
machine: a state machine is a quintuple  

where  is the set of input parameters (input alphabet, finite, 
non empty), S is the set of states,  is the initial state,  is the 

states transition function  and F is the set of final 

states. The architecture has ensures the separation between 
machine code and machine data 

The library consists of a set of abstract classes and 
interfaces that allow the developer to define the machine’s 
algorithm by extending/implementing the proper methods. The 
library’s engine automatically manages the state machines and 
their migration. 

StateMachineData

+List<IInputParameter> parameters
+TranzitionTable transitionTable
+int currentState
+ID
+Type
+List<int> finalStates

TranzitionTable

+statesMapping

+getNextState()

TypedParameter

+equals(object value)

IParameter

StateMachine

+StateMachineData data

+performComputation()
-threadedRun()

StateMachinesManager

+StateMachine unpackStateMachine(StateMachineData)
+StateMachineData packMachine()
+void RunMachine(StateMachine)
+mpiSendMachine()
+mpiReceiveMachine()

StateMachineX

+performComputation()

StateMachineY

+performComputation()

1. instantiate StateMachineData:ID=1, Type=X

1. instantiate StateMachineData:ID=2;Type=Y

2. create and run

2.create and run

 

 

Fig. 2. The Library’s architecture and workflow. 

 
The main class of the platform is the StateMachine class. It 

is an abstract class which serves as base class for every type of 
state machine required by the application (StateMachineX, 
StateMachineY). It handles the states succession and 
computations by employing the performComputation method 
together with the states transition table. The 
performComputation method will be overridden by the derived 
types and it will hold all custom algorithms specific to each 
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state. StateMachine class starts computations by invoking the 
method passing as parameters the initial state, performs 
computations associated with this state and retrieves the 
output. The states transition table is being checked for the next 
state and the process continues in the same manner. 

Data is being separated from code by using 
StateMachineData objects. StateMachineData holds all 
relevant information about the machine: parameters, current 
state, transition table, machine identifier – unique in the entire 
environment, the machine type (StateMachineX, 
StateMachineY), final states, etc. All these can be extended by 
deriving the StateMachineData class. 

The transition table (TransitionTable) its represented as a 
mapping between pairs <parameters, state> and future state. 
The transition is performed by method getNextState which 
retrieves the next state based on the current state and the 
output values of the parameters from the current state. 

For flexibility reasons the parameters have been interfaced 
by the IParameter interface leaving its implementation up to 
the developer. IParameter offers getter and setter methods as 
well as parameters matching methods. 

The state machines’ management is ensured by the “brain” 
class, which is StateMachinesManager. Its role is to manage 
all the machines running on a host. It is able to monitor the 
system, to ensure data availability, to create, run and migrate 
machines to and from other hosts. The most important tasks 
performed by the StateMachinesManager are related to tasks 
migration and load balancing. These tasks are performed by 
the following methods: packMachine() – prepares the machine 
for migration, unpackMachine() – prepares machine for 
resuming the processing on the new host, mpiSendMachine() – 
sends the machine to other host, and mpiReceiveMachine() – 
receives the machine from another host, and RunMachine() – 
which resumes the processing. Each host in the distributed 
environment will run one instance of the state machines 
manager.  

Considering the above implementation details we can 
enumerate the steps needed for implementing distributed 
simulation applications on top of the framework. 

• Defining the parameters of the system (implementing 
IParameter) 

• Defining all types of machines needed. For each type, a 
new derived class will be created inheriting the class 
StateMachines. The method performComputation will 
hold the processing algorithms. 

• TransitionTable class will be instantiated and populated 
with mappings of type <<parameter, current state>, 
future state> 

StateMachinesManager will be instantiated and run on each 
host. 
 

III.  DISTRIBUTED CHUNKS FLOW MANAGEMENT SYSTEM. 
CONCEPTUAL MODEL 

The proposed DCFMS, whose model is illustrated in Figure 

3, is supposed to offer the following features: 
� Cost. Better price/performance as long as commodity 

hardware is used for the component computers. 
� Portability. A cross-platform system design that does not 

require special system priviledges for running 
� Extensibility. Easy to do, because of its modular design 
� Scalability. Hosts can be added at run-time, and storage 

capacity can be increased incrementally  
� Run-time storage updates, abstract communication API 
� Customizable data handling for all data types, etc. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 The DCFMS design model 
 

The entire model has been built around one key element, the 
data chunk. It usually represents a file partition but it can also 
be any data object required by the application’s processes.  
Besides the data piece itself, a data chunk also contains meta-
information describing the data piece, like: size, location 
inside source file, the data type, timestamp of latest update or 
the class that handles chunks of its type. Thus, the most 
important contribution of DCFMS is the way it handles chunks 
of different types in an abstract mode without actually 
knowing what is inside the chunk, leaving the data partitioning 
up to the application level. This is very important from an 
application perspective, allowing it to map data chunks to 
processing tasks very efficiently. No restrictions are imposed 
by the DCFMS on data partitioning. 

The bridge between the abstract representation of data 
chunks and their actual type is the Type Manager. It is able to 
make use of external classes (defined at the application level) 
where all the file type specific functionality can reside. The 
classes are dynamically loaded whenever the application layer 
needs partitioning, files reconstruction as well as information 
related to the collection of chunks (i.e. the number of chunks). 
It is the applications' developer task to implement the data 
chunks handler classes. The DCFMS only provides a set of 
interfaces that help to implement the partitioning logic. 

For example, one might need to handle two types of files in 
their distributed application: image files and text files. In case 
of the image files a data chunk might be represented by a 
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rectangular region of the initial image. Multiple such chunks 
can cover the entire image. An image can be split into 
rectangular chunks by dynamically invoking the image 
partitioning method. In case a node needs an entire file that is 
spread all across the system, DCFMS can acquire all its 
chunks from different hosts and recompose the image by 
dynamically invoking the image reconstruction method. In 
case of a text file, the chunks can take the form of paragraphs, 
or pages, or simply and array of characters of a certain size. In 
a similar way the files can be dynamically partitioned and 
reconstructed. Later in this paper we will discuss the 
development effort involved in writing such classes. 

The proposed DCFMS is able to scale up dynamically at run 
time without using a central node. This functionality is 
achieved by the Discovery Unit which broadcasts and listens 
to discovery messages. There are two API interfaces that allow 
DCFMS nodes to communicate with each other and also with 
the client application.  

IV. DCFMS - METHODS AND ALGORITHMS 

A. Data synchronization 

A key feature in any distributed system that handles large 
amount of data is keeping data synchronized. Spreading data 
around the network while keeping it up to date uses events. 
Each node that has updated a data chunk must broadcast to all 
other nodes that he is aware of about the changes, and event 
handlers update the timestamp of the affected data. Depending 
on the nodes connectivity there are two choices: 
� No event retransmission – the ideal situation when the 

network bandwidth allows 1 to 1 connections between any 
two nodes in the system; it is enough to broadcast an 
update event once to all other nodes in the system. 

 

 
Fig. 4 Retransmission not needed for event propagation. 

 

� Event retransmission – when there is at least one node not 
interconnected with all other nodes in the system. To 
make sure that node is always notified about update 
events, retransmission is necessary; to stop infinite loop of 
update events nodes employ timestamps (whenever an 
update event time stamped in the past it will be ignored) 

 

 

 

 

 Fig.5.Events retransmission 
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B. Data flow 

The flow algorithm is based on availability tables. We will 
analyze a concrete scenario. Lets assume DCFMS consists of 
nodes N0, N1, … Nn, and let node N0 be interested in aquiring 
data chunks C1, C2, … Cm. N0 will broadcast a request for 
C1,...Cm to the entire DCFMS. Nodes N1...Nn reply back to N0 
with a subset of C1,....Cm that they host. As soon as replys 
arrive, N0 builds a chunks availability matrix having as rows 
the nodes N1....Nn and as columns chunks C1...Cm. (Ni,Cj) gets 
valued 1 if the chunk Cj is available on host Ni, otherwise it 
gets valued 0. N0's main goal is to establish as many 
connections as possible, but not more than one connection per 
serving host (at most n-1 connections at a time).  Chunks 
availability responses are performed in an asynchronous 
manner so that N0 won't have to wait for all responses before 
proceeding with transfers. Instead it will establish connections 
as the responses arrive, overlapping chunks transfer with 
availability requests. Whenever a chunk transfer completes, 
the External API will be informed about it and the client 
application can start processing the newly acquired data. 

As chunks might spread across DCFMS while N0 transfers 
its chunks, the availability matrix will be constantly updated by 
sending new availability requests whenever a chunk transfer 
completes and N0 has established less than n-1 connections 
(free download slots available). 

C. Data partitioning 

As previously mentioned, the user is able to retrieve exactly 
the data of interest causing an important reduction of the 
amount of data that travels through the network. A data chunk 
is basically any logic unit of data extracted from a data set 
(usually a file) according to a certain algorithm that reflects the 
application’s needs.  

The data extraction is based on the most simple principle: 
request – answer. The application places queries against 
DCFMS, queries are broadcasted in the entire system, each 
node invokes the appropriate chunker (the one associated with 
the request’s type), the chunker extracts the logical piece of 
data according to its internal algorithm (custom algorithm 
designed to serve the application environment’s needs), and 
ultimately it replies back with the data chunk. 

D. Support for load balancing 

In distributed applications it often happens that the 
processing of a data chunk requires less time than the transfer 
of the data itself. For this reason it might be a good practice to 
migrate the processing task towards the data than transferring 
data to the processing host. DCFMS is able to provide through 
its external API locating information about the data it holds 
(data aware system). It is the application's task to query the 
system for data location information and migrate the 
processing tasks throughout the nodes in order to reduce or 
eliminate the data transfer time. 

E. Developer's task: Implementing Chunker classes 

Chunker classes define how files or data objects are split 

into data chunks. A chunker class is a class that implements a 
Chunker interface defining the following content: 

a. Requests structures 
b. Response structures 
c. Data Requests handlers 
d. Meta-Data Requests handlers (ensuring data-awareness) 
An important feature of the system is that not all nodes need 

to hold all chunker classes known by the system. They only 
need the chunkers associated with the data they serve. If 
unknown type of data is requeste the node can dynamically 
load its associated chunker ar run-time. 

 

V. INTEGRATIVE RESULTS 

 
Figure 6 illustrates the integration of the two modules: 

SMBDS and DCFMS. 
 

 
Fig. 6. SMBDS and DCFMS integration 

 
Ideally each host would run one instance of each system. 

However this is not a constraint. For maximum performance it 
is recommended that each SMBDS process should be bound to 
a local DCFMS process. In what follows we will consider that 
this condition is being satisfied on all hosts. SMBDS will 
manage the execution of state machines acquiring data for 
their execution via the external API interface of DCFMS. 

Once integrated, we are interested to evaluate the real 
performance and efficiency of the two modules. Recall that the 
main benefits of the two integrated modules are: load 
balancing by migrating tasks, logical partitioning of the data, 
and data awareness (localization) feature. 

For obtaining an overview of these features, there will be 
compared the performance evaluations for two types of 
execution: the former execution which makes use of the 
features above and the latter which would instead use an 
uniform distribution of the work load involved without making 
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use of any of the above features. 
It has been developed an image processing application 

whose main goal was to give an overview on the gain 
introduced by the features above. The processing algorithm 
applies gaussian filters on images, but this is irrelevant in our 
study. We are only interested on the improvement of the 
performance indicators following the two execution types. 

The load balancing in our experiments made use of a very 
simple algorithm based on our observation that the transfer 
time of a data chunk between two hosts is N times longer than 
its processing time. There will be associated costs for each 
state machine. For example if a state machine needs to process 
a chunk of data that is not locally available, it will be 
associated a cost of N+1 (N for the transfer, 1 for the 
processing). The load balancing algorithm tries to keep hosts’ 
costs as balanced as possible. 

In our experiments each host will run in parallel five state 
machines, each machine having as job the processing of 
9.2MB of image data. 

As experimental environment it has been used a high speed 
Myrinet network with a bandwidth of 4 Gbps and 7 identical 
hosts (Intel Core 2 Duo E5200, 1GB of RAM memory). 

We have observed that on this environment, the transfer 
time of a data chunk is about twice longer that the processing 
time of the same data chunk. That means we have used a cost 
factor of 3 for a state machine that needs to transfer its data, 
and a cost of 1 for a state machine that needs to process locally 
available data. 

For evaluating the system we have considered four 
scenarios, as follows: 

Scenario 1: All 7 hosts hold the entire data collection. In 
this scenario all machines will have a cost of 1 since they can 
access their associated data set locally. 

Scenario 2: Five hosts hold the entire data collection. In this 
scenario two hosts will try to migrate a part of their tasks while 
transferring data for the rest of their machines. 

Scenario 3: Three hosts hold the entire data collection. In 
this scenario four hosts will try to migrate a part of their tasks 
towards the data holding hosts while transferring the data for 
the rest of their machines. 

Scenario 4: Only one host will hold the entire data set. This 
is the worst scenario as six hosts will have to acquire data for 
most of their machines. Only few machines will be migrated 
on the data holding host. 

For each scenario there will be measured the data transfer 
time and the processing time for each host, as well as the total 
execution time. 

Lets examine the results for each scenario. 
 

A. Scenario 1: All hosts hold the entire data collection 

 
In table 1 we can examine the results. In this scenario the 

state machines migration is useless as data can be accessed 
locally by all machines and the processing jobs are equally 
distributed on all hosts. 

TABLE 1. RESULTS FOR SCENARIO 1. 

Host State 
Machine
s sent 

State 
Machines 
received 

Data 
transfers 
time(ms) 

Processing 
Time (ms) 

Execution 
time (ms) 

1 0 0 0 151 151 
2 0 0 0 149 149 
3 0 0 0 145 145 
4 0 0 0 152 152 
5 0 0 0 157 157 
6 0 0 0 159 159 
7 0 0 0 152 162 
Total execution time: 162 ms 
Data transferred: 0 MB 

 

 

B. Scenario 2: Five hosts hold the entire data collection 

 
In this scenario each of the two hosts not holding any data 

have migrated 3 of their tasks towards the data holding hosts. 
Table 2 presents the results for this scenario while table 3 

presents the results for a statical run (not involving tasks 
migration) while figure 7 and 8 give a graphical overview of 
table 2 and 3. 

 
TABLE 2. RESULTS FOR SCENARIO 2 – TASKS MIGRATION 

Host State 
Machines 
sent 

State 
Machines 
received 

Data 
transfers 
time(ms) 

Processi
ng Time 
(ms) 

Execution 
time (ms) 

1 3 0 169 68 237 
2 3 0 178 74 252 
3 0 2 0 191 191 
4 0 1 0 184 184 
5 0 1 0 180 180 
6 0 1 0 202 202 
7 0 1 0 198 198 
Total execution time: 252 ms 
Data transferred: 36.8 MB 

 

 
TABLE 3. RESULTS FOR SCENARIO 2 – NO TASKS MIGRATION 

 

Host 
Transfer 
time (ms) 

Processing 
time (ms) 

Execution 
time (ms) 

1 209 143 352 
2 221 137 358 
3 0 163 163 
4 0 142 142 
5 0 148 148 
6 0 161 161 
7 0 138 138 

Total execution time: 358 ms 

Data transferred: 92 MB 
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Figure 7. Scenario 2 processing results 
 

 
Figure 8. Scenario 2 data transfers. 

 
We can observe that in this scenario there is a 29% gain in 
terms of processing times and a 60% reduction of the data 
transferred trough the network. 
 

C. Scenarion 3. Three hosts hold the entire data collection 

 
In this scenario each of the four hosts not holding any data 

have migrated 2 of their tasks towards the data holding hosts. 
Table 4 presents the results for this scenario while table 5 

presents the results for a statical run (not involving tasks 
migration) while figure 9 and 10 give a graphical overview of 
table 4 and 5. 

 
 
 
 
 
 
 

TABLE 4. RESULTS FOR SCENARIO 3 – TASKS MIGRATION 

Host State 
Machines 
sent 

State 
Machines 
received 

Data 
transfers 
time(ms) 

Processing 
Time (ms) 

Execution 
time (ms) 

1 2 0 202 84 286 
2 2 0 213 81 294 
3 2 0 198 83 281 
4 2 0 207 86 293 
5 0 3 0 245 245 
6 0 2 0 211 211 
7 0 3 0 239 239 
Total execution time: 294 ms 
Data transferred: 110.4 MB 

 
TABLE 5. RESULTS FOR SCENARIO 3 – NO TASKS M IGRATION 

 

Host 
Transfer time 
(ms) 

Processing 
time (ms) 

Execution 
time (ms) 

1 214 149 363 
2 237 157 394 
3 188 134 322 
4 225 156 381 
5 0 150 150 
6 0 154 154 
7 0 163 163 
Total execution time: 394 ms 
Data transferred: 184 MB 
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 Figure 9. Scenario 3 processing results. 
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Figure 10. Scenario 3 data transfers. 
 

We can observe that in this scenario there is a 25% gain in 
terms of processing times and a 40% reduction of the data 
transferred trough the network. 

 

D. Scenario 4. One host holds the entire data collection 

 
In this scenario each of the six hosts not holding any data 

have migrated one of their tasks towards the data holding 
hosts. 

Table 6 presents the results for this scenario while table 7 
presents the results for a statical run (not involving tasks 
migration) while figure 11 and 12 give a graphical overview of 
table 6 and 7. 

 
TABLE 6.RESULTS FOR SCENARIO 4 – TASKS M IGRATION 

Host State 
Machines 
sent 

State 
Machines 
received 

Data 
transfers 
time(ms) 

Processing 
Time (ms) 

Execution 
time (ms) 

1 1 0 238 115 353 
2 1 0 260 124 384 
3 1 0 242 121 363 
4 1 0 263 132 395 
5 1 0 267 139 406 
6 1 0 235 126 361 
7 0 6 0 314 314 
Total execution time 406 ms 
Data transferred: 220.8 MB 

 
 
 
 
 
 
 
 
 
 
 
 
  

 

TABLE 6.RESULTS FOR SCENARIO 4 – NO TASKS MIGRATION 

Host 
Transfer 
time (ms) 

Processing 
time (ms) 

Execution 
time (ms) 

1 223 121 344 
2 243 132 375 
3 246 137 383 
4 253 157 410 
5 263 129 392 
6 248 119 367 
7 0 155 155 
Total execution time 410 
Data transferred: 276 MB 
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Figure 11. Scenario 4 processing results. 
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Figure 12. Scenario 4 data transfers 
 

In this scenario one could notice an insignificant 
improvement in terms of processing time. Instead there is a 
20% gain in terms of data transferred trough the network. 
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VI. CONCLUSIONS AND FUTURE WORK 

This paper introduces a new distributed architecture based 
on state machines concept. The framework has been designed 
especially for applications requiring high data availability. 

The platform is composed by two independent modules 
SMBDS and DCFMS interconnected via an API interface. 

The architecture proved to be scalable, flexible and reduces 
the development time considerably by providing an engine for 
state machines management and migration.  

Important contributions of the system relate to: custom 
logical partitioning defined at the application level (abstractly 
handling) and load balancing support due to the data 
awareness (data location information) feature while 
maintaining a high data availability. 

The system has been experimentally evaluated in a very 
high speed network (Myrinet). Two types of executions have 
been considered: the former type employed the migration, data 
localization and logical partitioning features, while the latter 
didn’t. Results for both execution types have been compared in 
four different scenarios.  

The features introduced by the system improved the 
execution time with up to 30% while reducing data transfers 
over the network by up to 60%. 

Future directions in the development of the system may 
include the hosts’ speed ranking which could become 
significant when deciding the source hosts, or the network 
traffic monitoring which could help deciding the route that 
should be followed for a faster download. 

Besides steering the simulation processes the researcher 
shall be able to also steer data storage, or alter data held by the 
DCFMS while simulation is running. Apart from other existing 
systems, like Dryad [16], designed as a general-purpose 
distributed execution engine for coarse-grain data-parallel 
applications, our system will try to look for speed at all levels, 
and use also the fine-grain data parallelism. Some similarities 
will be maintained, such as those related to an application 
ability to discover the size and placement of data at run time, 
scalability, extensibility and ability to reconfigure the 
computation graph as the computation progresses, to make 
efficient use of the available resources. 
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