

Abstract—Typical organizations in a company are usually

engaged in more than one project running in parallel. In such a case,

human and non-human resources (i.e., workers and development

environments) are inevitably shared by those projects to carry out

respective tasks. When a resource is shared among two or more

projects and if a change is requested for such a resource by one of the

projects, there may be a situation in which the project cannot change

its assigned resource or adjust its schedule since other processes are

competing for the same resource at the same time. The authors call

such a process a bottleneck process. If a delay spreads to one of the

bottleneck processes, the project cannot be completed by its due date

because it is not possible to adjust its schedule or to change the

resource. It is necessary to take measures to prevent a process delay

from spreading to bottleneck processes. This paper proposes a method

to detect bottleneck processes automatically and discusses the

effectiveness of the method by simulating the impacts (perturbation)

generated by delays of preceding processes using Perturbation-based

Repercussion Analysis.

Keywords—Project management, Detection of bottleneck

processes, Perturbation, Repercussion analysis

I. INTRODUCTION

EVELOPMENT of large-scale software is usually conducted

by a project to enable joint cooperation of all workforces.

Regardless to the life cycle model adopted, a development plan

is an essential factor of a software development project,

including task scheduling for development and assignment of

personnel to each task. Therefore, to lead a project to a

successful conclusion, it is necessary to establish management

objectives based on the software development plan and to check

their attainment levels.

Typical organizations in a company usually carry out more

than one project in parallel. In such a case, human and

non-human resources (i.e., workers and development

environments) are inevitably shared by those projects to carry

out respective tasks. When a resource is shared among two or

more projects and if a change is requested for such a resource by

one of the projects, there may be a situation in which the project

cannot change its assigned resource or adjust its schedule since

other processes are competing for the same resource at the same

time. The authors call such a process a bottleneck process. If a

delay spreads to such a process, the project cannot be completed

by its due date because it is not possible to adjust its schedule or

to change the resource. It is necessary to take measures to

prevent a process delay from spreading to bottleneck processes.

However, it is not easy to detect a potential bottleneck process

in advance because it is necessary to recognize not only both the

development plans of own project and other projects but also

their schedules changing day by day.

The authors propose a method to detect bottleneck processes

automatically and discuss the effectiveness of the method by

simulating the impacts (perturbation) generated by delays of

preceding processes using Perturbation-based Repercussion

Analysis.

This paper contains the following sections. Section 2 discusses

the type and the nature of constraints inherent to the planning

issues of software development. Section 3 introduces related

works. Section 4 describes the definitions of bottleneck process

and potential bottleneck process as well as their examples.

Section 5 introduces an analysis method that can be used for

repercussion analysis of impacts on succeeding processes

generated by delays of preceding processes. Section 6 describes

several case studies to which our analysis method is applied

based on the examples shown in Section 4. Section 7 discusses

the effectiveness of the proposed analysis method based on the

consideration of applied case studies (repercussion analysis of

impacts generated by delays of preceding processes) shown in

Section 6. Section 8 describes the conclusion.

II. CONSTRAINTS INHERENT TO SOFTWARE DEVELOPMENT

PLANNING

In this research, the authors recognize the conditions that a

software development plan has to satisfy as constraints [1, 2].

The constraints that are inherent to planning of software

development are as follows:

(1) Constraints imposed by the execution sequence of work

In a software development project, the execution sequence of

processes is determined by their intermediate software products.

For example, as for Process b in Figure 1,

Process b is feasible only after the intermediate software

products α has been produced from Process a. This is called the

pre-condition of Process b. The intermediate software product β

must have been produced from Process b before Process c is

started. This is called the post-condition of Process b. Thus the

execution sequence of Processes a, b, and c is determined by the

Automatic Detection of Latent Bottleneck

Processes through Perturbation-based

Repercussion Analysis

Seiichi Komiya, Daisuke Kinoshita, Hiroki Uchikawa, and Yuya Kosaka

D

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

99

intermediate software products α and β. Such a condition is

called the constraint on the execution sequence of tasks.

Execution sequence of tasks

Process

a

Process

b

Process

c

Process

d

Intermediate

Software

Product

α

Intermediate

Software

Product

β

Intermediate

Software

Product

γ

Fig. 1 constraints on the execution sequence of tasks based on

intermediate software products

(2) Constraints imposed by competent resource allocation

Only skilled, qualified and competent human resources (i.e.,

workforce) and non-human resources (such as machine

environments) with satisfactory level of feasibility can be

assigned to each task of software development. Such a

constraint is called the constraint imposed by competent

resource allocation. For example, the processes related to a

specific programming language, system testing, or debugging

can be performed only by persons who are able to do such tasks.

Therefore, the schedule of software development tasks varies

depending on the conditions of human and non-human

resources, in other words, the constraints on resource

assignment.

(3) Constraints imposed by available periods of resources

Even if there are competent resources for software

development tasks, those resources cannot be assigned to a

specific task when they are engaged in other work. Resources

can be assigned only when they are available. Such a constraint

is called the constraint imposed by available period of resource

allocation.

(4) Constraints imposed by resources’ limitations

We introduce the concept of capacity as an attribute of each

resource to express resource capability limitations. A resource's

capacity is defined by the upper limit value of each resource's

working rate (in percentage). The working rate is obtained by

dividing the total working hours of a resource per day (when one

resource is simultaneously assigned to several tasks, the total

working hours are calculated as the sum of those working hours)

by the available working hours of that resource and then

multiplying by 100. The working rate upper limit value

calculated in advance is defined as the constraints imposed by

the resource capability limitation. For example, suppose that

Worker Pl is assigned to both Work A (two days workload) and

Work B (two days workload) for a week (five days), the

working rate of Worker P1 for the week is 80%. In this case, if

the working rate upper limit of Worker P1 is set to no less than

80%, it is possible to assign him/her as described above.

However, if the value is less than 80%, it is not possible to

assign him/her. Thus the working rate can be used as a scale for

evaluating a worker’s workload and for checking if the worker

is overloaded. This concept can be applied to non-human

resources. Typical capacities (working rate upper limit) may

vary depending on the rank of resources. By default, the

working rate upper limit is set to 100% or eight hours.

If the combination of resources assigned to each process of a

project satisfies all the constraints, it can be considered as a

candidate of software development plan. That is, planning a

software development project schedule can be considered as

solving an optimization problem of combinations with many

constraints.

III. RELATED WORK

Various models have been proposed so far to represent the task

structure of a software development project, including PMDB

[7], Design-Net [8, 9], Kyoto DB [10], and PROMX [11].

However, these models do not explicitly address either the

relationship between software development tasks and the

resources essential to conduct the tasks or the constraints on the

conditions and available periods of resource assignment

although they are useful for the models to represent the task

model of a project because they focus on how to represent the

hierarchy and sequence of tasks. (Although PMDB uses Person

as an entity, it does not address the constraints related to the

resource allocation conditions and the available period of

resources.) Therefore, they are not adequate for the project

management models of software development projects.

Finally we mention CCPM (Critical Chain Project

Management) [6, 13, 16, 17] getting attention recently in

comparison with our approach. We have to explain TOC

(Theory of Constraints) [13, 14, 15] before discussing CCPM.

TOC is a management method that focuses on the weakest

portion (Constraint Conditions in TOC terms) in company

activities and reinforces and improves that portion intensively to

achieve a maximum success with minimum efforts. Based on the

idea of TOC, CCPM, as a project management method,

performs optimization from the viewpoint of entire project.

CCPM uses Critical Chain in place of conventional Critical Path

and removes the additional part of efforts included in the

estimation phase for safety purpose to shorten each process

period (specifically, adopts an effort estimation of 50% success

probability), and then add a project buffer (margin days) at the

end of a process on a Critical Path to manage the entire process

at a single point. In addition, it inserts a joining buffer between

the tasks on the Critical Chain path and the tasks on the path that

joins to the Critical Chain to prevent the Critical Chain from

being affected by delays of tasks on the path that joins to the

Critical Chain path. Then the plan of project schedule is created

by taking into account the delivery date, cost and constraints of

the resources. Then the project manager understands the

progress of the whole project by examining the consumption

ratio of the buffer instead of managing the progress of each

process. The above is an outline of CCPM.

Our approach is different from CCPM in the following points:

• Our viewpoint of man-hours estimation is different

from that of CCPM. CCPM adopts man-hours

estimation of each process with 50% of success

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

100

probability and uses the joining and project buffers to

reduce the risk of process delay due to estimation

errors. In our approach, an average of extra man-hours

is calculated for the joining and project buffers and

assigned to each process.

• Our viewpoint of progress management is different

from that of CCPM. CCPM manages the progress of

the whole project by examining the consumption ratio

of the buffer instead of managing the progress of each

process. For this reason, CCPM can be used to detect

process delays of the whole project, but it is not

adequate for understanding the progress of processes

which are not on the Critical Chain. In our approach,

progress is managed by each process. As a result, it is

possible to understand the progress of every process,

regardless of if it is on the Critical Path.

When a process delay is detected, it is not easy to change the

project schedule in CCPM to recover the delay, but in our

approach as described in [4, 5], it is possible to use our tool to

develop a revised plan dynamically that can be used to recover

the process delay.

IV. DEFINITIONS OF BOTTLENECK PROCESS AND POTENTIAL

BOTTLENECK PROCESS AND THEIR CASE STUDIES

(1) Definition of bottleneck process and its case study

Suppose that a single resource is being used in more than one

project. There is a situation in which the schedule of a project

cannot be adjusted or the resource used in the process cannot be

replaced when a delay spread to the process. Such a process is

called a bottleneck process. Figure 2 shows a case of such a

situation.

Project scheduleProject scheduleProject scheduleProject schedule

FebruaryFebruaryFebruaryFebruary

1111 2222 3333 4444 5555 6666 7777 8888 9999 10101010 11111111 12121212 13131313 14141414 15151515 16161616 17171717 18181818 19191919

Project XProject XProject XProject X
Process AProcess AProcess AProcess A Process BProcess BProcess BProcess B Process CProcess CProcess CProcess C Process EProcess EProcess EProcess E

Process DProcess DProcess DProcess D

Project YProject YProject YProject Y
Process PProcess PProcess PProcess P Process QProcess QProcess QProcess Q Process RProcess RProcess RProcess R

Process SProcess SProcess SProcess S

Resource scheduleResource scheduleResource scheduleResource schedule

ResourceResourceResourceResource
αααα

Project XProject XProject XProject X
Process CProcess CProcess CProcess C

Project YProject YProject YProject Y
Process QProcess QProcess QProcess Q

Project YProject YProject YProject Y
Process RProcess RProcess RProcess R

Fig. 2 case study for bottleneck processes

The project schedule is located at the top of Figure 2 and the

arrows indicate the “constrains on the sequence of tasks.”

Specifically, the upper part of Figure 2 represents a constraint

on the sequence of tasks which indicates that the tasks of

Processes B and D are started only after the tasks of Process A

have been completed. The lower part of Figure 2 represents the

schedule of resource usage. For convenience, suppose that only

Resource α can be assigned to Process C. Figure 2 shows a

situation in which Resource α is assigned to Process C of Project

X and Processes Q and R of Project Y. Note that there are no

margin days between the three consecutive Processes C, Q, and

R to which Resource α is assigned.

In this case, if a delay occurs in Process B of Project X, the

start and end dates of Process C drop behind the schedule for the

delayed days. When examining only the schedule of Project X,

it would appear that the schedule can be adjustable for a

maximum of three days to deal with the delay by setting back the

start and end dates of Process C for the delayed days since there

is three margin days for Process C. However, adjusting the

schedule in this way prevents Resource α from being assigned to

Process Q because Resource α is sequentially assigned to

Processes C, Q, and R and setting back the schedule results in a

delay of the start date of Process Q and prevents Process Q from

keeping three working days, as indicated by the constraints on

the available periods of resource assignment. Therefore the

project manager has to wait until 19 before he/she can assign

Resource α to Process C, after which Resource α is available for

consecutive three days. As a result, the end date of the project

will be significantly delayed leading the project to a failure

unless Process Q of Project Y is reinforces by adding personnel

or replacing resources. For this reason, the task schedule of

Process C cannot be moved at all. In addition, the resource to be

used in Process C cannot be replaced since only Resource α can

be assigned to Process C. Based on the above discussion,

Process C is determined to be a bottleneck process.

To lead a project to a success, it is essential to prevent any

delay from spreading to a bottleneck process even if it is a

minimum of one day, while conducting the project. To keep the

schedule of a bottleneck process intact, any delay should be

cleared when the process (Process B in Figure 2) just before the

bottleneck process (Process C in Figure 2) has completed.

(2) Definition of potential bottleneck process and its case study

There is a situation in which a process which is not an original

bottleneck process changes into a bottleneck process due to a

delay of its start date caused by a delay of a preceding process.

Such a process is called a potential bottleneck process.

Project scheduleProject scheduleProject scheduleProject schedule

FebruaryFebruaryFebruaryFebruary

1111 2222 3333 4444 5555 6666 7777 8888 9999 10101010 11111111 12121212 13131313 14141414 15151515 16161616 17171717 18181818 19191919

Project XProject XProject XProject X
Process AProcess AProcess AProcess A Process BProcess BProcess BProcess B Process CProcess CProcess CProcess C Process EProcess EProcess EProcess E

Process DProcess DProcess DProcess D

Resource scheduleResource scheduleResource scheduleResource schedule

ResourceResourceResourceResource
αααα

Project XProject XProject XProject X
Process CProcess CProcess CProcess C

ResourceResourceResourceResource
ββββ

Project XProject XProject XProject X
Process BProcess BProcess BProcess B

ResourceResourceResourceResource
γγγγ

Project XProject XProject XProject X
Process DProcess DProcess DProcess D

Fig. 3 case study 2 for bottleneck processes

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

101

The following describes potential bottleneck processes

according to Figure 3. Suppose that Resources β, α, and γ are

assigned to Processes B, C, and D respectively and there is no

assignable resource other than β, α, and γ. In addition, suppose

that Processes A and E assume no constraint and can be delayed

any days.

In Figure 3, only Resources α is assignable to Process C. In

addition, the allowable delay of Process C is two days due to the

constraint of Resource α. For this reason, Process C cannot

adjust its task schedule or replace its resources when a process

delay of two days spreads to Process C. That is, a two days

process delay changes Process C into a bottleneck process.

There is no resource other than Resource β that can be assigned

to Process B. In addition, it seems that Process B can be delayed

for a maximum of three days according to the constraint of

Resource β. However, a two days process delay makes Process

B unable to adjust its task schedule or replace its resource

because a two days process delay changes succeeding Process C

into a bottleneck process. That is, a two days process delay

changes Process B into a bottleneck process.

Process A has two succeeding Processes B and D. Since a two

days process delay changes Process B that follows Process A

into a bottleneck process, it is determined that only a delay of

two days is allowed for the path including Processes A, B, C,

and E in sequence. On the other hand, examining the path

including Process A and D makes it clear that Process A can

never be a bottleneck process since its resource has no

constraint. Whereas, only Resource γ is assignable to Process D.

In addition, Process D can be delayed for only one day

according to the constraint of Resource γ. As a result, a one day

process delay makes Process D unable to adjust its task schedule

or replace its resource. That is, a one day process delay changes

Process D into a bottleneck process. It can be determined that

only a one day process delay is allowed for Process A that is

preceding to Process D in the path including Processes A and D.

Comparing the both processes lead to a conclusion that only a

one day process delay is allowed for Process A.

Based on the above discussion about the case study of Figure

3, there are three potential bottleneck Processes B, C, and D,

which change into actual bottleneck processes by two days, two

days, and one day process delays, respectively.

V. OUR METHOD OF PERTURBATION-BASED REPERCUSSION

ANALYSIS ON PROCESS DELAY

In this paper, the authors propose a method of

perturbation-based repercussion analysis on process delay

which simulates the impacts on succeeding processes which are

generated by various process delays that are assumed in

preceding processes.

Figure 4 illustrates the procedure of perturbation-based

repercussion analysis. Numbers are corresponding to the

descriptions that follow.

start

②Use the “constraints on the

sequence of tasks” to find the

processes that follow the

delayed process.

①Change the end date of

the delayed process.

③Is there

any

succeeding

process?

⑤Change the assignment schedule

of personnel based on the

“constraints on the available periods

of resource assignment.”

⑥Does the

number of

delayed days

increase?

④Change the start date of

found succeeding process.

End

⑦Save the information

of the target process.

Yes

No

Yes

No

Fig. 4 The flow of perturbation-based repercussion analysis

① Change the end date of the delayed process.

① Use the “constraints on the sequence of tasks” to find the

processes that follow the delayed process.

① Based on the search results, check to see if there is a

succeeding process.

① Change the start dates of all the succeeding processes

that require changes to their start dates.

① According to the changed start dates, change the

assignment schedule of personnel based on the

“constraints on the available periods of resource

assignment.” However, the schedules of projects that

are not analysis target must not be changed. If the

person is assigned to another project during the target

period of changes, assign the person after the other

schedule is finished.

① Check to see if the number of delayed days increases

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

102

after the person is reassigned.

① Save the information of the process of which delay

expanded since it is highly possible that the process

schedule requires adjustment.

Repeat the procedure from (2) to (7) and terminate the

perturbation-based repercussion analysis when no succeeding

process is found or the project is completed.

VI. RESULTS OF SIMULATION PERFORMED USING THE

PROPOSED ANALYSIS METHOD

The following are simulation results produced by applying the

analysis method (simulation method) to the case study

illustrated in Figure 3.

(1) When the first delay arises in Process A:

Supposing that the first delay arises in Process A, change the

schedule of Process A by adding an assumed number of delayed

days. The number of days added as perturbation (delay) is

increased by day, starting with one day in the first simulation,

two days in the second simulation, and five days (one week) in

the last simulation. The authors set the maximum perturbation

days as one week since the progress management of software

development project is usually performed once in a week.

(i) When a one day delay is assumed in Process A:

In this case, the end date of Process A is delayed for one day

and falls on February 4 since there is no constrains on the

available periods of assignment. Duration of execution periods

of Processes B and D that follow Process A are also delayed for

one day since the end date of Process A is delayed for one day.

Since a one day delays of Processes B and D do not violate the

constraint on the assignment period of Resource β assigned to

Process B and D, the execution periods of Processes B and D

are set to the periods from February 5 to 8 and from February 4

to 14, respectively.

Since the end date of Process B is delayed for one day, the

execution period of Process C that follows Process B is set to

the period from February 9 to 11 at the earliest. Since a one day

delay of Processes C does not violate the constraint on the

assignment period of Resource α assigned to Process C, the

execution period of Processes C is set to the period from

February 9 to 11.

Although Process E that follows both Processes C and D is

affected by the delays of Processes C and D, the execution

period of Process E is delayed for only one day since there is no

constraint on the available period of assignment of resource

assigned to Process E. Thus the execution period of Process E is

set to the period from February 15 to 17.

(ii) When a two days delay is assumed in Process A:

In this case, the same approach used in the case in which a one

day delay is assumed in Process A can be used to determine the

start and end dates of each process. As a result, the end date of

Process A is delayed for two days and falls on February 5. The

execution period of Process B is set to the period from February

6 to 9, changed by the impact of the delay of Process A. The

execution period of Process C is set to the period from February

10 to 12, changed by the impact of the delay of Process B.

The execution period of Process D is set to the period from

February 6 to 15 at the earliest, changed by the impact of the

delay of Process A. However, Resource γ assigned to Process D

has already been assigned to another project from February 15

to 18, so it is unavailable in this period. In addition, since there

is no resource other than Resource γ which can be assigned to

Process D, the execution period of Process D should be set to

the period from February 19 to 28 during which Resource γ is

available. Thus, at this simulation stage it is revealed that

Process D has fallen into a potential bottleneck process at the

previous stage, that is, in the simulation case of a one day delay.

As for the impact of the delay of Process C, the execution

period of Process E stays unchanged from February 14 to 16.

However, is changed to the period from March 1 to 3 at the

earliest according to the delay of Process D. Here, since there is

no constraint on the assignment period of resource assigned to

Process E, the execution period of Process E is determined to be

set to the period from May 1 to 3.

(iii) When a three days delay is assumed in Process A:

In this case, the same approach used in the case in which a one

day delay is assumed in Process A can be used to determine the

start and end dates of each process. As a result, the end date of

Process A is delayed for three days and falls on February 6. The

execution period of Process B is set to the period from February

7 to 10, changed by the impact of the delay of Process A. The

execution period of Process C is set to the period from February

11 to 13 at the earliest, changed by the impact of the delay of

Process B. However, since Resource α assigned to Process C is

scheduled to be assigned to another project in the period from

February 13 to 15, it cannot be used in this period. In addition,

since there is no resource other than Resource α which can be

assigned to Process C, the execution period of Process C should

be set to the period from February 16 to 18 during which

Resource α is available. Thus, at this simulation stage it is

revealed that Process C has fallen into a potential bottleneck

process at the previous stage, that is, in the simulation case of a

two days delay.

The execution period of Process D is set to the period from

February 7 to 16 at the earliest, changed by the impact of the

delay of Process A. However, since Resource γ assigned to

Process D is scheduled to be assigned to another project in the

period from February 15 to 18, it cannot be used in this period.

In addition, since there is no resource other than Resource γ

which can be assigned to Process D, the execution period of

Process D should be set to the period from February 19 to 28

during which Resource γ is available.

The execution period of Process E is set to the period from

February 19 to 21, changed by the impact of the delay of

Process A and it is set to the period from March 1 to 3 at the

earliest, changed by the impact of the delay of Process D. Here,

since there is no constraint on the assignment period of resource

assigned to Process E, the execution period of Process E can be

determined to be set to the period from May 1 to 3.

(iv) When a four days delay is assumed in Process A:

In this case, the same approach used in the case in which a one

day delay is assumed in Process A can be used to determine the

start and end dates of each process. As a result, the end date of

Process A is delayed for four days and falls on February 7. The

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

103

execution period of Process B is set to the period from February

8 to 11, changed by the impact of the delay of Process A.

However, since Resource β assigned to Process B is scheduled

to be assigned to another project in the period from February 11

to 14, it cannot be used in this period. In addition, since there is

no resource other than Resource β which can be assigned to

Process B, the execution period of Process B should be set to the

period from February 15 to 18 during which Resource β is

available. Thus, at this simulation stage it is revealed that

Process B has fallen into a potential bottleneck process at the

previous stage, that is, in the simulation case of a three days

delay. The execution period of Process C is set to the period

from February 19 to 21, changed by the impact of the delay of

Process B.

The execution period of Process D is set to the period from

February 8 to 17 at the earliest, changed by the impact of the

delay of Process A. However, since Resource γ assigned to

Process D is scheduled to be assigned to another project in the

period from February 15 to 18, it cannot be used in this period.

In addition, since there is no resource other than Resource γ

which can be assigned to Process D, the execution period of

Process D should be set to the period from February 19 to 28

during which Resource γ is available.

The execution period of Process E is set to the period from

February 22 to 24, changed by the impact of the delay of

Process A and it is set to the period from March 1 to 3 at the

earliest, changed by the impact of the delay of Process D. Here,

since there is no constraint on the assignment period of resource

assigned to Process E, the execution period of Process E can be

determined to be set to the period from May 1 to 3.

(v) When a five days delay is assumed in Process A:

In this case, the same approach used in the case in which a one

day delay is assumed in Process A can be used to determine the

start and end dates of each process. As a result, the end date of

Process A is delayed for five days and falls on February 8. The

execution period of Process B is set to the period from February

9 to 12, changed by the impact of the delay of Process A.

However, since Resource β assigned to Process B is scheduled

to be assigned to another project in the period from February 11

to 14, it cannot be used in this period. In addition, since there is

no resource other than Resource β which can be assigned to

Process B, the execution period of Process B should be set to the

period from February 15 to 18 during which Resource β is

available. The execution period of Process C is set to the period

from February 19 to 21, changed by the impact of the delay of

Process B.

The execution period of Process D is set to the period from

February 9 to 18 at the earliest, changed by the impact of the

delay of Process A. However, since Resource γ assigned to

Process D is scheduled to be assigned to another project in the

period from February 15 to 18, it cannot be used in this period.

In addition, since there is no resource other than Resource γ

which can be assigned to Process D, the execution period of

Process D should be set to the period from February 19 to 28

during which Resource γ is available.

The execution period of Process E is set to the period from

February 22 to 24, changed by the impact of the delay of

Process A and it is set to the period from March 1 to 3 at the

earliest, changed by the impact of the delay of Process D. Here,

since there is no constraint on the assignment period of resource

assigned to Process E, the execution period of Process E can be

determined to be set to the period from May 1 to 3.

(2) When the first delay arises in Process B:

In this case, the execution period of Process D that follows

Process A is set to the period from February 4 to 13 as initially

scheduled since there is no delay in Process A.

(i) When a one day delay is assumed in Process B:

In this case, the end date of Process B is delayed for one day

and falls on February 8. The execution period of Process C that

follows Process B is also delayed for one day and set to the

period from February 9 to 11. The execution period of Process

E is set to the period from February 14 to 16 as initially

scheduled.

(ii) When a two days delay is assumed in Process B:

In this case, the end date of Process B is delayed for two days

and falls on February 9. The execution period of Process C that

follows Process B is also delayed for two days and set to the

period from February 10 to 12. The execution period of Process

E is set to the period from February 14 to 16 as initially

scheduled.

(iii) When a three days delay is assumed in Process B:

In this case, the end date of Process B is delayed for three days

and falls on February 10. Thus the execution period of Process

C is set to the period from February 11 to 13. However, since

Resource α assigned to Process C is scheduled to be assigned to

another project in the period from February 13 to 15, the

execution period of Process C should be set to the period from

February 16 to 18 during which Resource α is available. Thus, at

this simulation stage it is revealed that Process C has fallen into

a potential bottleneck process at the previous stage, that is, in

the simulation case of a two days delay.

Since there is no delay in Processes A and D, the execution

period of Process E is set to the period from February 19 to 21 at

the earliest, changed only by the impact of the delay of Process

C.

(iv) When a four days delay is assumed in Process B:

In this case, the end date of Process B is delayed for four days

and falls on February 11. However, since Resource β assigned

to Process B is scheduled to be assigned to another project in the

period from February 11 to 14, the end date of Process B falls on

February 15 on which Resource α is available. Thus, at this

simulation stage it is revealed that Process B has fallen into a

potential bottleneck process at the previous stage, that is, in the

simulation case of a three days delay. The execution period of

Process C is set to the period from February 16 to 18, changed

by the impact of the delay of Process B.

Since there is no delay in Processes A and D, the execution

period of Process E is set to the period from February 19 to 21 at

the earliest, changed only by the impact of the delay of Process

C.

(v) When a five days delay is assumed in Process B:

In this case, the end date of Process B is delayed for five days

and falls on February 12. However, since Resource β assigned

to Process B is scheduled to be assigned to another project in the

period from February 11 to 14, the end date of Process B falls on

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

104

February 16 on which Resource α is available. The execution

period of Process C is set to the period from February 17 to 19,

changed by the impact of the delay of Process B.

Since there is no delay in Processes A and D, the execution

period of Process E is set to the period from February 20 to 22 at

the earliest, changed only by the impact of the delay of Process

C.

(3) When the first delay arises in Process C:

Since there is no delay in Processes A and B, the execution

period of Process B is set to the period from February 4 to 7 as

initially scheduled, and the execution period of Process D that

follows Process A is set to the period from February 4 to 13 as

initially scheduled.

(i) When a delay of one or two days is assumed in Process C:

In these cases, the end date of Process C falls on February 11

and 12 given a one day and two days delay, respectively.

However, since there are three additional days available for

Process C, Process E that follow Process C is not affected by

these delays and the execution period of Process E is set to the

period from February 14 to 16 as initially scheduled.

(ii) When a delay of three, four or five days is assumed in

Process C:

In these cases, the end date of Process C falls on February 13,

14, and 15 given a three, four, and five days delay, respectively.

However, since Resource α assigned to Process C is scheduled

to be assigned to another project in the period from February 13

to 15, the end date of Process C falls on February 16, 17 and 18,

respectively, on which Resource α is available. Thus, at this

simulation stage it is revealed that Process C has fallen into a

potential bottleneck process at the previous stage, that is, in the

simulation case of a two days delay.

Since there is no delay in Processes A, B, and D, the execution

period of Process E is set to the period from February 17 to 19,

from 18 to 20, and from 19 to 21, given a three days, four days,

and five days delays, respectively.

(4) When the first delay arises in Process D:

In this case, Processes A, B, and C are executed as scheduled

initially since there is no delay in these processes.

(i) When a one day delay is assumed in Process D:

The end date of Process D is delayed for one day and falls on

February 14.

The execution period of Process E that follows Process D is set

to the period from February 15 to 17, changed by the impact of

the delay of Process D.

(ii) When a delay from two to five days is assumed in Process D:

In these cases, the end date of Process D falls on February 15,

16, 17, and 18 given a two, three, four, and five days delay,

respectively. However, since Resource γ assigned to Process D

is scheduled to be assigned to another project in the period from

February 15 to 18, the end date of Process D falls on February

19, 20, 21, and 22, respectively, on which Resource γ is

available. Thus, at this simulation stage it is revealed that

Process D has fallen into a potential bottleneck process at the

previous stage, that is, in the simulation case of a one day delay.

Since there is no constraint on the assignment period of

Process E that follows Process D, the execution period of

Process E is set to the period from February 20 to 22, from 21 to

23, from 22 to 24, and from 23 to 25 given a two, three, four,

and five days delays, respectively.

(5) When the first delay arises in Process E:

In this case, Processes A, B, C and D are executed as

scheduled initially since there is no delay in these processes.

Since there is no constraint on the resources assigned to

Process E, the impact of a delay in Process E remains in just the

same number of days as the initial delay. That is, the number of

delayed days is not amplified by the constraints on the

assignment periods.

VII. DISCUSSION ON EFFECTIVENESS OF THE PROPOSED

METHOD BASED ON THE CASE STUDIES

In Section 6, the authors described the method of the

perturbation-based repercussion analysis, which can be used to

analyze the impacts on the succeeding processes generated by

delays in preceding processes using the case studies illustrated

in Figure 3. Table 1 shows the analysis results.

We used the method of the perturbation-based repercussion

analysis to figure out the resultant number of delayed days by

assuming various numbers of initial delayed days

(perturbation). Table 1 shows the results.

(1) The following lists the cases in which the number of

resultant perturbation days is greater than the number of the

initial perturbation days. However, delayed processes that

simply inherit the delays of the preceding processes are

excluded.

- A two days delay of Process A results in a fifteen days delay of

Process D.

- A three days delay of Process A results in an eight days delay

of Process C.

- A four days delay of Process A results in a eleven days delay of

Process B.

- A three days delay of Process B results in an eight days delay

of Process C.

- A four days delay of Process B results in an eight days delay of

Process B.

- A three days delay of Process C results in a six days delay of

Process C.

- A two days delay of Process D results in a six days delay of

Process D.

(2) As for a process for which the number of resultant

perturbation days is greater than the number of the assumed

perturbation days, it is revealed that such a process has fallen

into a bottleneck process when a one day smaller number of

perturbation days is specified. The following lists such cases.

- Process D falls into a bottleneck process when a one day delay

is assumed in Process A.

- Process C falls into a bottleneck process when a two days delay

is assumed in Process A.

- Process B falls into a bottleneck process when a three days

delay is assumed in Process A.

- Process C falls into a bottleneck process when a two days delay

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

105

is assumed in Process B.

- Process B falls into a bottleneck process when a three days

delay is assumed in Process B.

- Process C falls into a bottleneck process when a two days delay

is assumed in Process C.

- Process D falls into a bottleneck process when a one day delay

is assumed in Process D.

In this paper, we assumed that the perturbation unit is one day,

but the unit other than one day can also be used to detect a

bottleneck process. For example, assuming the perturbation unit

as two days also generates the results (1) and (2).

The analysis method proposed in this paper can be used to

check which process falls in a bottleneck process and how many

days of delay makes it a bottleneck process, in other word, it can

be used to examine the details of potential bottleneck processes.

If the details of potential bottleneck processes are known before

they actually arise as bottleneck processes, they can be

addressed in advance with proactive countermeasures to

prevent a delay from spreading to such potential bottleneck

processes.

When an actual delay is detected and suspected to spread to a

potential bottleneck process, a countermeasure must be

developed to resolve the process delay before it spread to a

potential bottleneck process. The following three

countermeasures can be adopted:

(i) Apply a crashing operation to the process just before the

bottleneck process.

(ii) Apply a crashing operation to the bottleneck process.

(iii) Change the resource allocation to prevent the resources

used by the bottleneck process from being used in the

development plans of other projects.

Crashing indicates that allocating a large volume of resources

available. The authors have implemented a tool that can

automatically generate a plan to recover process delays based

on (i) and (ii) when a process delay is detected, and published a

paper [2].

On the other hand, as for (iii), a fully automatic

countermeasure cannot be developed since human intervention

is indispensable when selecting a top-priority project for

crashing from a number of competing projects.

In this paper, we used a simplified version of case studies for

convenience. For example, since nonworking days such as

Saturday, Sunday, or national holidays are not taken into

account, a delay of five days is actually a delay of a week and

can be felt longer.

In addition, in the case studies used in this paper, a single

resource is assigned to a number of projects to clarify the

effectiveness of our method, although in a practical project,

such an assignment is impractical. The authors consider that the

case studies are useful to show the effectiveness of our method

because the essential point of the problem is not changed.

VIII. CONCLUSION

The method proposed in this paper enables detection of

bottleneck processes using the perturbation-based repercussion

analysis that simulates how various delays assumed spread to

the processes in a project. In addition, it also enables to develop

a proactive countermeasure by using the perturbation-based

repercussion analysis before a bottleneck arises, which is

traditionally used after an actual bottleneck has arisen.

In this paper, the authors discussed the bottleneck processes

that arose in a project and their problems. We also discussed the

method to detect bottleneck processes automatically using the

perturbation-based repercussion analysis and its effectiveness.

We also clarified that applying a crashing operation to the

process before a bottleneck process detected can prevent delays

from spreading to the bottleneck process.

REFERENCES

[1] Seiichi Komiya, Naota Sawabe, Atsuo Hazeyama, “Constraint-Based

Schedule Planning for Software Development,” The Transactions of IEICE D-I

Vol.J79-D-I No.9, pp.544-557, 1996.

[2] S. Komiya, A. Hazeyama, “A Meta-Model of Work Structure of Software

Project and a Framework for Software Project Management System,” IEICE

TranINF SYST, vol.E81-D.No12, pp1415-1428, Dec 1998

[3] A. Hazeyama, S. Komiya, “Workload Management Facilities for Software

Project Management,” IEICE Tran INF SYST, vol.E81-D.No12 , pp1404-1414,

Dec 1998.

[4] R. Yaegashi, D. Kinoshita, H. Hashiura, K. Uenosono, S. Komiya,

"Automatically Creating a Schedule Plan as Countermeasure by Means of

"Crashing" against Process Delay," JCKBSE'04, pp.24-36, Protvino, Russia,

Aug. 2004.

[5] Rihito Yaegashi, Daisuke Kinoshita, Hiroaki Hashiura, Kazuhiro

Uenosono, Yuuichiro Hyashi, Seiichi Komiya, “Automatically Creating a

Fast-Tracking-Based Countermeasure Plan against Process Delay,” The

Transactions of IEICE D-I, Vol. J88-D-I, No.2, pp.215-227, 2005.

[6] Leach, Lawrence P., “Critical Chain Project Management”, Artech

House Professional Development Library, London 313, 2000

[7] M. H. Penedo and E. D. Stuckle, “PMDB - A project master database for

software engineering environments,” 8th International Conference on Software

Engineering, pp.150-157, 1985.

[8] L. Liu and E. Horowitz, “A formal model for software project

management,” IEEE Trans. on Software Engineering, vol.15, no.10,

pp.1280-1293, Oct. 1989.

[9] L .Liu and E. Horowitz, “Object database support for a software project

management environment,” ACM SIGSOFT Software Engineering Notes,

vol.13, no.5, pp.85-96, Nov.1988.

[10] Y. Matsumoto and T. Ajisaka, “A data model in the software project

database KyotoDB,” JSSST Advances in Software Science and Technology 2,

pp103-121, 1990.

[11] H. Sato, ”Project management expert system,” Proc.ACM CSC’87,

Feb.1987.

[12] D. Kinoshita, R. Yaegashi, H. Hashiura, K. Uenosono, S. Komiya, “An

Automatic Schedule Planning System: Strategies and Evaluation for

Implementing the System,” Joint Conference on Knowledge-Based Software

Engineering 2004 (JCKBSE’04), pp.37-48, Protvino, Russia, Aug.2004.

[13] Kimio Inagaki “TOC Critical Chain Revolution”, JMA Management

Center Inc., 1998.

[14] Eliyahu M. Goldratt, “The Goal”, DIAMOND, Inc., 2001.

[15] Eliyahu M. Goldratt, “The Goal 2”, DIAMOND, Inc., 2002.

[16] Eliyahu M. Goldratt, “Critical Chain”, DIAMOND, Inc., 2003.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

106

[17] Hidetaka Nakajima, Koji Tsumagari, “ PROJECT MANAGEMENT

CRITICAL CHAIN,” JMA Management Center Inc., 2003.

[18] S． Komiya A． Hazeyama， ”A Meta-Model of Work Structure of

Software Project and a Framework for Software Project Management

System， ”IEICE Tran INF SYST ，vol．E81-D．No12，pp1415-1428，

Dec 1998

[19] Daisuke Kinoshita， Rihito Yaegashi， Kazuhiro Uenosono， Hiroaki

Hashiura，Hiroki Uchikawa， and Seiichi Komiya，"Automatic Creation of a

Crashing-Based Schedule Plan as Countermeasures against Process

Delay"INTERNATIONAL JOURNAL of SYSTEMS APPLICATIONS，

ENGINEERING & DEVELOPMENTIssue 4， Volume 2， 2008， pp． 170-177．

Seiichi Komiya He received a bachelor's degree from Saitama University,

Japan in 1969.He received Doctorate in engineering from Shinshu University,

Japan, in 2000. At present, he is Professor at Shibaura Institute of Technology

from 2001.

Daisuke Kinoshita He received a bachelor's degree from Shibaura Institute of

Technology, Japan in 2002. He received a master's degree from Graduate

School of Engineering, Shibaura Institute of Technology, Japan, in 2004. He

received doctorate in engineering from Graduate School of Engineering,

Shibaura Institute of Technology, Japan, in 2010. At present, he is working in

Hitachi, Ltd.

Hiroki Uchikawa He received a bachelor's degree from Shibaura Institute of

Technology, Japan in 2007. He received a master's degree from Graduate

School of Engineering, Shibaura Institute of Technology, Japan, in 2009. At

present, he is working in Hitachi, Ltd.

Yuya Kosaka He received a bachelor's degree from Shibaura Institute of

Technology, Japan in 2009. And he takes a master's course, Graduate School of

Engineering, Shibaura Institute of Technology.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

107

TABLE I

SIMULATION RESULTS OF THE PERTURBATION-BASED REPERCUSSION ANALYSIS

Assumed perturbation

days
Process A Process B Process C Process D Process E

Process A

Three days

One day
Feb. 1 – 4

one day delay

Feb. 5 – 8

one day delay

Feb. 9 – 11

one day delay

Feb. 5 – 14

one day delay (Bottleneck)

Feb. 15 – 17

one day delay

Two days
Feb. 1 – 5

two days delay

Feb. 6 – 9

two days delay

Feb. 10 – 12

two days delay (Bottleneck)

Feb. 19 – 28

fifteen days delay

Mar. 1 – 3

fifteen days delay

Three days
Feb. 1 – 6

three days delay

Feb. 7 – 10

three days delay (Bottleneck)

Feb. 16 – 18

eight days delay

Feb. 19 – 28

fifteen days delay

Mar. 1 – 3

fifteen days delay

Four days
Feb. 1 – 7

four days delay

Feb. 15 – 18

eleven days delay

Feb. 19 – 21

eleven days delay

Feb. 19 – 28

fifteen days delay

Mar. 1 – 3

fifteen days delay

Five days
Feb. 1 – 8

five days delay

Feb. 15 – 18

eleven days delay

Feb. 19 – 21

eleven days delay

Feb. 19 – 28

fifteen days delay

Mar. 1 – 3

fifteen days delay

Process B

Four days

One day
Feb. 1 – 3

no delay

Feb. 4 – 8

one day delay

Feb. 9 – 11

one day delay

Feb. 4 – 13

no delay

Feb. 14 – 16

no delay

Two days
Feb. 1 – 3

no delay

Feb. 4 – 9

two days delay

Feb. 10 – 12

two days delay (Bottleneck)

Feb. 4 – 13

no delay

Feb. 14 – 16

no delay

Three days
Feb. 1 – 3

no delay

Feb. 4 – 10

three days delay (Bottleneck)

Feb. 16 – 18

eight days delay

Feb. 4 – 13

no delay

Feb. 19 – 21

five days delay

Four days
Feb. 1 – 3

no delay

Feb. 4 – 15

eight days delay

Feb. 16 – 18

eight days delay

Feb. 4 – 13

no delay

Feb. 19 – 21

five days delay

Five days
Feb. 1 – 3

no delay

Feb. 4 – 16

nine days delay

Feb. 17 – 19

nine days delay

Feb. 4 – 13

no delay

Feb. 20 – 22

six days delay

Process C

Three days

One day
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 11

one day delay

Feb. 4 – 13

no delay

Feb. 14 – 16

no delay

Two days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 12

two days delay (Bottleneck)

Feb. 4 – 13

no delay

Feb. 14 – 16

no delay

Three days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 16

six days delay

Feb. 4 – 13

no delay

Feb. 17 – 19

three days delay

Four days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 17

seven days delay

Feb. 4 – 13

no delay

Feb. 18 – 20

four days delay

Five days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 18

eight days delay

Feb. 4 – 13

no delay

Feb. 19 – 21

five days delay

Process D

Ten days

One day
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 14

one day delay (Bottleneck)

Feb. 15 – 17

one day delay

Two days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 19

six days delay

Feb. 20 – 22

six days delay

Three days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 20

seven days delay

Feb. 21 – 23

seven days delay

Four days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 21

eight days delay

Feb. 22 – 24

eight days delay

Five days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 22

nine days delay

Feb. 23 – 25

nine days delay

Process E

Three days

One day
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 13

no delay

Feb. 14 – 17

one day delay

Two days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 13

no delay

Feb. 14 – 18

two days delay

Three days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 13

no delay

Feb. 14 – 19

three days delay

Four days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 13

no delay

Feb. 14 – 20

four days delay

Five days
Feb. 1 – 3

no delay

Feb. 4 – 7

no delay

Feb. 8 – 10

no delay

Feb. 4 – 13

no delay

Feb. 14 – 21

five days delay

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 5, 2011

108

