
 

 

  

Abstract—In this present work we present a three dimensional 

3D path planning of autonomous mobile robots. The proposed 

method starts from an initial point to a target point establishing a 

control points for which connections are made to determine the form 

of the path without collisions. The robot moves within the unknown 

environment by sensing and avoiding the obstacles coming across its 

way towards the target. The navigation is done in 3D environment 

where the planar is considered as 3D smoothed cubic B-spline 

surface. The obtained path is the shortest path from all possible free 

trajectories (the smoothness of the trajectory is done around the 

control point). The start point and the target point must belong to the 

control points constructing the smoothed surface. To describe the 

geometric shape of the environment we have used the technique of 

cubic b-splines. Theses B-spline are used to represent surfaces. They 

combine a low degree polynomial or rational representation of 

maximal smoothness with a geometrically intuitive variation of the 

surface in terms of the coefficients: by connecting the coefficients 

one obtains a mesh that roughly outlines the surface. In this context, 

we have used Bezier surfaces which often fulfill the requirement of 

generating smooth geometry. The path connecting the start point to 

the target point must be interpolated with a spline curve to obtain a 

smooth curve which fits the surface perfectly. The proposed 

algorithm can deal with any shape obstacles even if it is the case of 

circular obstacles. This case is the hardest one in any navigation 

problem. The problem is solved by proposing some useful solutions 

for each situation. The robot succeeds to reach its target without 

collisions. The results are satisfactory to see the great number of 

environments treated.   The results are promising for next 

developments and more design. 

 

Keywords—Autonomous Mobile robots, Navigation, 3D 

Path planning, Cubic B-splines.  

I. INTRODUCTION  

key prerequisite for a truly autonomous robot is that it can 

navigate safely within its environment . The problem of 

achieving this is one of the most active areas in mobile 

robotics research, which is stated as finding the answers to the 

three questions ‘‘where am I?’’, ‘‘where do I go?’’, and ‘‘how 

do I get there?’’. For an autonomous mobile robot these 

questions refer to the tasks of self-localization, map building, 

and path planning. In this paper three issues are addressed and 

new scientific results provided. The difficulty of this problem 

depends on the characteristics of the robot’s environment, the 

characteristics of its sensors, and the map representation 

required by the application at the same time, the size of the 

environment may also affect the implementation method. 

 
 

The theory and practice of Intelligent Autonomous Robot  

are currently among the most intensively studied and 

promising areas in computer science and engineering which 

will certainly play a primary goal role in future. These theories 

and applications provide a source linking all fields in which 

intelligent control plays a dominant role. Cognition, 

perception, action, and learning are essential components of 

such-systems and their use is tending extensively towards 

challenging applications (service robots, micro-robots, bio-

robots, guard robots, warehousing robots).  

The autonomous robot navigation problem has been studied 

thoroughly by the robotics research community over the last 

years. Contemporary methods for robot navigation. the basic 

feature of an autonomous mobile robot is its capability to 

operate independently in unknown or partially known 

environments. The autonomy implies that the robot is capable 

of reacting to static obstacles and unpredictable dynamic 

events that may impede the successful execution of a task . To 

achieve this level of robustness, methods need to be developed 

to provide solutions to localization, map building, planning 

and control. The development of such techniques for 

autonomous robot navigation is one of the major trends in 

current robotics research [4]. 

The robot has to find a collision-free trajectory between the 

starting configuration and the goal configuration in a static or 

dynamic environment containing some obstacles. To this end, 

the robot needs the capability to build a map of the 

environment, which is essentially a repetitive process of 

moving to a new position, sensing the environment, updating 

the map, and planning subsequent motion. Most of the 

difficulties in this process originate in the nature of the real 

world: unstructured environments and inherent large 

uncertainties. First, any prior knowledge about the 

environment is, in general, incomplete, uncertain, and 

approximate. For example, maps typically omit some details 

and temporary features; also, spatial relations between objects 

may have changed since the map was built. Second, 

perceptually acquired information is usually unreliable. Third, 

a real-world environment typically has complex and 

unpredictable dynamics: objects can move, other agents can 

modify the environment, and apparently stable features may 

change with time. Finally, the effects of control actions are not 

completely reliable, e.g. the wheels of a mobile robot may slip, 

resulting in accumulated zoometric errors.  
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Robot navigation can be defined as the combination of three 

basic activities: 

• Map building: this is the process of constructing a map from 

sensor readings taken at different robot locations. The correct 

treatment of sensor data and the reliable localization of the 

robot are fundamental in the map-building process. 

• Localization: this is the process of getting the actual robot’s 

location from sensor readings and the most recent map. An 

accurate map and reliable sensors are crucial to achieving 

good localization. 

• Path planning : This is the process of generating a feasible 

and safe trajectory from the current robot location to a goal 

based on the current map. In this case, it is also very important 

to have an accurate map and a reliable localization . 

Recent research on intelligent autonomous robot has pointed 

out a promising direction for future research in mobile robotics 

where real-time, autonomy and intelligence have received 

considerably more weight then, for instance, optimality and 

completeness. Many navigation approaches have dropped the 

explicit knowledge representation for an implicit one based on 

acquisitions of intelligent behaviours that enable the robot to 

interact effectively with its environment, they have to orient 

themselves, explore their environments autonomously, recover 

from failure, and perform whole families of tasks  in real-time 

[2, 3]. 

To perform all tasks in different environments, the vehicle 

must be characterized by more sever limits regarding mass 

volume, power consumption, autonomous reactions 

capabilities and design complexity. Particularly, for planetary 

operations sever constraints arise from available energy and 

data transmission capacities, e.g., the vehicles are usually 

designed as autonomous units with: data transfer via radio 

modems to rely stations ( satellite in orbit or fixed surface 

stations) and power from solar arrays, batteries or radio-

isotope thermo electric generators (for larger vehicles). A 

common application of mobile robot is the object 

manipulation. Examples include pick and place operation on 

the factory floor, package sorting and distribution. 

However, for navigation in dynamic environments or high-

speeds, it is often desirable to provide a sensor-based collision 

avoidance scheme; it would be difficult for the (remote) 

operator to prevent the robot from colliding with obstacles. 

This is primarily due to: limited information from the robot’s 

sensors, such as images within a restricted viewing angle 

without depth information, which is insufficient for the users 

full perception of the environment in which the robot moves, 

and significant delay in the communication channel between 

the operator and the robot.                                                                                                                                                                                                          

The implementation of a collision avoidance scheme on-

board the robot can cause conflict between the users actions 

and the movement of the robot. For example, consider a 

situation where the operator directly controls the movement of 

a mobile robot with a joystick and the robot is supposed to 

move forward when the user pushes the stick forward. Imagine 

that he robot is also programmed with a simple collision 

avoidance algorithm to avoid obstacle. If an obstacle exists in 

front of the robot, the robot may stop or turn in order to avoid 

collision, although he operator is clearly commanding it to, 

move ahead. In this example, the conflict may be not a 

problem if the user can easily see the obstacles. If however, the 

obstacles are invisible due a restricted viewing angle, the user 

might be confused since the robot does not move nor act 

according to the teleoperation commands. We hypothesize that 

the conflict can be naturally resolved by exploiting hap tic 

information, that is, by providing the operator with force 

feedback.  Force-feedback has been used for precise remote 

control in teleoperation of manipulator. 

Navigation is the science (or art) of directing the course of a 

mobile robot as the robot traverses the environment. Inherent 

in any navigation scheme is the desire to reach a destination 

without getting lost or crashing into any objects. The goal of 

the navigation system of mobile robots is to move the robot to 

a named place in a known, unknown, or partially known 

environment.   

The goal of the navigation process of mobile robots is to 

move the robot to a named place in a known, unknown or 

partially known environment. In most practical situations, the 

mobile robot can not take the most direct path from the start to 

the goal point. So , path planning techniques must be used in 

this situation, and the simplified kinds of planning mission 

involve going from the start point to the goal point while 

minimizing some cost such as time spent, chance of detection, 

or fuel consumption. 

Several approaches for path planning exist for mobile 

robots, whose suitability depends on a particular problem in an 

application. For example, behavior-based reactive methods are 

good choice for robust collision avoidance. Path planning in 

spatial representation often requires the integration of several 

approaches. This can provide efficient, accurate, and 

consistent navigation of a mobile robot. . It is sufficient for the 

robot to use a topological map that represents only the areas of 

navigation (free areas, occupied areas of obstacles). It is 

essential that the robot has the ability to build and uses models 

of its environment that enable it to understand the 

environment’s structure. This is necessary to understand 

orders, plan and execute paths. 

The major task for path-planning for single mobile robot is 

to search a collision –free path. The work in path planning has 

led into issues of map representation for a real world. 

Therefore, this problem considered as one of challenges in the 

field of mobile robots because of its direct effect for having a 

simple and computationally efficient path planning strategy. 

For path planning areas, it is sufficient for the robot to use a 

topological map that represents only the different areas without 

details such as office rooms. The possibility to use topological 

maps with different abstraction levels helps to save processing 

time. The static aspect of topological maps enables rather the 

creation of paths without information that is relevant at 

runtime. The created schedule, which is based on a topological 

map, holds nothing about objects which occupy the path. In 

that case it is not possible to perform the schedule [7,9]. To get 
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further actual information, the schedule should be enriched by 

the use of more up-to date plans like egocentric maps. 

Systems that control the navigation of a mobile robot are 

based on several paradigms. Biologically motivated 

applications, for example, adopt the assumed behavior of 

animals. Geometric representations use geometrical elements 

like rectangles, polygons, and cylinders for the modeling of an 

environment. Also, systems for mobile robot exist that do not 

use a representation of their environment. The behavior of the 

robot is determined by the sensor data actually taken. Further 

approaches were introduced which use icons to represent the 

environment. One of the specific characteristics of mobile 

robots is the complexity of their environment, therefore, one of 

the critical problem for the mobile robots is path planning.  

To perform all tasks in different environments, the robot 

must be characterized by more sever limits regarding mass 

volume, power consumption, autonomous reactions 

capabilities and design complexity. Particularly, for planetary 

operations sever constraints arise from available energy and 

data transmission capacities, e.g., the vehicles are usually 

designed as autonomous units with: data transfer via radio 

modems to rely stations ( satellite in orbit or fixed surface 

stations) and power from solar arrays, batteries or radio-

isotope thermo electric generators (for larger vehicles). A 

common application of mobile robot is the object 

manipulation. Examples include pick and place operation on 

the factory floor, package sorting and distribution. Some 

researchers are interesting in the simplest kind of object 

manipulation i.e. pushing. Pushing is the problem of changing 

the pose of an object by imparting a point contact force to it.  

For the simplicity, they constrain their self to the problem of 

changing the pose (in a horizontal plane). 

The environment force prevents the robot from moving 

and turning towards obstacles by giving the user the distance 

information between the robot and the obstacle in a form of 

force.  This force is similar to the traditional potential force 

field for path planning of mobile robot. However, the 

environment force is different from the potential force in some 

aspects. First there is no attention to a goal since we assume 

that the goal position is unknown. Secondly, only obstacles in 

the “relevant” area (according to the logical position of the 

interface) are consider, i.e. the obstacles that are far, or in the 

direction opposite to the movement of the robot are not 

relevant. In this context, a full range of advanced interfaces for 

vehicle control has been investigated by the researchers. These 

works demonstrates that obstacle detection and collision 

avoidance is improved with good results.  

In this paper we deal with 3D path planning; we first 

supposed that the robot navigates in planar environment. In 

this case, the robot can avoid any obstacles shape even in 

congested environment. However, for the case of non-

polygonal obstacles it is better to be surrounded by poly-solid 

objects, otherwise the algorithm will spend much time to 

return a result. And some complex cases the algorithm cannot 

achieve the target even a free path may exist. The planar is 

considered as 3D smoothed cubic B-spline surface. 

In our previous work [1, 10, 11, 12, 13] concerned with a 

path planning problem of an autonomous robot operating in a 

2-dimensional surface with obstacles. The robot was 

considered as a material point. In this paper we deal with 3-

dimentional navigation. In the first part the obstacles are 

presented in 3-dimensions and the planar path connecting the 

start to the target point take into consideration the principal 

robot dimensions. In the second part, we treat the 3D Path 

Planning in natural cluttered Environment. In the last part, we 

discuss the typical sensors that can help us to implement our. 

This paper proposes a new methodology of work in 3D 

navigation where the problem of movement of an autonomous 

mobile robot is solved using Mesh creation and 3D surface 

smoothing. 

II. 2D PLANAR PATH PLANNING  

In this part we consider the planar navigation, we use the same 

algorithm used in case of 2-dimenssion navigation in our 

previous work [10,11,13] , where we have to take here into 

consideration 3D obstacles shape and the real robot 

dimensions. Furthermore, we use the NURB-spline for the 

smooth of the trajectory. In case of 3D the problem can be 

reduced to a problem of two dimensions by projecting the 

objects on the plan containing the initial point, the target point 

and the control point. 

The use of the parametric curves for path planning was 

introduced by some researchers where a trajectory without 

collision is regarded as to be a series of curves connecting the 

initial points to the target in the workspace . The control points 

for which connection were made determines the form of the 

trajectory. For this case the problem of optimal trajectory 

calculation is posed. 

The use of parametric curves for the path planning is very 

developed and largely used in computer graphics, in design 

and manufacture computer-assisted. A parametric curve has an 

inherent directional property which enormously reduces 

calculations. In this work, a linear parametric curve is used for 

path planning; the smooth of the trajectory around the control 

point is also taken in consideration.  

The linear trajectory connecting the initial to the goal points 

is examined in the first step. If the trajectory collide an 

obstacle, a point of control is introduced between the initial 

and the goal point and a point of intermediate connection is 

created once again. The point of control can be structured in a 

coordinated way, and a checking of interference between the 

trajectory and the obstacles produces a map. For the problem 

in two dimensions, two parameters are necessary to define a 

control point, and four parameters are necessary to define two 

points of control. From where a certain number of control 

points define the dimension of the control point space CPS.   

An interference checking produces images in the CPS and this 

tracing is defined by a geometrical layout . 

The control point space has a property in the Free Space 

(FS) which defines a trajectory without collision. Free space is 

a surface belonging to the CPS, but unoccupied by the image 

of the obstacles. The geometrical layout is a computing 
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process. The construction of the CPS depends on the manner 

in which the control points are defined. 

A. Collision detection and obstacles avoidance 

The linear parametric curve connecting the starting point, 

S , to the target  point, T , is given by The directional 

property of the parametric curve enables us to express the 

intersection of two segments of a line in simple terms.  To 

determine if the line ST  collides an object we must carry out 

a checking of the intersection of the line ST  with the 

polygonal contours of the obstacles.  The line ST  has the 

tendency to intersect with the contour of the obstacle Obs2 in 

two points (1) and (2), such that 
21

sss ≤≤ . The calculation 

of the intersection between the line segment ST  and the 

obstacle contour jPiP  can be expressed as follows: 

 

( ) ( )
iij PtPPSsST +×−=+×−      

t :  represents the curve parameter; In the case of 2D the 

vectorial equation  is composed of two equations with two 

unknowns ( s and t  parameters).  The parameter s and t can 

be solved by eliminating the others. 
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In the workspace, we can define the position of the obstacles 

with respect to the line ST , and there exist three cases: the 

obstacles which cut the line ST , which are above the 

line ST and which are below the line ST .for the case of 3D 

we have to take the width of the robot to consideration as it is 

shown in figure 1.  

The path in 3D environment is considered as an object 

which has the width and the height of the robot. Our algorithm 

creates three selection sets: the first contains the virtual path, 

the second contains all the obstacles existing in the 

environment and the third one is initially empty; then the 

algorithm checks the interference between solids in the first 

selection set against those in the second selection set. 

Once the algorithm starts checking for interferences, 

temporary interference objects are created and included to last 

created selection set (see figure 2). In order to avoid the 

obstacle, the virtual path must be rotated around the starting 

point, S , by a small angle θ∆  given by the equation 1 

 

ST

w1sin−=∆θ       (1) 

Where:  ST  represents the distance between the starting point 

and the target, and w  is expected robot width. After this 

rotation, the temporary interference objects that are created 

during interference checking are deleted (see figure .3). Thus 

the interference selection set becomes empty. The algorithm 

rotates again by θ∆  and checks for collision by testing the 

interference selection set, the linear path is in collision with 

obstacles unless the selection set is not empty. It keeps rotating 

until the interference selection becomes empty (see figure 4). 

When the selection set is not empty, the created interference 

objects must be removed before the next iteration.  The 

iteration is limited for obstacles which interfere with the linear 

curve 

B. Control point insertion  

When the linear path collide an obstacle, a control point 

must be inserted between the starting point and the obstacle. 

The control point Q , belong to the characteristic curve 

network describing the trajectory without collision projected in 

2D workspace. In the figure 5, the polar coordinates are used 

to define a control point with the parameters θ  and ρ . The 

arbitrary value of θ  and ρ  is fixed between 0°<θ < 360° 

(θ ≠ 0, 180°) and 0 < 1≤ρ . To obtain the control point Q  

all the obstacles must be projected into 2D workspace, the 

distance ‘ d ’ between C and the extreme limit of AWS is 

expressed by :  

 

( ) ( )22

yyxx CWCWd −+−=  

 

As the center C of CWS is in the middle of ST : The values of 

maxQ correspondent to the maximum values of D  are given 

by : 

( )( ) ( )( ){ }
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 (2) 

Where D  represents always the distance ST , i.e.  

STD −= . W represents the width of the robot .We have 

added 
2

w
 because for navigation we conceder the center of 

gravity of the robot. For the case of non-polygonal obstacles 

(such as cylinders, cones etc.) must be circumscribed by poly-

solids with the maximum edges, as shown in the figure 5 

(Obs4). 
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The checking of interference with the obstacles must be 

carried out before the tracing of QT .The checking for 

interference must be carried out for the obstacles above and 

below the line ST ,  hens the rotation is done to the left and 

the right. As each obstacle produced well defined ρ  ranges, 

the union of these ranges gives us as a result a well defined ρ  

ranges for a given value of θ . The checking of interference 

must be made for all the obstacles according to the above 

procedure. The Figures 6 and 7 show a typical case of 

geometrical planning. The shading surface on figure 6 

indicates that all control points belonging to this surface 

intersect with the line segment SQ  or QT . The surface 

defined by 1A , 2A , 3A  and 4A of CPS in the figure 7 shows 

the trajectories without collision. The obstacles in the 

Euclidian space are represented by a complex form that show 

only the surface for the control point Q . The obstacles are 

represented as 3D objects, where the path is drawn in the plan, 

but the height of the robot is also taken to count. 

Consequently, it may exist a free path throw objects (for 

example, in case of bridge, the feasible optimal path may be 

under that bridge). As the process end up when a feasible path 

is found, the construction of the whole map is not necessary, 

unless there are other constraints which must be taken on 

consideration. According to figure 7, it is clear that the 

trajectory taken from 3A  and 4A cross behind  1Ob  and 

3Ob  respectively. The circle 
1

C and 
2

C are the inscribed 

circle with an important diameter to be more suitable for 

surfaces 
3A  and 

4A  respectively, and 
1

C  is largest than 

2
C . The path gotten from 

1
C is far from obstacles comparing 

to any other path can be regarded as the most certain 

trajectory. It is one of the useful properties of this geometric 

planning. 

In the workspace, we can define the position of the 

obstacles with respect to the line ST, and there exist three 

cases: the obstacles which cut the line ST, which are above the 

line ST and which are below the line ST.  In the case where 

there is no intersection between the obstacle and the line ST, 

an additional calculation is necessary in order to locate its 

position with respect to ST. This does not require a precise 

value but a relative value with the aim of making a 

comparison. A method which does not use the trigometrical 

functions consists in calculating the determinant of the 

equation : 

 

 

   

111

iyyy

ixxx

PTS

PTS

A =       

  

This equation  gives the double of the area of the triangle 

STP1 (see the figure 4), where the order (orientation) 

determines of the points constituting the vertices of the 

obstacle.  The equation (6) indicates if a vertex P1  of an 

obstacle is on top, below or on the line ST.  Three cases arise:  

1. |STP1|>0, in this case S,T and P1  are ordered in the 

clockwise direction, i.e. the obstacle is bellow the line ST.  

2. |STP1|<0¶, in this case S,T and P1  are ordered in the 

counter clockwise direction, i.e. the obstacle is above the 

line ST. 

3. |STP1|=0¶, in this case S,T and P1  are in the same line. 

 

In order to reduce calculations this checking is limited to the 

cases where obstacles are in collision with the line ST. 
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Fig.6 The interference computation to define the range of ρ  

(Isometric view). 

 

 

 
Fig. 5 The insertion of the control point (top view). 

 
 

Fig. 2 the temporary interference object creation (bottom view)  

 
 

Fig. 3  Linear path rotation (Top view).  

 

 
Fig. 4 the obstacle avoidance (Top view) 

 

 
Fig. 1 The interference between the linear trajectory and the 

 obstacle in 3D environment (isometric view)  
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C.    Connection smoothing using NURBs  

Previously we have got a path in form of segments which 

are discontinuous in the control point. To remedy this problem 

we used in the third chapter the quadratic and cubic parametric 

curves which generate Bezier curves . 

In our algorithm, initially we add only one control point; 

then we test for collision between QT and the obstacle. In 

case of collision, we have to insert another control point, and 

so forth. Before, we had mentioned that the Bezier curves do 

not ensure the local control. To overcome this drawback we 

use the NURBs, which are characterised by the following 

points: 

• A NURBS curve produces a smooth curve between 

control points. 

• We create splines by specifying coordinate points 

which are the starting point, the control points and the 

end point. 

• We can change the spline-fitting tolerance. Fit 

tolerance refers to how closely the spline fits the set 

of fit points we specify. 

• The lower the tolerance, the more closely the spline 

fits the points. 

• At zero tolerance, the spline passes through the 

points. 

• We can add a fit point (other control point) and refits 

the spline through the new set of points. 

Here are a few things to be respected. 

• The order of the curve must be equal to or higher than       

2. Order 2 gives us a polyline effect.  

• The control points are represented in homogeneous 

form, meaning that we have to divide the x, y, and z 

components by the w component to find the point's 

actual position in three-dimensional space.  

• The w component of each control point must be 

positive. 

• The number of control points must be equal to or 

greater than the order. 

• The number of knots must be equal to the number of 

control points plus the order of the curve.  

• The knots must be specified in non-decreasing order 

 

We start with a NURB curve defined by starting point, one 

control point and target point which are denoted by iQ . The 

NURB curve is given by the formula (3): 

( ) ( )∑
−

=

=
1

0

,

t

i

kii tNQtQ       (3) 

 

with a knot vector { }110 ,...,, −+knxxx . To add a new knot 

newx , where 1+≤< inewi xxx . The new curve will be defined 

by the equation 4. 

( ) ( )∑
−

=

=
1
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,
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t

i

kii tNQtQ        (4)  

Now we have to figure out not only where the new control 

point is located and where it goes in the ordered vector of 

control points, but also how to adjust some of the existing 

control points to keep the shape of the curve unchanged; this 

process yields the new control point vector, Q̂ . It turns out 

that the relationship between the old and new control points is 

given by the relation (5): 

( )
jjjjj QQQ αα +−= −11ˆ      (5) 

Where α  is defined by the equation (IV.6) 
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In the figure 8, the black spline shows the smoothed path to 

avoid the first obstacle (obs.1), and in order to avoid the 

second obstacle (obs.2) a control point is added to this spline. 

The refitted spline is shown on red. It is clearly shown that the 

adding of a control point does not affect the global spline. 

 

 
 

 

Fig.7 Euclidian space of the obstacles 
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D. Simulation results  

The path given in the figure 8 shows the path as a 2D 

modelling  NURB spline [5,8]. To consider the width of the 

robot we should create a region from a set of entities. This 

method will create a region out of every closed loop formed 

by the input array of curves. The first curve is the spline 

created from the control points, the second curve is a spline 

shifted away from the obstacles by a distance equal to the 

width of the virtual robot, and the two ends of the two splines 

are linked by lines to create a closed region. 

The previous region presents our free path as 2D planar 

environment. To take the height of the robot into 

consideration we have to extrude the region by the height of 

the robot. This suction concerned with the simulation of our 

algorithm in different 3D environment. 

In the figure 9 the obstacle is avoided by inserting one 

control point. To get the smoothed path we used the slip of the 

first portion of the linear path as the start tangent of the NURB 

spline, and the slip of the second portion as end tangent of the 

spline. Whereas, in the case of the figure 10 the two obstacles 

are avoided by inserting two control points. Furthermore, the 

start tangent of the spline is defined by the slip of the first 

linear path, and the end tangent is defined by the slip of the 

third linear path. 

To go around a corner, more than one control point must be 

added when necessary. The start tangent of the spline for each 

case is defined by slip of the first portion of the linear path; 

however the end tangent is defined by the slip of the last 

portion of the linear path. The more is the number of control 

points the great is the computation time. The figure 17 and 18 

are an illustration example. 

In the figure 10, it is clearly shown that the number of 

control points and the degree of the NURBs are independent, 

i.e. the number of control points does not affect the shape of 

the smoothed curve. A free smoothed path realization the 

insertion of one control point Smoothed path (SE Isomertic 

view) is shown in the figure11. The figure12 shows another 

example of two control points where we the main idea of work 

is done. The SE Isomertic view –linear trajectory-of this 

environment is shown in the figure13. Finally the smoothed 

path of this environment is shown in the figure 14. another 

example where a path planning in congested environment is 

proposed in the figure 15,  we can see the movement how is 

done. The smoothed path of this environment is shown in the 

figure16. 

The figure 17 and the figure 18 illustrate that the optimal 

free path can be by passing under a bridge. Where the figure 

19 and the figure 20 is an example of navigation in complex 

environment, the obstacles are non-polygonal objects created 

by extruded spline surfaces. 

Until now, although the obstacles are presented as 3D 

objects, we have dealt only with path planning in 2D planar 

environment. To deal with no planar path planning we have to 

start by defining the mesh, then we smooth this mesh to fit the 

B-spline surface. We avoid the existing obstacles on this 

surface by using the previous method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
 

 

Fig.9 Free smoothed path realization the insertion of one control point- 

Linear path (Top view)- 

 

 
 

Fig.10 Free smoothed path realization the insertion of one control point 

Linear path (NW Isomertic view) 
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Fig. 13 Free smoothed path realization the insertion of two control 

points : linear trajectory (SE Isomertic view) 

 
 

Fig.11 Free smoothed path realization the insertion of one control point 

Smoothed path (SE Isomertic view) 

 

 
Fig . 12 Free smoothed path realization the insertion of two control  

Linear trajectory (Top view) 
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    Fig. 14 Free smoothed path realization the insertion of two 

control points : smoothed path  (SE Isomertic view) 

 

 
 

 

    Fig. 15 path planning in congested environment 

Linear trajectory (SE Isomertic view) 
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    Fig. 16 path planning in congested environment 

smoothed path (SE Isomertic view) 

 

 
Fig. 17 path planning in complex environment 

Passing behind obstacles 
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III. 3D PLANAR PATH PLANNING  

B-spline are widely used to represent surfaces. They 

combine a low degree polynomial or rational representation of 

maximal smoothness with a geometrically intuitive variation of 

the surface in terms of the coefficients: by connecting the 

coefficients one obtains a mesh that roughly outlines the 

surface. Repeated refinement of this mesh by knot insertion 

results in a sequence of meshes whose points are averages of 

the preceding and whose limit is the surface itself. In addition 

to an elegant algebraic definition this yields an alternative 

geometric, procedural characterization of the splines useful for 

establishing many shape proprieties of spline surfaces. Each 

point in the interior of the B-spline mesh must be regular, that 

is surrounded by exactly four quadrilateral mesh cells. 

A Polygon-Mesh object is an M x N mesh where M 

represents the number of vertices in a row of the mesh and N 

represents the number of vertices in a column of the mesh. 

A mesh can be open or closed in either or both the M and N 

directions. A mesh that is closed in a given direction is 

considered to be continuous from the last row or column on to 

the first row or column. Vertices may be any distance from 

each other. 

A Polygon-Mesh is always created as a simple mesh. A 

mesh can be smoothed after creation by using even: a 

quadratic B-spline surface fit, a cubic B-spline surface fit or a 

Bezier surface fit. The figures (21, 22, 23, 4) show the 

different cases of smoothing a 4x4 mesh using quadratic and 

cubic B-spline as well as the Bezier surface concept [6]. 

In our simulation the technique of cubic b-splines is used in 

order to describe the geometric shape of the environment. 

Bezier surfaces fulfill often the requirement of generating 

smooth geometry. In complex environments approximation 

based on a large number of scattered data, Bezier surfaces 

show the disadvantageous property of global modeling 

possibility. Therefore the concept of Bezier surfaces is 

generalized to the concept of segmented surfaces, which leads 

to the surface representation with b-spline technique. 

Furthermore, the cubic B-spline preserves the 
2C continuity. 

There are no restrictions on the number of cells meeting at a 

mesh point or the number of edges to a mesh cell. Mesh cells 

need not be planar .The surface must not have an abrupt 

change in its form; consequently we have to smooth the 

created mesh . The start point and the target point must belong 

to the control points constructing the surface. The path 

connecting the start point to the target point must be 

interpolated with a spline curve to obtain a smooth curve 

which fits the surface perfectly. The figure 25 shows the 

smoothed curve fitting the surface. 
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The figure 25-left is an illustration example of the smoothed 

spline curve creation, it is shown as a 3D wireframe. Whereas 

the figure 25-right shows the 3D path generation with 

consideration of the robot width. As there are no abrupt 

changes on the surface, the width of the robot is considered by 

offsetting the first smoothed curve by a distance equal to the 

width of the robot. The figures 26 and 27 illustrate the use of 

our algorithm to avoid the obstacles existing on this surface. 

The robot is supposed to be very tiny, so that it is 

interpreted as a point. Initially, the robot can estimate its 

position ( )
yx SSS ,  but does not know its orientationθ .  This 

leads to a position sensor defined as 
2RY =  with 

xSy =1
 

and ySy =2 . A compass (Compact Outdoor Multipurpose 

Pose Assessment System) or orientation sensor can likewise be 

made by observing only the robot orientation. In this case, 

θ=y  

The position and orientation sensors generalize nicely to a 

3D world. In this case the robot position is presented by three 

coordinates ( )zyx ,,  which can be measured with a position 

sensor; whereas an orientation sensor measures the robot 

orientation. A physical sensor that measures orientation in 
3R  

is often called a gyroscope. These are usually based on the 

principle of precession, which means that they contain a 

spinning disc that is reluctant to change its orientation due to 

angular momentum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22 Mesh creation and 3D surface smoothing: case of Quadratic smoothed 

B-spline surface 

 

 

 

 
Fig. 21 Mesh creation and 3D surface smoothing: case of 4x4 

simple mesh 

 

 

 

                
 

 

Fig. 25 the smoothed 3D path generation The smoothed spline curve 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 26 3D path planning with obstacles avoidance:  

environment 1 
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Fig. 27 3D path planning with obstacles avoidance: 

environment 2  

 

IV. CONCLUSION 

In this paper we studied the path planning problem of an 

autonomous robot operating in a 3-dimentional surface with 

obstacles. A complete path planning algorithm guarantees that 

the robot can reach the target if possible, or returns a message 

that indicates that there is no free path when the target cannot 

be reached. We first supposed that the robot navigates in 

planar environment. In this case, the robot can avoid any 

obstacles shape even in congested environment. However, for 

the case of non-polygonal obstacles it is better to be 

surrounded by poly-solid objects, otherwise the algorithm will 

spend much time to return a result. And some complex cases 

the algorithm cannot achieve the target even a free path may 

exist. The robot moves within the unknown environment by 

sensing and avoiding the obstacles coming across its way 

towards the target.  

The navigation is done in 3D environment where the planar 

is considered as 3D smoothed cubic B-spline surface. The 

obtained path is the shortest path from all possible free 

trajectories (the smoothness of the trajectory is done around 

the control point). In this case, the start point and the target 

point must belong to the control points constructing the 

smoothed surface. And the obstacles are avoided in the same 

manner as in the case of planar navigation. The proposed 

algorithm has the advantage of being generic and can be 

changed at the user demand. The obstacles can take any shape 

since the algorithm is general for any obstacle detection. This 

approach works perfectly even if an environment is unknown. 

We have run our simulation in several environments where the 

robot succeeds to reach its target in each situation and avoids 

the obstacles capturing the behaviour of intelligent expert 

system. For the main idea we propose to use simple projection 

sensors to measure the robot position and orientation. Our 

autonomous mobile robot is able to achieve these tasks: avoid 

obstacles, taking a decision, perception, and recognition and to 

attend the target which are the main factors to be realized of 

autonomy requirements. However in the future, it is necessary 

to use a robot in hostile environment and space exploration or 

other applications by using advanced micro-product control 

systems that can be dealt in 3D dimensions. 
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