
 

 

  
Abstract— In this paper the real-time aspects of digital control 

system implementation are investigated. The control system design is 
based on the model predictive control, which is one of the most 
popular advanced control design techniques. Two alternatives of 
predictive control implementation using the programmable logic 
controllers (PLC) are proposed and compared. In the first case the 
control law design and execution is performed in PC using the 
MATLAB/Simulink environment and the PLC is used only to 
accomplish the data acquisition and control input implementation. 
The communication between PC and PLC is ensured by the OPC 
communication protocol. In the second case the control law is 
directly implemented in PLC using the available instructions. The PC 
is not needed for the real-time control execution; it only supports the 
control design and the signal processing and visualization. In both 
cases controlled plant is wired to PLC. 
 

Keywords— model predictive control, programmable logic 
controller, OPC communication, real-time system. 

I. INTRODUCTION 
ontrol of industrial processes is often realized using small 
digital computers called the programmable logic 

controllers (PLCs), where the hardware and software are 
specifically adapted to industrial environment. PLCs represent 
a cost effective solution for control of complex systems. They 
offer many advantages, such as flexibility (they can be 
reapplied to control other systems quickly and easily) and 
reliability (immunity to electrical noise, resistance to vibration 
and impact). However, this type of controllers usually offers 
only simple control structures, such as on-off control or PID 
control loops. In [1] an approach that models programmable 
logic controllers (PLCs) for their effective deployment in 
industrial control processes is presented. 

Wide development of control theory brought many 
advanced control methods with improved control 
performances, robustness or stability. Control laws of these 
methods usually differ from the control structures available in 
PLC, so their real-time implementation is more complicated. 
Reference [2] describes a hardware-in-the-loop environment 
for realistic experimentation of advanced controllers in order 
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to facilitate its study and posterior implementation in 
productive processes. The experimentation environment is 
formed by an industrial PC that acts as real time controller and 
other PC or real actuators like process plants. A 
hardware/software environment for hard real time simulation 
of dynamical systems and implementation and testing of 
robust controllers, based on Real Time Linux (Linux-RTAI) 
and COMEDI project, has been developed in [3]. 

The real-time control aspects play an important role in 
implementation of digital control systems. A real-time system 
can be defined as a system in which the correctness of a result 
not only depends on the logical correctness of the calculation 
but also upon the time at which the result is made available. 
The real-time computing is not equivalent to fast computing. 
Fast computing aims at getting the results as quickly as 
possible, while real-time computing aims at getting the results 
at a prescribed point of time within defined time tolerances 
[4]. 

This paper deals with the real-time implementation of one 
of the most popular advanced control design approaches, 
namely the model predictive control, by means of PLC 
Simatic S7-200 [5]. Model predictive control (MPC) has 
developed greatly over the last decades both within the 
research control community and in industry. MPC refers to a 
family of advanced control methods which make explicit use 
of the process model to predict the future process behavior 
and to calculate a future control sequence minimizing an 
objective function [6]. MPC has proved its effectiveness in 
many industrial application areas including petrochemical, 
chemical and food processing, automotive and aerospace 
industries [7].  

Predictive algorithms are available in various commercial 
control packages but their implementation costs could be 
considerable. It could be desirable to realize the MPC control 
laws on simple and more affordable controllers, such as PLC. 
In [8] the model predictive control implementation based on 
the conventional PID controller structure available in PLC has 
been proposed, provided that the plant model structure has 
been properly chosen. The real-time implementation of 
predictive control using the PLC B&R System 2005 and 
Process Visualization Interface has been presented in [9]. 

Two variants of MPC implementation using the PLC are 
presented in the paper. The first one consists in using another 
control system, for example PC, where the control algorithm 
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is designed and executed. In this case it is necessary to assure 
the communication between this control system and PLC. The 
communication protocol OPC can be used for this purpose. 
The second possibility is direct implementation of predictive 
control algorithm in PLC using the available instructions. In 
the following the pros and cons of both solutions will be 
analyzed.  

The paper is organized as follows. In the next section the 
OPC communication and the problems concerning the real-
time experiments are presented. The model predictive control 
design is briefly described in Section III. Two alternatives of 
MPC real-time implementation using the simple industrial 
controllers are proposed and experimentally evaluated in 
Section IV. Finally, some conclusions are given. 

II. OPC 
OPC (originally OLE for Process Control) which stands for 

Object Linking and Embedding (OLE) for Process Control, is 
an industrial standard created with the collaboration of a 
number of leading worldwide automation hardware and 
software suppliers, working in cooperation with Microsoft. 
The standard is maintained by OPC Foundation [10] and 
widely used within the industrial automation to facilitate the 
interoperability of control devices from different 
manufacturers. It specifies the mechanism for communication 
of different data sources and client applications within the 
process control. The data source can be a process control 
system, a database or a supervisory control application. 
Reference [11] gives detailed information about OPC, and 
how OPC can be beneficial for research and development and 
presents an overview of the latest developments and 
standards. 

The OPC Specification is a non-proprietary technical 
specification that defines a set of standard interfaces based 
upon Microsoft’s OLE/COM/DCOM platform and .NET 
technology. The application of the OPC standard interface 
enables the interoperability between automation/control 
applications, field systems/devices and business/office 
applications.  

Traditionally, each software or application developer was 
required to write a custom interface or server/driver, to 
exchange data with hardware field devices. OPC eliminates 
this requirement by defining a common, high performance 
interface that permits this work to be done once, and then 
easily reused by HMI, SCADA, Control and custom 
applications. 

A. OPC server 
OPC server is the software application which operates as 

the application programming interface (API) or as the protocol 
converter. OPC Server is connected to a device such as PLC, 
distributed control system (DCS), remote terminal unit (RTU) 
or the data source (database or user interface) and translates 
the data into a standard-based OPC format. OPC compliant 
applications such as a human machine interface (HMI), 
historian, spreadsheet, trending application, etc. can be 

connected to the OPC Server and then they can use it to read 
and write the device data. The OPC Server is based on a 
Server/Client architecture. 

B. OPC Toolbox 
MATLAB® [12] is a high-level language and interactive 

environment that enables to perform computationally 
intensive tasks. It is often used in academic community for 
design, analysis and simulation of advanced control 
techniques.  

The OPC Toolbox™ [12] extends MATLAB® and 
Simulink® with tools for interacting with OPC servers. It 
enables to read, write, and log OPC data from devices that 
conform to the OPC Foundation Data Access standard, such 
as distributed control systems, supervisory control and data 
acquisition systems, and programmable logic controllers. The 
toolbox enables MATLAB and Simulink products to respond 
to an OPC server- or OPC Toolbox software-initiated event, 
such as a shutdown, server error, or item value change. 
MATLAB with OPC Toolbox can be used in process 
industries for data analysis, visualization, simulation, and 
rapid prototyping of algorithms on real processes.  

The OPC Toolbox provides three ways to implement an 
OPC Data Access Client: 

1. Execute all OPC Toolbox functions directly from the 
MATLAB command line or incorporate them into the 
MATLAB applications.  

2. Use the graphical user interface (GUI) to rapidly 
connect to OPC servers, create and configure OPC 
Toolbox objects, and read, write, and log data.  

3. Use the Simulink Blockset library to read and write data 
to and from the OPC server while simulating a system. 

In [13] the OPC configuration has been described in detail 
and experimentally tested.  

C. Hierarchical OPC data access object  
When used in MATLAB, the toolbox employs an intuitive, 

hierarchical object structure to help you manage connections 
to OPC servers and collections of server items or tags. You 
create an OPC Data Access Client object to connect to an 
OPC server. This connection lets you browse the server name 
space and retrieve properties of each item stored on the server. 
You create Data Access Group objects to control sets of Data 
Access Item objects, which represent server items. The 
toolbox allows configuring and controlling all client, group, 
and item objects by modifying their properties. OPC Tool 
shown in Fig. 1 enables to browse the server’s name space, 
configure the objects, and read and write the OPC data. It also 
enables to log OPC data into MATLAB for analysis and 
plotting. 

Simulink's OPC toolbox offers a configuration block to 
specify the OPC clients used in the model, to define the 
behavior for OPC errors and events and to set the real-time 
behavior. During the simulation, the model executes in pseudo 
real-time, matching the system clock as closely as possible by 
automatically slowing the simulation. The block parameters 
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can also be configured so that the simulation runs more slowly 
than the system clock. Fig. 2 shows the OPC Configuration 
window and the window for OPC Client management can be 
seen in Fig. 3. 

 

 
 
Fig. 1 OPC Tool 
 

 
 
Fig. 2 OPC Configuration  

 

 
 
Fig. 3 OPC Client Manager 
 
In the OPC Configuration window, Pseudo real-time 

simulation panel allows configuring options for running the 

simulation in pseudo real-time. When checkbox “Enable 
pseudo real-time simulation” is checked, the model execution 
time matches the system clock as closely as possible by 
slowing down the simulation appropriately. The “Speedup” 
setting determines how many times faster the simulation runs 
comparing to the system clock. For example, when “Speedup” 
is set to 2, it means that a 10-second simulation will take 5 
seconds to complete.  

Note that the real-time control settings do not guarantee 
real-time behavior. If the model runs slower than real time, a 
pseudo real-time latency violation error occurs. You can 
control how Simulink responds to a pseudo real-time latency 
violation using the settings in the Error control panel. The 
“Show pseudo real-time latency port” check box enables to 
output the model latency. When it is checked, the pseudo real-
time latency (in seconds) appears as an output port of the 
”OPC Configuration” block. Pseudo real-time latency is the 
time spent by waiting for the system clock during each step. If 
this value is negative, the simulation runs slower than real 
time and the Simulink action is determined in the “Pseudo 
real-time violation” setting. 

D. Reading and writing OPC data 
Once a group object containing item objects is created, you 

can read from or write to individual items or all the items in 
the group simultaneously. In MATLAB, read and write 
operations can occur either synchronously (MATLAB 
execution is blocked until the operation is complete) or 
asynchronously (MATLAB can continue processing while the 
operation is in progress). 

 

 
 
Fig. 4 OPC Read 
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In Simulink, the read and write blocks retrieve and transmit 
data synchronously or asynchronously to and from the OPC 
server. The blocks contain a client manager that makes 
possible to specify and manage the OPC server, select items, 
and define block sample times. The OPC Read Block shown 
in Fig. 4 enables to choose items from the OPC server and to 
read online plant data directly to the Simulink model. The 
OPC Write Block (Fig. 5) enables to choose items from the 
Simulink model and to write online plant data directly to the 
OPC server. 

 

 
 
Fig. 5 OPC Write 

E. Logging OPC Data  
The toolbox enables to log data as it changes over time. 

Data can be logged to a memory or to a disc. The MATLAB 
and add-on toolboxes can then be used to analyze and 
visualize the data, to design the control systems or to optimize 
the plant performances. 

F. Simulink block execution  
During the simulation of real-time (or pseudo real-time) 

control strategies in Simulink, an issue of block execution 
order can occur. Without explicitly defining block priorities in 
Simulink, the blocks are executed in order given by so called 
“sorted order”. There are two basic rules, which affect the 
block order: 

1. each block, which drives another block's “direct-
feedthrough” ports must precede this block, 

2. blocks without direct-feedthrough ports must give 
precedence to any blocks that drive the direct-
feedthrough ports. 

Direct-feedthrough port is an input port, whose current 
value determines current value of one of the block's outputs. 
Examples of blocks that have direct-feedthrough ports include 
the Gain, Product, and Sum blocks. Examples of blocks that 
have non-direct-feedthrough inputs include the Integrator 

block (its output is a function purely of its state), the Constant 
block (it does not have an input) and the Memory block (its 
output is dependent on its input in the previous time step). 

In Simulink there is also a possibility to assign block's 
priority, by which it is possible to influence the blocks sorted 
order. Block's priority can be assigned interactively using the 
“Priority” field of the block's “Block Properties” dialog box or 
programmatically using “set_param” command. The lower the 
number, the higher the priority; that is, 2 means the higher 
priority than 3. Higher priority blocks appear before lower 
priority blocks in the sorted order, though not necessarily 
before blocks that have no assigned priority. 

G. Real-time experiments 
During the implementation of real-time experiments in 

Simulink through the OPC communication it can happen that 
the real execution time is longer than the simulation time set 
in the Simulink configuration parameters. Fig. 6 shows the 
results of the real-time simulation where the real execution 
time of 30 s simulation was 31.6 s. The latency at each step is 
negative, which means that each sample period is longer than 
1 s [6].  
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Fig. 6 Sample time and latency 

 
Latency represents the sample time margin; the larger 

latency means larger margin, i.e. the sample time can be more 
decreased. There are several factors that allow getting the 
execution time near the value set in the Simulink scheme.  

1) Baud rate 
The speed of data transfer across the network is given by 

the baudrate, which is typically measured in units of kilobaud 
(kbaud) or megabaud (Mbaud). The baudrate measures how 
much data can be transmitted within a given amount of time. 
Latency of samples with different baud rate is shown in Fig. 7.  
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Fig. 7 Latency dependence on baudrate 

2) Number of OPC Read and OPC Write blocks 
Latency also depends on the number of OPC Read and OPC 

Write blocks as shown in Fig. 8. It can be seen that the 
number of OPC Write blocks influences the latency more than 
the number of OPC Read blocks.  
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Fig. 8 Latency dependence on the number of OPC Read and 

Write blocks 

3) Number of items for OPC Read and OPC Write 
In Fig. 9 dependence of latency on the number of OPC Read 

and OPC Write items is investigated. It can be concluded, that 
the number of OPC Read and Write items does not 
significantly influence the latency.  

When implementing the experiments with real processes it 
is important to properly set the communication parameters, 
more specifically, the data transfer rate, which is often 
forgotten in practice. Another very important factor is the 
sample time, which should be chosen taking into account the 
number of communication items (the number of exchanged 
process and control variables) and the sufficient 
computational reserve in case of the incidental processor 
overload by another process.   
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Fig. 9 Latency dependence on the number of OPC Read and 

Write items 
 
Implementation of real-time control strategies in Simulink 

and OPC communication meets some restrictions that are 
critical for processes with fast dynamics. The order of blocks 
execution in Simulink is highly influenced by the time 
difference between the sample reading and writing. It is 
essential to analyze the latency and the sample time variance, 
which is often omitted in setting the pseudo-real time 
properties in Simulink. This allows avoiding the problems in 
implementation of real-time control systems. 

III. MODEL PREDICTIVE CONTROL 

A. Control design 
Generalized predictive control (GPC) proposed in [14] 

belongs to the most popular model predictive control 
algorithms. It can handle various control problems for a wide 
range of plants, its implementation is relatively simple and due 
to several design parameters it can be tuned to the specific 
applications. GPC design is based on the linear parametric 
model of the controlled plant in the discrete-time form  
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where u(t) is the control variable, y(t) is the measured plant 
output, d denotes the minimum plant model time-delay in 
sampling periods, v(t) represents the external disturbances and 
ξ(t) is the random variable with zero mean value and finite 
variance. For simplicity in the following the C(z-1) polynomial 
is chosen to be 1.  
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The key idea of MPC is to use the process model (1) – (3) 
to predict the future process behavior and to calculate the 
future control sequence minimizing an objective function. The 
GPC control objective is to compute the future control 
sequence in such a way that the future plant output is driven 
close to the prescribed reference trajectory 
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subject to 
 

( ) 0)it(uzD 1 =+−  for phich ≤≤   (5) 
 
where sh, ph and ch are positive scalars defining the starting 
horizon, prediction horizon and control horizon, respectively, 
ρ  is a nonnegative control weighting scalar. ( )j/tty +ˆ  

denotes the j-step ahead prediction of y(t) based on data 
available up to the time t and ( )jty* +  is the future reference 
trajectory. 

The GPC control design consists in performing the 
following three steps: 

1. Compute the j-step ahead prediction of output ( )j/tty +ˆ  

for phsh,j ∈ .  
2. Minimize with respect to the future control inputs 

sequence the cost function (4) – (5). 
3. Determine the control law in a receding horizon sense – 

only the first term of the future control sequence is used 
at each sampling instant and the control sequence is 
calculated again at the next sampling time. This allows 
to incorporate a feedback into the control loop and to 
improve the control performances in the presence of 
disturbances and unmodelled dynamics. 

The GPC control law may be implemented using the 
standard pole-placement control structure (as shown in Fig. 
10) 
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Thus for the calculation of the control input at time t only 

the output and control inputs available up to this time together 
with the reference value ( )ty*  are necessary. 

 

 
Fig. 10 Control scheme 

 
The orders of ( )1zR −  and ( )1zS −  polynomials are given by 

orders of the plant model numerator and denominator. The 
coefficients of these polynomials depend on the plant model 
parameters as well as on the choice of the tuning parameters 
sh, ph, ch and ρ. The choice of this control tuning parameters 
influences the resulting closed loop performances and stability 
properties. Many design guidelines and rules of thumb 
concerning these parameters have been proposed in literature. 
To calculate the coefficients of ( )1zR −  and ( )1zS −  
polynomials the recursive solution of Diophantine equations is 
needed which may require a great amount of calculations 
especially in case of large prediction horizons. However, in a 
fixed-parameter control case these calculations need to be 
performed only once before the control design stage. 

The ( )1zT −  polynomial plays role in attenuation of the plant 
– model mismatch effects and it can also influence the robust 
stability. Some guidelines have been proposed for the 
selection of this polynomial. In this paper we assume the 
following simple form 
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B. Control implementation 
Based on the control law (6) the control input at time t can 

be expressed as follows 
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Dynamic behavior of many industrial processes with non-

oscillatory dynamics around an operating point can be 
described by the second order model, i.e. na=2, nb=1. In this 
case the polynomials in the control law (10) take the following 
form 
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Then the control input at time t has the form  
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This choice of the plant model orders is not restrictive; the 
more complex model structure leads only to higher orders of 

( )1zR −  and ( )1zS −  polynomials. As the consequence, more 
past values of control input and output signals have to be 
stored for the control law evaluation. 

IV. REAL-TIME IMPLEMENTATION OF MODEL PREDICTIVE 
CONTROL 

In this section two alternatives of the GPC control law real-
time implementation using the simple industrial controllers are 
proposed. 

A. PLC + PC control  
The process is connected through I/O wires to the PLC. 

Control design is performed in the second control system (PC) 
where also the control law (14) is implemented. For example, 
the MATLAB and Simulink with the OPC Toolbox can be 
used. In this software environment also the data processing 
and visualization can be realized.  

 

 
Fig. 11 PLC + PC control 
 
The PLC assures the data acquisition and control input 

implementation. The advantage is that the control law design 
and calculation is comfortable without the need of PLC 
programming. On the other hand, the problems concerning the 
real-time execution described in section 2 must be born in 
mind. 

B. PLC control  
 

 
Fig. 12 PLC control 
 
The process is connected through I/O wires to the PLC. The 

control design, i.e. the calculation of the ( )1zR − , ( )1zS − , 

( )1zT −  polynomials, is performed offline in the second control 

system (PC). The control law (14) is implemented in PLC. In 
this case the PC is not needed for the execution of real-time 
control, it only supports the design and signal processing and 
visualization stage. There are no problems with the control 
law real-time execution described in section 2.  

 

V. EXPERIMENTAL EVALUATION 
In order to evaluate the two variants of real-time predictive 

control implementation described in previous section, the 
control of simple cylindrical laboratory tank (Fig. 13) using 
the PLC Simatic S7-200 has been realized. The Siemens 
SIMATIC S7-200 series [8] is a line of micro-programmable 
logic controllers that can be used to control a variety of small 
applications. 

 
Fig. 13 Cylindrical laboratory tank 
 
The plant output is the water height measured by a pressure 

sensor and the plant control input is the inflow servo valve 
opening. The tank has also the outflow servo valve which has 
been used to generate a disturbance. The servo valves are 
governed by voltage within the range 0 – 10 V. The pressure 
sensor range is 0 – 10 V, too. 

The following second order plant model has been identified 
  

( )
2-1-

-1
1

0.917z1.916z1
0.003291z0.002254-zG
+−

+
=−  (15) 

 
with the sampling period Ts = 1 s. Based on this model the 

GPC controller has been designed using the following control 
design parameters 

 
10,2ch,30ph,1sh =ρ===  (16) 

 
The real-time control results are shown in Fig. 14 and Fig. 

15. The blue line (labelled PC) corresponds to the control law 
implementation in PC, while the black line (labelled PLC) 
depicts the control law implementation in PLC. 
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Fig. 14 Time responses of output and reference 
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Fig. 15 Time responses of control input and disturbance 

 
The difference in the output time responses in the beginning 

of experiment is due to the different initial conditions of both 
experiments. In the further course of experiment, the time 
responses are very close; the difference is induced only by the 
measurement noise. It can be concluded that both alternatives 
of the real-time control implementation are equivalent. The 
implementation of predictive control law expressed in the 
RST form in PLC is correct and is fully usable in practice 
without the need of another control system. 

VI. CONCLUSION 
This paper dealt with the real-time implementation of one 

of the most popular advanced control techniques. It has been 
shown that the predictive control law expressed in the RST 
form can be implemented on simple industrial controllers 
without the need of advanced control packages. The model 
predictive control brings many advantages in comparison with 
the PID control; it can be used to control a great variety of 
processes (including time-delayed systems, the nonminimum 
phase or the unstable ones) and due to several design 
parameters it can be tuned to obtain desired control 
performances and robustness properties.  
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