

Abstract— In this paper the real-time aspects of digital control

system implementation are investigated. The control system design is
based on the model predictive control, which is one of the most
popular advanced control design techniques. Two alternatives of
predictive control implementation using the programmable logic
controllers (PLC) are proposed and compared. In the first case the
control law design and execution is performed in PC using the
MATLAB/Simulink environment and the PLC is used only to
accomplish the data acquisition and control input implementation.
The communication between PC and PLC is ensured by the OPC
communication protocol. In the second case the control law is
directly implemented in PLC using the available instructions. The PC
is not needed for the real-time control execution; it only supports the
control design and the signal processing and visualization. In both
cases controlled plant is wired to PLC.

Keywords— model predictive control, programmable logic
controller, OPC communication, real-time system.

I. INTRODUCTION
ontrol of industrial processes is often realized using small
digital computers called the programmable logic

controllers (PLCs), where the hardware and software are
specifically adapted to industrial environment. PLCs represent
a cost effective solution for control of complex systems. They
offer many advantages, such as flexibility (they can be
reapplied to control other systems quickly and easily) and
reliability (immunity to electrical noise, resistance to vibration
and impact). However, this type of controllers usually offers
only simple control structures, such as on-off control or PID
control loops. In [1] an approach that models programmable
logic controllers (PLCs) for their effective deployment in
industrial control processes is presented.

Wide development of control theory brought many
advanced control methods with improved control
performances, robustness or stability. Control laws of these
methods usually differ from the control structures available in
PLC, so their real-time implementation is more complicated.
Reference [2] describes a hardware-in-the-loop environment
for realistic experimentation of advanced controllers in order

Manuscript received December 2, 2011: Revised version received
December 2, 2011. This work was supported by the Slovak Scientific Grant
Agency, Grant No. 1/2256/12 and by the Slovak Research and Development
Agency under the contract APVV-0211-10.

Authors are with the Institute of Control and Industrial Informatics, Faculty
of Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovak republic

to facilitate its study and posterior implementation in
productive processes. The experimentation environment is
formed by an industrial PC that acts as real time controller and
other PC or real actuators like process plants. A
hardware/software environment for hard real time simulation
of dynamical systems and implementation and testing of
robust controllers, based on Real Time Linux (Linux-RTAI)
and COMEDI project, has been developed in [3].

The real-time control aspects play an important role in
implementation of digital control systems. A real-time system
can be defined as a system in which the correctness of a result
not only depends on the logical correctness of the calculation
but also upon the time at which the result is made available.
The real-time computing is not equivalent to fast computing.
Fast computing aims at getting the results as quickly as
possible, while real-time computing aims at getting the results
at a prescribed point of time within defined time tolerances
[4].

This paper deals with the real-time implementation of one
of the most popular advanced control design approaches,
namely the model predictive control, by means of PLC
Simatic S7-200 [5]. Model predictive control (MPC) has
developed greatly over the last decades both within the
research control community and in industry. MPC refers to a
family of advanced control methods which make explicit use
of the process model to predict the future process behavior
and to calculate a future control sequence minimizing an
objective function [6]. MPC has proved its effectiveness in
many industrial application areas including petrochemical,
chemical and food processing, automotive and aerospace
industries [7].

Predictive algorithms are available in various commercial
control packages but their implementation costs could be
considerable. It could be desirable to realize the MPC control
laws on simple and more affordable controllers, such as PLC.
In [8] the model predictive control implementation based on
the conventional PID controller structure available in PLC has
been proposed, provided that the plant model structure has
been properly chosen. The real-time implementation of
predictive control using the PLC B&R System 2005 and
Process Visualization Interface has been presented in [9].

Two variants of MPC implementation using the PLC are
presented in the paper. The first one consists in using another
control system, for example PC, where the control algorithm

(e-mails: eva.miklovicova@stuba.sk, marian.mrosko@stuba.sk)

Real-time implementation of predictive control
using programmable logic controllers

Marián Mrosko and Eva Miklovičová

C

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

106

is designed and executed. In this case it is necessary to assure
the communication between this control system and PLC. The
communication protocol OPC can be used for this purpose.
The second possibility is direct implementation of predictive
control algorithm in PLC using the available instructions. In
the following the pros and cons of both solutions will be
analyzed.

The paper is organized as follows. In the next section the
OPC communication and the problems concerning the real-
time experiments are presented. The model predictive control
design is briefly described in Section III. Two alternatives of
MPC real-time implementation using the simple industrial
controllers are proposed and experimentally evaluated in
Section IV. Finally, some conclusions are given.

II. OPC
OPC (originally OLE for Process Control) which stands for

Object Linking and Embedding (OLE) for Process Control, is
an industrial standard created with the collaboration of a
number of leading worldwide automation hardware and
software suppliers, working in cooperation with Microsoft.
The standard is maintained by OPC Foundation [10] and
widely used within the industrial automation to facilitate the
interoperability of control devices from different
manufacturers. It specifies the mechanism for communication
of different data sources and client applications within the
process control. The data source can be a process control
system, a database or a supervisory control application.
Reference [11] gives detailed information about OPC, and
how OPC can be beneficial for research and development and
presents an overview of the latest developments and
standards.

The OPC Specification is a non-proprietary technical
specification that defines a set of standard interfaces based
upon Microsoft’s OLE/COM/DCOM platform and .NET
technology. The application of the OPC standard interface
enables the interoperability between automation/control
applications, field systems/devices and business/office
applications.

Traditionally, each software or application developer was
required to write a custom interface or server/driver, to
exchange data with hardware field devices. OPC eliminates
this requirement by defining a common, high performance
interface that permits this work to be done once, and then
easily reused by HMI, SCADA, Control and custom
applications.

A. OPC server
OPC server is the software application which operates as

the application programming interface (API) or as the protocol
converter. OPC Server is connected to a device such as PLC,
distributed control system (DCS), remote terminal unit (RTU)
or the data source (database or user interface) and translates
the data into a standard-based OPC format. OPC compliant
applications such as a human machine interface (HMI),
historian, spreadsheet, trending application, etc. can be

connected to the OPC Server and then they can use it to read
and write the device data. The OPC Server is based on a
Server/Client architecture.

B. OPC Toolbox
MATLAB® [12] is a high-level language and interactive

environment that enables to perform computationally
intensive tasks. It is often used in academic community for
design, analysis and simulation of advanced control
techniques.

The OPC Toolbox™ [12] extends MATLAB® and
Simulink® with tools for interacting with OPC servers. It
enables to read, write, and log OPC data from devices that
conform to the OPC Foundation Data Access standard, such
as distributed control systems, supervisory control and data
acquisition systems, and programmable logic controllers. The
toolbox enables MATLAB and Simulink products to respond
to an OPC server- or OPC Toolbox software-initiated event,
such as a shutdown, server error, or item value change.
MATLAB with OPC Toolbox can be used in process
industries for data analysis, visualization, simulation, and
rapid prototyping of algorithms on real processes.

The OPC Toolbox provides three ways to implement an
OPC Data Access Client:

1. Execute all OPC Toolbox functions directly from the
MATLAB command line or incorporate them into the
MATLAB applications.

2. Use the graphical user interface (GUI) to rapidly
connect to OPC servers, create and configure OPC
Toolbox objects, and read, write, and log data.

3. Use the Simulink Blockset library to read and write data
to and from the OPC server while simulating a system.

In [13] the OPC configuration has been described in detail
and experimentally tested.

C. Hierarchical OPC data access object
When used in MATLAB, the toolbox employs an intuitive,

hierarchical object structure to help you manage connections
to OPC servers and collections of server items or tags. You
create an OPC Data Access Client object to connect to an
OPC server. This connection lets you browse the server name
space and retrieve properties of each item stored on the server.
You create Data Access Group objects to control sets of Data
Access Item objects, which represent server items. The
toolbox allows configuring and controlling all client, group,
and item objects by modifying their properties. OPC Tool
shown in Fig. 1 enables to browse the server’s name space,
configure the objects, and read and write the OPC data. It also
enables to log OPC data into MATLAB for analysis and
plotting.

Simulink's OPC toolbox offers a configuration block to
specify the OPC clients used in the model, to define the
behavior for OPC errors and events and to set the real-time
behavior. During the simulation, the model executes in pseudo
real-time, matching the system clock as closely as possible by
automatically slowing the simulation. The block parameters

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

107

can also be configured so that the simulation runs more slowly
than the system clock. Fig. 2 shows the OPC Configuration
window and the window for OPC Client management can be
seen in Fig. 3.

Fig. 1 OPC Tool

Fig. 2 OPC Configuration

Fig. 3 OPC Client Manager

In the OPC Configuration window, Pseudo real-time

simulation panel allows configuring options for running the

simulation in pseudo real-time. When checkbox “Enable
pseudo real-time simulation” is checked, the model execution
time matches the system clock as closely as possible by
slowing down the simulation appropriately. The “Speedup”
setting determines how many times faster the simulation runs
comparing to the system clock. For example, when “Speedup”
is set to 2, it means that a 10-second simulation will take 5
seconds to complete.

Note that the real-time control settings do not guarantee
real-time behavior. If the model runs slower than real time, a
pseudo real-time latency violation error occurs. You can
control how Simulink responds to a pseudo real-time latency
violation using the settings in the Error control panel. The
“Show pseudo real-time latency port” check box enables to
output the model latency. When it is checked, the pseudo real-
time latency (in seconds) appears as an output port of the
”OPC Configuration” block. Pseudo real-time latency is the
time spent by waiting for the system clock during each step. If
this value is negative, the simulation runs slower than real
time and the Simulink action is determined in the “Pseudo
real-time violation” setting.

D. Reading and writing OPC data
Once a group object containing item objects is created, you

can read from or write to individual items or all the items in
the group simultaneously. In MATLAB, read and write
operations can occur either synchronously (MATLAB
execution is blocked until the operation is complete) or
asynchronously (MATLAB can continue processing while the
operation is in progress).

Fig. 4 OPC Read

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

108

In Simulink, the read and write blocks retrieve and transmit
data synchronously or asynchronously to and from the OPC
server. The blocks contain a client manager that makes
possible to specify and manage the OPC server, select items,
and define block sample times. The OPC Read Block shown
in Fig. 4 enables to choose items from the OPC server and to
read online plant data directly to the Simulink model. The
OPC Write Block (Fig. 5) enables to choose items from the
Simulink model and to write online plant data directly to the
OPC server.

Fig. 5 OPC Write

E. Logging OPC Data
The toolbox enables to log data as it changes over time.

Data can be logged to a memory or to a disc. The MATLAB
and add-on toolboxes can then be used to analyze and
visualize the data, to design the control systems or to optimize
the plant performances.

F. Simulink block execution
During the simulation of real-time (or pseudo real-time)

control strategies in Simulink, an issue of block execution
order can occur. Without explicitly defining block priorities in
Simulink, the blocks are executed in order given by so called
“sorted order”. There are two basic rules, which affect the
block order:

1. each block, which drives another block's “direct-
feedthrough” ports must precede this block,

2. blocks without direct-feedthrough ports must give
precedence to any blocks that drive the direct-
feedthrough ports.

Direct-feedthrough port is an input port, whose current
value determines current value of one of the block's outputs.
Examples of blocks that have direct-feedthrough ports include
the Gain, Product, and Sum blocks. Examples of blocks that
have non-direct-feedthrough inputs include the Integrator

block (its output is a function purely of its state), the Constant
block (it does not have an input) and the Memory block (its
output is dependent on its input in the previous time step).

In Simulink there is also a possibility to assign block's
priority, by which it is possible to influence the blocks sorted
order. Block's priority can be assigned interactively using the
“Priority” field of the block's “Block Properties” dialog box or
programmatically using “set_param” command. The lower the
number, the higher the priority; that is, 2 means the higher
priority than 3. Higher priority blocks appear before lower
priority blocks in the sorted order, though not necessarily
before blocks that have no assigned priority.

G. Real-time experiments
During the implementation of real-time experiments in

Simulink through the OPC communication it can happen that
the real execution time is longer than the simulation time set
in the Simulink configuration parameters. Fig. 6 shows the
results of the real-time simulation where the real execution
time of 30 s simulation was 31.6 s. The latency at each step is
negative, which means that each sample period is longer than
1 s [6].

0 5 10 15 20 25 30 35
-2

-1.5

-1

-0.5

0

0.5

1

1.5

sample [n]

de
lta

 t
[s

]

PLC time read
OPC time stamp
PLC time write
latency

Fig. 6 Sample time and latency

Latency represents the sample time margin; the larger

latency means larger margin, i.e. the sample time can be more
decreased. There are several factors that allow getting the
execution time near the value set in the Simulink scheme.

1) Baud rate
The speed of data transfer across the network is given by

the baudrate, which is typically measured in units of kilobaud
(kbaud) or megabaud (Mbaud). The baudrate measures how
much data can be transmitted within a given amount of time.
Latency of samples with different baud rate is shown in Fig. 7.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

109

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample [n]

la
te

nc
y

[s
]

9.6kbps
19.2kbps
187.5kbps

Fig. 7 Latency dependence on baudrate

2) Number of OPC Read and OPC Write blocks
Latency also depends on the number of OPC Read and OPC

Write blocks as shown in Fig. 8. It can be seen that the
number of OPC Write blocks influences the latency more than
the number of OPC Read blocks.

0 5 10 15 20 25 30 35
0.7

0.75

0.8

0.85

0.9

0.95

1

sample [n]

la
te

nc
y

[s
]

read 1, write 1
read 3, write 1
read 1, write 3
read 3, write 3

Fig. 8 Latency dependence on the number of OPC Read and

Write blocks

3) Number of items for OPC Read and OPC Write
In Fig. 9 dependence of latency on the number of OPC Read

and OPC Write items is investigated. It can be concluded, that
the number of OPC Read and Write items does not
significantly influence the latency.

When implementing the experiments with real processes it
is important to properly set the communication parameters,
more specifically, the data transfer rate, which is often
forgotten in practice. Another very important factor is the
sample time, which should be chosen taking into account the
number of communication items (the number of exchanged
process and control variables) and the sufficient
computational reserve in case of the incidental processor
overload by another process.

0 5 10 15 20 25 30 35
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

sample [n]

la
te

nc
y

[s
]

read 3, write 1
read 9, write 1
read 3, write 7
read 9, write 7

Fig. 9 Latency dependence on the number of OPC Read and

Write items

Implementation of real-time control strategies in Simulink

and OPC communication meets some restrictions that are
critical for processes with fast dynamics. The order of blocks
execution in Simulink is highly influenced by the time
difference between the sample reading and writing. It is
essential to analyze the latency and the sample time variance,
which is often omitted in setting the pseudo-real time
properties in Simulink. This allows avoiding the problems in
implementation of real-time control systems.

III. MODEL PREDICTIVE CONTROL

A. Control design
Generalized predictive control (GPC) proposed in [14]

belongs to the most popular model predictive control
algorithms. It can handle various control problems for a wide
range of plants, its implementation is relatively simple and due
to several design parameters it can be tuned to the specific
applications. GPC design is based on the linear parametric
model of the controlled plant in the discrete-time form

)t(v)1dt(u)z(B)t(y)z(A 11 +−−= −− (1)

)t()z(C)t(v)z(D 11 ξ= −− (2)

with

nb
nb

1
10

1

na
na

1
1

1

zb...zbb)z(B
za...za1)z(A

−−−

−−−

+++=
+++=

11

nc
nc

1
1

1

z1)z(D
zc...zc1)z(C

−−

−−−

−=
+++= (3)

where u(t) is the control variable, y(t) is the measured plant
output, d denotes the minimum plant model time-delay in
sampling periods, v(t) represents the external disturbances and
ξ(t) is the random variable with zero mean value and finite
variance. For simplicity in the following the C(z-1) polynomial
is chosen to be 1.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

110

The key idea of MPC is to use the process model (1) – (3)
to predict the future process behavior and to calculate the
future control sequence minimizing an objective function. The
GPC control objective is to compute the future control
sequence in such a way that the future plant output is driven
close to the prescribed reference trajectory

()
()() }21

ph

shj

2*

)shjt(uzD

)jt(y)t/jt(ŷEJ

−+ρ+

⎪⎩

⎪
⎨
⎧

++−+=

−

=
∑ (4)

subject to

() 0)it(uzD 1 =+− for phich ≤≤ (5)

where sh, ph and ch are positive scalars defining the starting
horizon, prediction horizon and control horizon, respectively,
ρ is a nonnegative control weighting scalar. ()j/tty +ˆ

denotes the j-step ahead prediction of y(t) based on data
available up to the time t and ()jty* + is the future reference
trajectory.

The GPC control design consists in performing the
following three steps:

1. Compute the j-step ahead prediction of output ()j/tty +ˆ

for phsh,j ∈ .
2. Minimize with respect to the future control inputs

sequence the cost function (4) – (5).
3. Determine the control law in a receding horizon sense –

only the first term of the future control sequence is used
at each sampling instant and the control sequence is
calculated again at the next sampling time. This allows
to incorporate a feedback into the control loop and to
improve the control performances in the presence of
disturbances and unmodelled dynamics.

The GPC control law may be implemented using the
standard pole-placement control structure (as shown in Fig.
10)

() () () () () () ()tyzTtyzRtuzDzS *1111 −−−− =+ (6)

with

nr
nr

1
10

1 zr...zrr)z(R −−− +++= (7)
ns

ns
1

1
1 zszs1)z(S −−− +++= K (8)

Thus for the calculation of the control input at time t only

the output and control inputs available up to this time together
with the reference value ()ty* are necessary.

Fig. 10 Control scheme

The orders of ()1zR − and ()1zS − polynomials are given by

orders of the plant model numerator and denominator. The
coefficients of these polynomials depend on the plant model
parameters as well as on the choice of the tuning parameters
sh, ph, ch and ρ. The choice of this control tuning parameters
influences the resulting closed loop performances and stability
properties. Many design guidelines and rules of thumb
concerning these parameters have been proposed in literature.
To calculate the coefficients of ()1zR − and ()1zS −
polynomials the recursive solution of Diophantine equations is
needed which may require a great amount of calculations
especially in case of large prediction horizons. However, in a
fixed-parameter control case these calculations need to be
performed only once before the control design stage.

The ()1zT − polynomial plays role in attenuation of the plant
– model mismatch effects and it can also influence the robust
stability. Some guidelines have been proposed for the
selection of this polynomial. In this paper we assume the
following simple form

0

ph

shj
j

1 t)z(T =γ= ∑
=

− (9)

B. Control implementation
Based on the control law (6) the control input at time t can

be expressed as follows

() ()
() () () ()

() () ()ty
zDzS

zRty
zDzS

zTtu
11

1
*

11

1

−−

−

−−

−

−= (10)

Dynamic behavior of many industrial processes with non-

oscillatory dynamics around an operating point can be
described by the second order model, i.e. na=2, nb=1. In this
case the polynomials in the control law (10) take the following
form

() 2

2
1

10
1 zrzrrzR −−− ++= (11)

() 1
10

1 zsszS −− += (12)

() () ()
2

2
1

10

111

zsdzsdsd
zDzSzSD

−−

−−−

++=
== (13)

()
() ()11

1

zDzS
zT

−−

−

()
() ()11

1

zDzS
zR

−−

−

Plant
u(t y(ty*(t +

–

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

111

Then the control input at time t has the form

() () ()

() () () ()
0

*
0

0

210

0

21

sd
ty.t

sd
2ty.r1ty.rty.r

sd
2tu.sd1tu.sdtu

+
−+−+

−

−
−−−−

=

 (14)

This choice of the plant model orders is not restrictive; the
more complex model structure leads only to higher orders of

()1zR − and ()1zS − polynomials. As the consequence, more
past values of control input and output signals have to be
stored for the control law evaluation.

IV. REAL-TIME IMPLEMENTATION OF MODEL PREDICTIVE
CONTROL

In this section two alternatives of the GPC control law real-
time implementation using the simple industrial controllers are
proposed.

A. PLC + PC control
The process is connected through I/O wires to the PLC.

Control design is performed in the second control system (PC)
where also the control law (14) is implemented. For example,
the MATLAB and Simulink with the OPC Toolbox can be
used. In this software environment also the data processing
and visualization can be realized.

Fig. 11 PLC + PC control

The PLC assures the data acquisition and control input

implementation. The advantage is that the control law design
and calculation is comfortable without the need of PLC
programming. On the other hand, the problems concerning the
real-time execution described in section 2 must be born in
mind.

B. PLC control

Fig. 12 PLC control

The process is connected through I/O wires to the PLC. The

control design, i.e. the calculation of the ()1zR − , ()1zS − ,

()1zT − polynomials, is performed offline in the second control

system (PC). The control law (14) is implemented in PLC. In
this case the PC is not needed for the execution of real-time
control, it only supports the design and signal processing and
visualization stage. There are no problems with the control
law real-time execution described in section 2.

V. EXPERIMENTAL EVALUATION
In order to evaluate the two variants of real-time predictive

control implementation described in previous section, the
control of simple cylindrical laboratory tank (Fig. 13) using
the PLC Simatic S7-200 has been realized. The Siemens
SIMATIC S7-200 series [8] is a line of micro-programmable
logic controllers that can be used to control a variety of small
applications.

Fig. 13 Cylindrical laboratory tank

The plant output is the water height measured by a pressure

sensor and the plant control input is the inflow servo valve
opening. The tank has also the outflow servo valve which has
been used to generate a disturbance. The servo valves are
governed by voltage within the range 0 – 10 V. The pressure
sensor range is 0 – 10 V, too.

The following second order plant model has been identified

()
2-1-

-1
1

0.917z1.916z1
0.003291z0.002254-zG
+−

+
=− (15)

with the sampling period Ts = 1 s. Based on this model the

GPC controller has been designed using the following control
design parameters

10,2ch,30ph,1sh =ρ=== (16)

The real-time control results are shown in Fig. 14 and Fig.

15. The blue line (labelled PC) corresponds to the control law
implementation in PC, while the black line (labelled PLC)
depicts the control law implementation in PLC.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

112

200 300 400 500 600 700 800 900 1000
4.6

4.7

4.8

4.9

5

5.1

5.2

t [s]

y,
 r

[V
]

PC
PLC
ref. signal

Fig. 14 Time responses of output and reference

200 300 400 500 600 700 800 900 1000
6

6.5

7

7.5

8

8.5

9

9.5

t [s]

u,
 d

 [V
]

PC
PLC
disturbance

Fig. 15 Time responses of control input and disturbance

The difference in the output time responses in the beginning

of experiment is due to the different initial conditions of both
experiments. In the further course of experiment, the time
responses are very close; the difference is induced only by the
measurement noise. It can be concluded that both alternatives
of the real-time control implementation are equivalent. The
implementation of predictive control law expressed in the
RST form in PLC is correct and is fully usable in practice
without the need of another control system.

VI. CONCLUSION
This paper dealt with the real-time implementation of one

of the most popular advanced control techniques. It has been
shown that the predictive control law expressed in the RST
form can be implemented on simple industrial controllers
without the need of advanced control packages. The model
predictive control brings many advantages in comparison with
the PID control; it can be used to control a great variety of
processes (including time-delayed systems, the nonminimum
phase or the unstable ones) and due to several design
parameters it can be tuned to obtain desired control
performances and robustness properties.

ACKNOWLEDGMENT
This work has been supported by the Slovak Scientific

Grant Agency, Grant No. 1/2256/12 and by the Slovak
Research and Development Agency under the contract
APVV-0211-10.

REFERENCES
[1] L. Ngalamou and L. Myers, “An Exploratory Method for Effective

Deployment of Programmable Logic Controllers (PLCs),” WSEAS
Transactions on Systems and Control, vol. 6, pp. 1-14, January 2011.

[2] R. Bárcena and A. Etxebarria, “Real-Time experimentation environment
for digital controllers applied to industrial processes,” Proc. of the 12th
WSEAS International Conference on Systems, Heraklion, Greece, July
2008, pp. 557-562.

[3] L. Garcia, M. J. Lopez and J. Lorenzo, “Hardware-in-the-loop
Environment for Control Systems evaluation under Linux/RTAI,” Proc.
of the 6th WSEAS International Conference on Applied Computer
Science, Tenerife, Canary Islands, Spain, December 2006, pp. 285-290.

[4] Gambier, A., “Real-time Control Systems: A Tutorial,” Proc. of the
IEEE 5th Asian Control Conference, Melbourne, Australia, July 2004,
pp. 1024-1031.

[5] S7-200 Programmable Controller System Manual, Edition 05/2003
[6] E.F. Camacho and C. Bordons, Model Predictive Control, Springer-

Verlag, London, 2004.
[7] S.J. Qin and T.A. Badgwell, “A Survey of Industrial Model Predictive

Control Technology,” Control Engineering Practice, vol. 11, 2003, pp.
733-764.

[8] E. Miklovičová, and M. Mrosko, “Implementation of Predictive Control
on Industrial Controllers,” AT&P Journal Plus, 2010, pp. 39-43.

[9] P. Pivoňka and V. Mikšánek, “Real-Time Communication between
MATLAB/Simulink and PLC via Process Visualization Interface,” Proc.
of the 11th WSEAS International Conference on Systems, Agios
Nikolaos, Crete Island, Greece, July 2007, pp. 28-32.

[10] Specifications of OPC, OPC Foundation 1998-2010. Available:
http://www.opcfoundation.org.

[11] M.H. Schwarz and J. Boercsoek, “A Survey on OLE for Process Control
(OPC),” Proc, of the 7th WSEAS International Conference on Applied
Computer Science, Venice, Italy, November 2007, pp. 186-191.

[12] MATLAB Help, MATLAB OPC Toolbox Help, The Mathworks 2007.
Available: http://www.mathworks.com.

[13] M. Mrosko, L. Mrafko and L. Körösi, “Real time control,” Proc. of the
9th International Conference Process Control 2010, Kouty nad Desnou,
Czech Republic.

[14] D.W. Clarke, C. Mohtadi and P.S. Tuffs, “Generalized Predictive
Control – Part I. The Basic Algorithm. Part II. Extensions and
Interpretations,” Automatica, vol. 23, 1987, pp. 137-160.

Marián Mrosko was born in Poprad, Slovakia, in May 1979. He received the
MSc degree in Automatic Control systems in 2003 and PhD. degree in
Automation and Control in 2010, both from the Faculty of Electrical
Engineering and Information Technology, Slovak University of Technology in
Bratislava.
He is currently an Assistant Professor at the Institute of Control and Industrial
Informatics at the Faculty of Electrical Engineering and Information
Technology, STU in Bratislava. His research interests are predictive control
and real-time control of systems.

Eva Miklovičová was born in Piešťany, Slovakia, in May 1967. She received
the MSc. dergree in Automatic Control Systems in 1990 and the PhD. degree
in Automation in 1997, both from the Slovak University of Technology in
Bratislava, Faculty of Electrical Engineering and Information Technology
(STU).
She is currently Associated Professor at the Institute of Control and Industrial
Informatics at the Faculty of Electrical Engineering and Information
Technology, STU in Bratislava. Since 2011 she has been a vice-director of the
Institute of Control and Industrial Informatics. Her research interests cover
predictive control, adaptive control, system modeling and identification and
networked control systems.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

113

