

Abstract—In this present work we present a three dimensional

3D path planning of autonomous mobile robots. The proposed

method starts from an initial point to a target point establishing a

control points for which connections are made to determine the form

of the path without collisions. The robot moves within the unknown

environment by sensing and avoiding the obstacles coming across its

way towards the target. The navigation is done in 3D environment

where the planar is considered as 3D smoothed cubic B-spline

surface. The obtained path is the shortest path from all possible free

trajectories (the smoothness of the trajectory is done around the

control point). The start point and the target point must belong to the

control points constructing the smoothed surface. To describe the

geometric shape of the environment we have used the technique of

cubic b-splines. Theses B-spline are used to represent surfaces. They

combine a low degree polynomial or rational representation of

maximal smoothness with a geometrically intuitive variation of the

surface in terms of the coefficients: by connecting the coefficients

one obtains a mesh that roughly outlines the surface. In this context,

we have used Bezier surfaces which often fulfill the requirement of

generating smooth geometry. The path connecting the start point to

the target point must be interpolated with a spline curve to obtain a

smooth curve which fits the surface perfectly. The proposed

algorithm can deal with any shape obstacles even if it is the case of

circular obstacles. This case is the hardest one in any navigation

problem. The problem is solved by proposing some useful solutions

for each situation. The robot succeeds to reach its target without

collisions. The results are satisfactory to see the great number of

environments treated. The results are promising for next

developments and more design.

Keywords—Autonomous Mobile robots, Navigation, 3D

Path planning, Cubic B-splines.

I. INTRODUCTION

key prerequisite for a truly autonomous robot is that it can

navigate safely within its environment . The problem of

achieving this is one of the most active areas in mobile

robotics research, which is stated as finding the answers to the

three questions ‘‘where am I?’’, ‘‘where do I go?’’, and ‘‘how

do I get there?’’. For an autonomous mobile robot these

questions refer to the tasks of self-localization, map building,

and path planning. In this paper three issues are addressed and

new scientific results provided. The difficulty of this problem

depends on the characteristics of the robot’s environment, the

characteristics of its sensors, and the map representation

required by the application at the same time, the size of the

environment may also affect the implementation method.

The theory and practice of Intelligent Autonomous Robot

are currently among the most intensively studied and

promising areas in computer science and engineering which

will certainly play a primary goal role in future. These theories

and applications provide a source linking all fields in which

intelligent control plays a dominant role. Cognition,

perception, action, and learning are essential components of

such-systems and their use is tending extensively towards

challenging applications (service robots, micro-robots, bio-

robots, guard robots, warehousing robots).

The autonomous robot navigation problem has been studied

thoroughly by the robotics research community over the last

years. Contemporary methods for robot navigation. the basic

feature of an autonomous mobile robot is its capability to

operate independently in unknown or partially known

environments. The autonomy implies that the robot is capable

of reacting to static obstacles and unpredictable dynamic

events that may impede the successful execution of a task . To

achieve this level of robustness, methods need to be developed

to provide solutions to localization, map building, planning

and control. The development of such techniques for

autonomous robot navigation is one of the major trends in

current robotics research [4].

The robot has to find a collision-free trajectory between the

starting configuration and the goal configuration in a static or

dynamic environment containing some obstacles. To this end,

the robot needs the capability to build a map of the

environment, which is essentially a repetitive process of

moving to a new position, sensing the environment, updating

the map, and planning subsequent motion. Most of the

difficulties in this process originate in the nature of the real

world: unstructured environments and inherent large

uncertainties. First, any prior knowledge about the

environment is, in general, incomplete, uncertain, and

approximate. For example, maps typically omit some details

and temporary features; also, spatial relations between objects

may have changed since the map was built. Second,

perceptually acquired information is usually unreliable. Third,

a real-world environment typically has complex and

unpredictable dynamics: objects can move, other agents can

modify the environment, and apparently stable features may

change with time. Finally, the effects of control actions are not

completely reliable, e.g. the wheels of a mobile robot may slip,

resulting in accumulated zoometric errors.

The use of the 3D Smoothed parametric curve

Path planning for Autonomous mobile robots

O. Hachour

A

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

105

Robot navigation can be defined as the combination of three

basic activities:

• Map building: this is the process of constructing a map from

sensor readings taken at different robot locations. The correct

treatment of sensor data and the reliable localization of the

robot are fundamental in the map-building process.

• Localization: this is the process of getting the actual robot’s

location from sensor readings and the most recent map. An

accurate map and reliable sensors are crucial to achieving

good localization.

• Path planning : This is the process of generating a feasible

and safe trajectory from the current robot location to a goal

based on the current map. In this case, it is also very important

to have an accurate map and a reliable localization .

Recent research on intelligent autonomous robot has pointed

out a promising direction for future research in mobile robotics

where real-time, autonomy and intelligence have received

considerably more weight then, for instance, optimality and

completeness. Many navigation approaches have dropped the

explicit knowledge representation for an implicit one based on

acquisitions of intelligent behaviours that enable the robot to

interact effectively with its environment, they have to orient

themselves, explore their environments autonomously, recover

from failure, and perform whole families of tasks in real-time

[2, 3].

To perform all tasks in different environments, the vehicle

must be characterized by more sever limits regarding mass

volume, power consumption, autonomous reactions

capabilities and design complexity. Particularly, for planetary

operations sever constraints arise from available energy and

data transmission capacities, e.g., the vehicles are usually

designed as autonomous units with: data transfer via radio

modems to rely stations (satellite in orbit or fixed surface

stations) and power from solar arrays, batteries or radio-

isotope thermo electric generators (for larger vehicles). A

common application of mobile robot is the object

manipulation. Examples include pick and place operation on

the factory floor, package sorting and distribution.

However, for navigation in dynamic environments or high-

speeds, it is often desirable to provide a sensor-based collision

avoidance scheme; it would be difficult for the (remote)

operator to prevent the robot from colliding with obstacles.

This is primarily due to: limited information from the robot’s

sensors, such as images within a restricted viewing angle

without depth information, which is insufficient for the users

full perception of the environment in which the robot moves,

and significant delay in the communication channel between

the operator and the robot.

The implementation of a collision avoidance scheme on-

board the robot can cause conflict between the users actions

and the movement of the robot. For example, consider a

situation where the operator directly controls the movement of

a mobile robot with a joystick and the robot is supposed to

move forward when the user pushes the stick forward. Imagine

that he robot is also programmed with a simple collision

avoidance algorithm to avoid obstacle. If an obstacle exists in

front of the robot, the robot may stop or turn in order to avoid

collision, although he operator is clearly commanding it to,

move ahead. In this example, the conflict may be not a

problem if the user can easily see the obstacles. If however, the

obstacles are invisible due a restricted viewing angle, the user

might be confused since the robot does not move nor act

according to the teleoperation commands. We hypothesize that

the conflict can be naturally resolved by exploiting hap tic

information, that is, by providing the operator with force

feedback. Force-feedback has been used for precise remote

control in teleoperation of manipulator.

Navigation is the science (or art) of directing the course of a

mobile robot as the robot traverses the environment. Inherent

in any navigation scheme is the desire to reach a destination

without getting lost or crashing into any objects. The goal of

the navigation system of mobile robots is to move the robot to

a named place in a known, unknown, or partially known

environment.

The goal of the navigation process of mobile robots is to

move the robot to a named place in a known, unknown or

partially known environment. In most practical situations, the

mobile robot can not take the most direct path from the start to

the goal point. So , path planning techniques must be used in

this situation, and the simplified kinds of planning mission

involve going from the start point to the goal point while

minimizing some cost such as time spent, chance of detection,

or fuel consumption.

Several approaches for path planning exist for mobile

robots, whose suitability depends on a particular problem in an

application. For example, behavior-based reactive methods are

good choice for robust collision avoidance. Path planning in

spatial representation often requires the integration of several

approaches. This can provide efficient, accurate, and

consistent navigation of a mobile robot. . It is sufficient for the

robot to use a topological map that represents only the areas of

navigation (free areas, occupied areas of obstacles). It is

essential that the robot has the ability to build and uses models

of its environment that enable it to understand the

environment’s structure. This is necessary to understand

orders, plan and execute paths.

The major task for path-planning for single mobile robot is

to search a collision –free path. The work in path planning has

led into issues of map representation for a real world.

Therefore, this problem considered as one of challenges in the

field of mobile robots because of its direct effect for having a

simple and computationally efficient path planning strategy.

For path planning areas, it is sufficient for the robot to use a

topological map that represents only the different areas without

details such as office rooms. The possibility to use topological

maps with different abstraction levels helps to save processing

time. The static aspect of topological maps enables rather the

creation of paths without information that is relevant at

runtime. The created schedule, which is based on a topological

map, holds nothing about objects which occupy the path. In

that case it is not possible to perform the schedule [7,9]. To get

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

106

further actual information, the schedule should be enriched by

the use of more up-to date plans like egocentric maps.

Systems that control the navigation of a mobile robot are

based on several paradigms. Biologically motivated

applications, for example, adopt the assumed behavior of

animals. Geometric representations use geometrical elements

like rectangles, polygons, and cylinders for the modeling of an

environment. Also, systems for mobile robot exist that do not

use a representation of their environment. The behavior of the

robot is determined by the sensor data actually taken. Further

approaches were introduced which use icons to represent the

environment. One of the specific characteristics of mobile

robots is the complexity of their environment, therefore, one of

the critical problem for the mobile robots is path planning.

To perform all tasks in different environments, the robot

must be characterized by more sever limits regarding mass

volume, power consumption, autonomous reactions

capabilities and design complexity. Particularly, for planetary

operations sever constraints arise from available energy and

data transmission capacities, e.g., the vehicles are usually

designed as autonomous units with: data transfer via radio

modems to rely stations (satellite in orbit or fixed surface

stations) and power from solar arrays, batteries or radio-

isotope thermo electric generators (for larger vehicles). A

common application of mobile robot is the object

manipulation. Examples include pick and place operation on

the factory floor, package sorting and distribution. Some

researchers are interesting in the simplest kind of object

manipulation i.e. pushing. Pushing is the problem of changing

the pose of an object by imparting a point contact force to it.

For the simplicity, they constrain their self to the problem of

changing the pose (in a horizontal plane).

The environment force prevents the robot from moving

and turning towards obstacles by giving the user the distance

information between the robot and the obstacle in a form of

force. This force is similar to the traditional potential force

field for path planning of mobile robot. However, the

environment force is different from the potential force in some

aspects. First there is no attention to a goal since we assume

that the goal position is unknown. Secondly, only obstacles in

the “relevant” area (according to the logical position of the

interface) are consider, i.e. the obstacles that are far, or in the

direction opposite to the movement of the robot are not

relevant. In this context, a full range of advanced interfaces for

vehicle control has been investigated by the researchers. These

works demonstrates that obstacle detection and collision

avoidance is improved with good results.

In this paper we deal with 3D path planning; we first

supposed that the robot navigates in planar environment. In

this case, the robot can avoid any obstacles shape even in

congested environment. However, for the case of non-

polygonal obstacles it is better to be surrounded by poly-solid

objects, otherwise the algorithm will spend much time to

return a result. And some complex cases the algorithm cannot

achieve the target even a free path may exist. The planar is

considered as 3D smoothed cubic B-spline surface.

In our previous work [1, 10, 11, 12, 13] concerned with a

path planning problem of an autonomous robot operating in a

2-dimensional surface with obstacles. The robot was

considered as a material point. In this paper we deal with 3-

dimentional navigation. In the first part the obstacles are

presented in 3-dimensions and the planar path connecting the

start to the target point take into consideration the principal

robot dimensions. In the second part, we treat the 3D Path

Planning in natural cluttered Environment. In the last part, we

discuss the typical sensors that can help us to implement our.

This paper proposes a new methodology of work in 3D

navigation where the problem of movement of an autonomous

mobile robot is solved using Mesh creation and 3D surface

smoothing.

II. 2D PLANAR PATH PLANNING

In this part we consider the planar navigation, we use the same

algorithm used in case of 2-dimenssion navigation in our

previous work [10,11,13] , where we have to take here into

consideration 3D obstacles shape and the real robot

dimensions. Furthermore, we use the NURB-spline for the

smooth of the trajectory. In case of 3D the problem can be

reduced to a problem of two dimensions by projecting the

objects on the plan containing the initial point, the target point

and the control point.

The use of the parametric curves for path planning was

introduced by some researchers where a trajectory without

collision is regarded as to be a series of curves connecting the

initial points to the target in the workspace . The control points

for which connection were made determines the form of the

trajectory. For this case the problem of optimal trajectory

calculation is posed.

The use of parametric curves for the path planning is very

developed and largely used in computer graphics, in design

and manufacture computer-assisted. A parametric curve has an

inherent directional property which enormously reduces

calculations. In this work, a linear parametric curve is used for

path planning; the smooth of the trajectory around the control

point is also taken in consideration.

The linear trajectory connecting the initial to the goal points

is examined in the first step. If the trajectory collide an

obstacle, a point of control is introduced between the initial

and the goal point and a point of intermediate connection is

created once again. The point of control can be structured in a

coordinated way, and a checking of interference between the

trajectory and the obstacles produces a map. For the problem

in two dimensions, two parameters are necessary to define a

control point, and four parameters are necessary to define two

points of control. From where a certain number of control

points define the dimension of the control point space CPS.

An interference checking produces images in the CPS and this

tracing is defined by a geometrical layout .

The control point space has a property in the Free Space

(FS) which defines a trajectory without collision. Free space is

a surface belonging to the CPS, but unoccupied by the image

of the obstacles. The geometrical layout is a computing

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

107

process. The construction of the CPS depends on the manner

in which the control points are defined.

A. Collision detection and obstacles avoidance

The linear parametric curve connecting the starting point,

S , to the target point, T , is given by The directional

property of the parametric curve enables us to express the

intersection of two segments of a line in simple terms. To

determine if the line ST collides an object we must carry out

a checking of the intersection of the line ST with the

polygonal contours of the obstacles. The line ST has the

tendency to intersect with the contour of the obstacle Obs2 in

two points (1) and (2), such that
21

sss ≤≤ . The calculation

of the intersection between the line segment ST and the

obstacle contour jPiP can be expressed as follows:

() ()
iij PtPPSsST +×−=+×−

t : represents the curve parameter; In the case of 2D the

vectorial equation is composed of two equations with two

unknowns (s and t parameters). The parameter s and t can

be solved by eliminating the others.

()() ()()
()() ()()

ixjxyyiyjyxx

ixjxyiyiyjyxix

PPSTPPST

PPSPPPSP
s

−−−−−

−−−−−
=

()() ()()
()() ()()

ixjxyyiyjyxx

ixxyyiyyxx

PPSTPPST

PSSTPSST
t

−−−−−

−−−−−
=

In the workspace, we can define the position of the obstacles

with respect to the line ST , and there exist three cases: the

obstacles which cut the line ST , which are above the

line ST and which are below the line ST .for the case of 3D

we have to take the width of the robot to consideration as it is

shown in figure 1.

The path in 3D environment is considered as an object

which has the width and the height of the robot. Our algorithm

creates three selection sets: the first contains the virtual path,

the second contains all the obstacles existing in the

environment and the third one is initially empty; then the

algorithm checks the interference between solids in the first

selection set against those in the second selection set.

Once the algorithm starts checking for interferences,

temporary interference objects are created and included to last

created selection set (see figure 2). In order to avoid the

obstacle, the virtual path must be rotated around the starting

point, S , by a small angle θ∆ given by the equation 1

ST

w1sin−=∆θ (1)

Where: ST represents the distance between the starting point

and the target, and w is expected robot width. After this

rotation, the temporary interference objects that are created

during interference checking are deleted (see figure .3). Thus

the interference selection set becomes empty. The algorithm

rotates again by θ∆ and checks for collision by testing the

interference selection set, the linear path is in collision with

obstacles unless the selection set is not empty. It keeps rotating

until the interference selection becomes empty (see figure 4).

When the selection set is not empty, the created interference

objects must be removed before the next iteration. The

iteration is limited for obstacles which interfere with the linear

curve

B. Control point insertion

When the linear path collide an obstacle, a control point

must be inserted between the starting point and the obstacle.

The control point Q , belong to the characteristic curve

network describing the trajectory without collision projected in

2D workspace. In the figure 5, the polar coordinates are used

to define a control point with the parameters θ and ρ . The

arbitrary value of θ and ρ is fixed between 0°<θ < 360°

(θ ≠ 0, 180°) and 0 < 1≤ρ . To obtain the control point Q

all the obstacles must be projected into 2D workspace, the

distance ‘ d ’ between C and the extreme limit of AWS is

expressed by :

() ()22

yyxx CWCWd −+−=

As the center C of CWS is in the middle of ST : The values of

maxQ correspondent to the maximum values of D are given

by :

()() ()(){ }

()() ()(){ }

++−−+−=

++−−+−=

2
sincos

1

2
sincos

1

maxmaxmax,

maxmaxmax,

w
CdSTCdST

D
Q

w
CdSTCdST

D
Q

yxxxyyy

yyyxxxx

θθ

θθ

 (2)

Where D represents always the distance ST , i.e.

STD −= . W represents the width of the robot .We have

added
2

w
 because for navigation we conceder the center of

gravity of the robot. For the case of non-polygonal obstacles

(such as cylinders, cones etc.) must be circumscribed by poly-

solids with the maximum edges, as shown in the figure 5

(Obs4).

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

108

The checking of interference with the obstacles must be

carried out before the tracing of QT .The checking for

interference must be carried out for the obstacles above and

below the line ST , hens the rotation is done to the left and

the right. As each obstacle produced well defined ρ ranges,

the union of these ranges gives us as a result a well defined ρ

ranges for a given value of θ . The checking of interference

must be made for all the obstacles according to the above

procedure. The Figures 6 and 7 show a typical case of

geometrical planning. The shading surface on figure 6

indicates that all control points belonging to this surface

intersect with the line segment SQ or QT . The surface

defined by 1A , 2A , 3A and 4A of CPS in the figure 7 shows

the trajectories without collision. The obstacles in the

Euclidian space are represented by a complex form that show

only the surface for the control point Q . The obstacles are

represented as 3D objects, where the path is drawn in the plan,

but the height of the robot is also taken to count.

Consequently, it may exist a free path throw objects (for

example, in case of bridge, the feasible optimal path may be

under that bridge). As the process end up when a feasible path

is found, the construction of the whole map is not necessary,

unless there are other constraints which must be taken on

consideration. According to figure 7, it is clear that the

trajectory taken from 3A and 4A cross behind 1Ob and

3Ob respectively. The circle
1

C and
2

C are the inscribed

circle with an important diameter to be more suitable for

surfaces
3A and

4A respectively, and
1

C is largest than

2
C . The path gotten from

1
C is far from obstacles comparing

to any other path can be regarded as the most certain

trajectory. It is one of the useful properties of this geometric

planning.

In the workspace, we can define the position of the

obstacles with respect to the line ST, and there exist three

cases: the obstacles which cut the line ST, which are above the

line ST and which are below the line ST. In the case where

there is no intersection between the obstacle and the line ST,

an additional calculation is necessary in order to locate its

position with respect to ST. This does not require a precise

value but a relative value with the aim of making a

comparison. A method which does not use the trigometrical

functions consists in calculating the determinant of the

equation :

111

iyyy

ixxx

PTS

PTS

A =

This equation gives the double of the area of the triangle

STP1 (see the figure 4), where the order (orientation)

determines of the points constituting the vertices of the

obstacle. The equation (6) indicates if a vertex P1 of an

obstacle is on top, below or on the line ST. Three cases arise:

1. |STP1|>0, in this case S,T and P1 are ordered in the

clockwise direction, i.e. the obstacle is bellow the line ST.

2. |STP1|<0¶, in this case S,T and P1 are ordered in the

counter clockwise direction, i.e. the obstacle is above the

line ST.

3. |STP1|=0¶, in this case S,T and P1 are in the same line.

In order to reduce calculations this checking is limited to the

cases where obstacles are in collision with the line ST.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

109

Fig.6 The interference computation to define the range of ρ

(Isometric view).

Fig. 5 The insertion of the control point (top view).

Fig. 2 the temporary interference object creation (bottom view)

Fig. 3 Linear path rotation (Top view).

Fig. 4 the obstacle avoidance (Top view)

Fig. 1 The interference between the linear trajectory and the

 obstacle in 3D environment (isometric view)

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

110

C. Connection smoothing using NURBs

Previously we have got a path in form of segments which

are discontinuous in the control point. To remedy this problem

we used in the third chapter the quadratic and cubic parametric

curves which generate Bezier curves .

In our algorithm, initially we add only one control point;

then we test for collision between QT and the obstacle. In

case of collision, we have to insert another control point, and

so forth. Before, we had mentioned that the Bezier curves do

not ensure the local control. To overcome this drawback we

use the NURBs, which are characterised by the following

points:

• A NURBS curve produces a smooth curve between

control points.

• We create splines by specifying coordinate points

which are the starting point, the control points and the

end point.

• We can change the spline-fitting tolerance. Fit

tolerance refers to how closely the spline fits the set

of fit points we specify.

• The lower the tolerance, the more closely the spline

fits the points.

• At zero tolerance, the spline passes through the

points.

• We can add a fit point (other control point) and refits

the spline through the new set of points.

Here are a few things to be respected.

• The order of the curve must be equal to or higher than

2. Order 2 gives us a polyline effect.

• The control points are represented in homogeneous

form, meaning that we have to divide the x, y, and z

components by the w component to find the point's

actual position in three-dimensional space.

• The w component of each control point must be

positive.

• The number of control points must be equal to or

greater than the order.

• The number of knots must be equal to the number of

control points plus the order of the curve.

• The knots must be specified in non-decreasing order

We start with a NURB curve defined by starting point, one

control point and target point which are denoted by iQ . The

NURB curve is given by the formula (3):

() ()∑
−

=

=
1

0

,

t

i

kii tNQtQ (3)

with a knot vector { }110 ,...,, −+knxxx . To add a new knot

newx , where 1+≤< inewi xxx . The new curve will be defined

by the equation 4.

() ()∑
−

=

=
1

0

,
ˆˆ

t

i

kii tNQtQ (4)

Now we have to figure out not only where the new control

point is located and where it goes in the ordered vector of

control points, but also how to adjust some of the existing

control points to keep the shape of the curve unchanged; this

process yields the new control point vector, Q̂ . It turns out

that the relationship between the old and new control points is

given by the relation (5):

()
jjjjj QQQ αα +−= −11ˆ (5)

Where α is defined by the equation (IV.6)

+≥

≤≤+−
−

−

+−≤

=
−+

10

2

11

1

ij

ijki
xx

xx

kij

jkj

jnew

jα (6)

In the figure 8, the black spline shows the smoothed path to

avoid the first obstacle (obs.1), and in order to avoid the

second obstacle (obs.2) a control point is added to this spline.

The refitted spline is shown on red. It is clearly shown that the

adding of a control point does not affect the global spline.

Fig.7 Euclidian space of the obstacles

CWS border

4A

),(ywxwW

()ρθ ,Q

 T

s=0
Obs2

Obs.3

Obs1

Obs4 s=1

2C

1C

AWS border

S

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

111

D. Simulation results

The path given in the figure 8 shows the path as a 2D

modelling NURB spline [5,8]. To consider the width of the

robot we should create a region from a set of entities. This

method will create a region out of every closed loop formed

by the input array of curves. The first curve is the spline

created from the control points, the second curve is a spline

shifted away from the obstacles by a distance equal to the

width of the virtual robot, and the two ends of the two splines

are linked by lines to create a closed region.

The previous region presents our free path as 2D planar

environment. To take the height of the robot into

consideration we have to extrude the region by the height of

the robot. This suction concerned with the simulation of our

algorithm in different 3D environment.

In the figure 9 the obstacle is avoided by inserting one

control point. To get the smoothed path we used the slip of the

first portion of the linear path as the start tangent of the NURB

spline, and the slip of the second portion as end tangent of the

spline. Whereas, in the case of the figure 10 the two obstacles

are avoided by inserting two control points. Furthermore, the

start tangent of the spline is defined by the slip of the first

linear path, and the end tangent is defined by the slip of the

third linear path.

To go around a corner, more than one control point must be

added when necessary. The start tangent of the spline for each

case is defined by slip of the first portion of the linear path;

however the end tangent is defined by the slip of the last

portion of the linear path. The more is the number of control

points the great is the computation time. The figure 17 and 18

are an illustration example.

In the figure 10, it is clearly shown that the number of

control points and the degree of the NURBs are independent,

i.e. the number of control points does not affect the shape of

the smoothed curve. A free smoothed path realization the

insertion of one control point Smoothed path (SE Isomertic

view) is shown in the figure11. The figure12 shows another

example of two control points where we the main idea of work

is done. The SE Isomertic view –linear trajectory-of this

environment is shown in the figure13. Finally the smoothed

path of this environment is shown in the figure 14. another

example where a path planning in congested environment is

proposed in the figure 15, we can see the movement how is

done. The smoothed path of this environment is shown in the

figure16.

The figure 17 and the figure 18 illustrate that the optimal

free path can be by passing under a bridge. Where the figure

19 and the figure 20 is an example of navigation in complex

environment, the obstacles are non-polygonal objects created

by extruded spline surfaces.

Until now, although the obstacles are presented as 3D

objects, we have dealt only with path planning in 2D planar

environment. To deal with no planar path planning we have to

start by defining the mesh, then we smooth this mesh to fit the

B-spline surface. We avoid the existing obstacles on this

surface by using the previous method.

Fig.9 Free smoothed path realization the insertion of one control point-

Linear path (Top view)-

Fig.10 Free smoothed path realization the insertion of one control point

Linear path (NW Isomertic view)

T

1Q

2Q

Spline with three control points

Adding a fit point to the spline

Obs.1

Obs.2

Q1

T

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

112

Fig. 13 Free smoothed path realization the insertion of two control

points : linear trajectory (SE Isomertic view)

Fig.11 Free smoothed path realization the insertion of one control point

Smoothed path (SE Isomertic view)

Fig . 12 Free smoothed path realization the insertion of two control

Linear trajectory (Top view)

T

S

Q2

Q1

 Fig. 14 Free smoothed path realization the insertion of two

control points : smoothed path (SE Isomertic view)

 Fig. 15 path planning in congested environment

Linear trajectory (SE Isomertic view)

T

S

Going around vertex

 Fig. 16 path planning in congested environment

smoothed path (SE Isomertic view)

Fig. 17 path planning in complex environment

Passing behind obstacles

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

113

III. 3D PLANAR PATH PLANNING

B-spline are widely used to represent surfaces. They

combine a low degree polynomial or rational representation of

maximal smoothness with a geometrically intuitive variation of

the surface in terms of the coefficients: by connecting the

coefficients one obtains a mesh that roughly outlines the

surface. Repeated refinement of this mesh by knot insertion

results in a sequence of meshes whose points are averages of

the preceding and whose limit is the surface itself. In addition

to an elegant algebraic definition this yields an alternative

geometric, procedural characterization of the splines useful for

establishing many shape proprieties of spline surfaces. Each

point in the interior of the B-spline mesh must be regular, that

is surrounded by exactly four quadrilateral mesh cells.

A Polygon-Mesh object is an M x N mesh where M

represents the number of vertices in a row of the mesh and N

represents the number of vertices in a column of the mesh.

A mesh can be open or closed in either or both the M and N

directions. A mesh that is closed in a given direction is

considered to be continuous from the last row or column on to

the first row or column. Vertices may be any distance from

each other.

A Polygon-Mesh is always created as a simple mesh. A

mesh can be smoothed after creation by using even: a

quadratic B-spline surface fit, a cubic B-spline surface fit or a

Bezier surface fit. The figures (21, 22, 23, 4) show the

different cases of smoothing a 4x4 mesh using quadratic and

cubic B-spline as well as the Bezier surface concept [6].

In our simulation the technique of cubic b-splines is used in

order to describe the geometric shape of the environment.

Bezier surfaces fulfill often the requirement of generating

smooth geometry. In complex environments approximation

based on a large number of scattered data, Bezier surfaces

show the disadvantageous property of global modeling

possibility. Therefore the concept of Bezier surfaces is

generalized to the concept of segmented surfaces, which leads

to the surface representation with b-spline technique.

Furthermore, the cubic B-spline preserves the
2C continuity.

There are no restrictions on the number of cells meeting at a

mesh point or the number of edges to a mesh cell. Mesh cells

need not be planar .The surface must not have an abrupt

change in its form; consequently we have to smooth the

created mesh . The start point and the target point must belong

to the control points constructing the surface. The path

connecting the start point to the target point must be

interpolated with a spline curve to obtain a smooth curve

which fits the surface perfectly. The figure 25 shows the

smoothed curve fitting the surface.

Q2

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

114

The figure 25-left is an illustration example of the smoothed

spline curve creation, it is shown as a 3D wireframe. Whereas

the figure 25-right shows the 3D path generation with

consideration of the robot width. As there are no abrupt

changes on the surface, the width of the robot is considered by

offsetting the first smoothed curve by a distance equal to the

width of the robot. The figures 26 and 27 illustrate the use of

our algorithm to avoid the obstacles existing on this surface.

The robot is supposed to be very tiny, so that it is

interpreted as a point. Initially, the robot can estimate its

position ()
yx SSS , but does not know its orientationθ . This

leads to a position sensor defined as
2RY = with

xSy =1

and ySy =2 . A compass (Compact Outdoor Multipurpose

Pose Assessment System) or orientation sensor can likewise be

made by observing only the robot orientation. In this case,

θ=y

The position and orientation sensors generalize nicely to a

3D world. In this case the robot position is presented by three

coordinates ()zyx ,, which can be measured with a position

sensor; whereas an orientation sensor measures the robot

orientation. A physical sensor that measures orientation in
3R

is often called a gyroscope. These are usually based on the

principle of precession, which means that they contain a

spinning disc that is reluctant to change its orientation due to

angular momentum.

Fig. 22 Mesh creation and 3D surface smoothing: case of Quadratic smoothed

B-spline surface

Fig. 21 Mesh creation and 3D surface smoothing: case of 4x4

simple mesh

Fig. 25 the smoothed 3D path generation The smoothed spline curve

Fig. 26 3D path planning with obstacles avoidance:

environment 1

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

115

Fig. 27 3D path planning with obstacles avoidance:

environment 2

IV. CONCLUSION

In this paper we studied the path planning problem of an

autonomous robot operating in a 3-dimentional surface with

obstacles. A complete path planning algorithm guarantees that

the robot can reach the target if possible, or returns a message

that indicates that there is no free path when the target cannot

be reached. We first supposed that the robot navigates in

planar environment. In this case, the robot can avoid any

obstacles shape even in congested environment. However, for

the case of non-polygonal obstacles it is better to be

surrounded by poly-solid objects, otherwise the algorithm will

spend much time to return a result. And some complex cases

the algorithm cannot achieve the target even a free path may

exist. The robot moves within the unknown environment by

sensing and avoiding the obstacles coming across its way

towards the target.

The navigation is done in 3D environment where the planar

is considered as 3D smoothed cubic B-spline surface. The

obtained path is the shortest path from all possible free

trajectories (the smoothness of the trajectory is done around

the control point). In this case, the start point and the target

point must belong to the control points constructing the

smoothed surface. And the obstacles are avoided in the same

manner as in the case of planar navigation. The proposed

algorithm has the advantage of being generic and can be

changed at the user demand. The obstacles can take any shape

since the algorithm is general for any obstacle detection. This

approach works perfectly even if an environment is unknown.

We have run our simulation in several environments where the

robot succeeds to reach its target in each situation and avoids

the obstacles capturing the behaviour of intelligent expert

system. For the main idea we propose to use simple projection

sensors to measure the robot position and orientation. Our

autonomous mobile robot is able to achieve these tasks: avoid

obstacles, taking a decision, perception, and recognition and to

attend the target which are the main factors to be realized of

autonomy requirements. However in the future, it is necessary

to use a robot in hostile environment and space exploration or

other applications by using advanced micro-product control

systems that can be dealt in 3D dimensions.

REFERENCES

[1] O. Hachour AND N. Mastorakis Behaviour of intelligent autonomous

ROBOTIC IAR”, IASME transaction, issue1, vol 1, ISSN 1790-031x

WSEAS, January 2004,pp 76-86.

[2] Ihn Namgung and Joseph Duffy, “Two dimensional collision-free path

planning using linear parametric curve”, Journal of Robotic Systems,

1998.

[3] S.Florczyk, Robot Vision Video-based Indoor Exploration with

Autonomous and Mobile Robots, WILEY-VCH Verlag GmbH &

Co. KGaA, Weinheim, 2005.

[4] O. Hachour and N. Mastorakis, IAV : A VHDL methodology for

FPGA implementation, WSEAS transaction on circuits and systems,

Issue5, Vol 3,ISSN 1109-2734, 2004,pp.1091-1096.

[5] D. F. Rogers and J. A. Adams, « Mathematical Elements for Computer

Graphics », 2nd ed., McGraw-Hill, New York, 1990.

[6] Bezier, P., 1972, “Numerical Control-Mathematics and Application, A.

R. Forrest and A. F. Pankhurst, Trans., John Wiley & Sons, New York,

1972.

[7] V. J. Lumelsky, “Effect of kinematics on motion planning for planar

robots arms moving amidst unknown obstacles”, IEEE J. of Robotics

and Automation, RA-3(3), 1987,pp207-223,.

[8] I. D. Faux et M. J. Pratt, « Computational Geometry for Design and

Manufacture”, Jhon Wiley & Sons, New York, 1979.

[9] S. M. LaValle, “Planning Algorithms” , Published by Cambridge

University Press, 2006.

[10] O.Hachour, “The Proposed Genetic FPGA Implementation For Path

Planning of Autonomous Mobile Robot”, International Journal of

Circuits , Systems and Signal Processing, Issue 2, vol2 ,2008,pp151-

167.

[11] O. Hachour AND N. Mastorakis, Avoiding obstacles using FPGA –a

new solution and application ,5th WSEAS international conference on

automation & information (ICAI 2004) , WSEAS transaction on systems

, issue9 ,vol 3 , Venice , Italy , , ISSN 1109-2777, November 2004,

pp2827-2834.

[12] O. Hachour AND N. Mastorakis, “Behaviour of intelligent autonomous

ROBOTIC IAR”, IASME transaction, issue1, vol.1, ISSN 1790-031x

WSEAS, January 2004,pp 76-86.

[13] O. Hachour, ,“path planning of Autonomous Mobile Robot”,

International Journal of Systems Applications, Engineering &

Development, Issue4, vol.2, 2008, pp178-190.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 3, 2009

116

	19-178
	19-184
	19-201

