

Abstract — The Semantic Web technologies have just recently

urged the need to touch and reinterpret many application areas. On

the other side, there are currently few systems for normalization of

relations within a database, which are also rarely used, either by

database designers, or as a teaching aid at universities.

This paper introduces a system for normalization of relations as

integral part of the machine-understandable knowledge base on the

Web, as conceived by the Semantic Web. We have adopted the

semantics for the ontology layer of our normalization system and

made some findings regarding the rule layer of our system. The main

challenges appear at the rule layer, since there is not a single rule

system which satisfies all of our needs. The solutions are provided in

different rule systems, mainly on the Semantic Web Rule Language,

for issues like: knowledge base modifications, negation, open world

assumption, and disjunction.

Keywords — Logic programming, Normalization of relations,

Ontologies, Prolog, Rules in Semantic Web.

I. INTRODUCTION

T has been estimated that more than 80 percent of all

computer programming is database-related [1]. Moreover,

studies has shown [2] that the vast majority of the content in

the WWW resides in the Deep Web sources which store their

content in backend databases and are ever growing.

In practice, a critical point in providing a robust database

solution is its level of optimization which may in the first place

be ensured through a well-defined design. Our work considers

refinement of the database design given a set of relation

schemas and functional dependencies (FDs) holding over them

at the input. The main concern in the database design is

avoiding data redundancy. FDs provide useful information for

avoiding data redundancy and data manipulation anomalies.

To limit the complexity of our research, we do not consider

other important classes of integrity constraints like multi-

valued dependencies, or join dependencies, which sometimes

reveal redundancies that cannot be detected using FDs alone

[3]. Dependencies other than FDs may however be added in

our system incrementally at any later stage to reflect their

impact in design decisions. A measure of the redundancy

within a relation is called normal form, a concept introduced in

the early 70s by Codd [4]. A relation has to fulfill the required

conditions in order to be in a particular normal form. A

mechanism, named decomposition, will eventually be applied

over a relation if it is not in a required normal form, thus

replacing it with smaller relations. Few systems for

normalization of relations are already in place [5]-[11] to

support schema refinement, although rarely used be it by

database practitioners, or as a teaching aid at universities.

Meanwhile, the Semantic Web potential for novice

implementations understood by both humans and machines

Web-wide has just recently urged the need to reinterpret

systems that are yet in the mainstream of standalone or

traditional Web systems. That has motivated us to investigate

the use of Semantic Web technologies in developing a

database normalization system, thus aligning-well with the

idea of Tim Berners-Lee [13] for integrating as much data and

algorithms as possible into a machine-understandable

knowledge base on the Web.

In this paper, we present the kernel of our normalization

system consisting of the ontology layer and some enabling

algorithms for normalizing relations, like finding the attribute

closure. Further, the initial findings in using Semantic Web

technologies towards completing the rule layer of our

normalization system are listed, accompanied always with case

studies drawn by our system.

The paper is organized as follows: Section 2 outlines related

work focusing on those with more commonalities to our

approach; the ontology layer of our system and issues

regarding the structuring of data in lists and n-ary predicates

are treated in Section 3; Section 4 introduces the kernel of our

rule layer, and reveals in details the main challenges we are

facing in covering all algorithms of the normalization theory in

our system.

II. RELATED WORK AND OUR APPROACH

A number of systems for normalization of relations in

languages like Prolog [5] and Mathematica [6] have already

been developed in order to ease the deployment of the theory

of normalization which is otherwise complex to apply and

hence avoided by most practitioners and students at

universities. NORMIT [7] is a Web-enabled tutor for database

normalization. Few other works exist as well which have

addressed the same theory [8]-[11], [14].

A database normalization tool using Semantic

Web technologies

Lule Ahmedi and Edmond Jajaga

I

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

502

Observing the development of Semantic Web rule systems

like the Semantic Web Rule Language (SWRL) [15] which is a

prototype rule language for the future Web and build heavily

upon the Description Logic, and moreover, due to the

intersection of Description Logics (DL) with Logic

Programming (LP), we have decided to examine the Prolog

normalization system developed by Ceri and Gottlob [5] and

draw mappings between rules in Prolog [5] and SWRL when

concerning the rule layer of our Semantic Web normalization

system.

PrOWLog [16] and SWORIER [17] are two hybrid

approaches which combine the Web Ontology Language

(OWL) [19], [20] with logic programming languages like

Prolog when building a Semantic Web rule system: they both

laid Prolog on top of OWL, thus addressing the issue of

capturing open-world semantics of OWL into Prolog. The

SWORIER team translates rules of SWRL and RuleML [21],

[22] into Prolog prior to reasoning. The translation is fairly

straightforward due to both SWRL/RuleML and Prolog being

based on the same subset of logic (Horn Clause) [17]. If rules

were found by SWORIER not expressible in any of SWRL or

RuleML, they represented them straight in Prolog. During the

OWL-into-Prolog translation, solutions were provided [17] to

problems also encountered in the work of Volz et al. in 2003

[23], [24] like: negation, complementary classes, disjunctive

heads, open world assumption, enumerated classes, and

equivalent individuals. These issues are our concern as well,

but from another perspective, i.e. the Prolog-into-SWRL

translation.

III. THE ONTOLOGY LAYER

We developed an ontology in OWL to encode the theory of

normalization of relations in Semantic Web. Following are

classes defined in our ontology, as well as their meaning in

terms of the normalization theory:

• Class Relation: models relations of a database schema.

• Class Attribute: models attributes contained in relations of

a database schema.

• Class FD (cf. Fig. 1): models functional dependencies that

hold over a given relation. A restriction is defined for each

instance on properties has_rhs and has_lhs of this class to

be of cardinality one. Also an existential quantifier requires

that each instance on property holds_over of this class

should contain some values of the Relations class for

which the given functional dependency is defined.

• Classes Side, RHS, and LHS: the Side class captures both

sides of a functional dependency - the left-hand side

through its LHS subclass, and the right-hand side through its

RHS subclass.

• Classes in3nf, and inbcnf: are both subclasses of the

Relation class, and are meant to classify relations which are

in third normal form, or in Boyce-Codd normal form,

respectively, once the functional dependencies that hold

over them are considered. It is the rule layer of our

ontology which should infer the instances of these classes

(if any).

• Class AttrClosure: models the attribute closure (its

property closure) for a given set of attributes (the clo_attr

property).

Object properties defined in our ontology are as follows:

• Property has_side, has_lhs, and has_rhs: the has_side

property is defined for the FD class (the domain value).

Properties has_lhs of range LHS and has_rhs of range RHS

are both functional properties and subproperties of the

has_side, and hence infer all definitions given above for

the has_side property.

• Property holds_over: explains which functional

dependency holds over which relation. It is defined for the

FD class and has values of range Relation.

• Property has_schema: assigns a schema to a relation. It is

defined for the Relation class, and is restricted to allow

only values of range Schema.

• Property has_attr: is defined for the Side class, hence of

RHS and LHS as well due to inference, as well as for the

Schema class, and is restricted to allow only values of

range Attribute. It lists all attributes which constitute (1)

the schema of a given relation schema if its domain is the

class Schema, or (2) the left-hand side or right-hand side of

a given functional dependency if its domain is one of the

classes LHS or RHS respectively.

• Properties clo_attr and closure: are meant to capture

semantics of a closure over a given set of functional

dependencies for a given relation. It is the responsibility of

the rule layer of our ontology to calculate the instances of

this property, as will be introduced in the next section.

Example 1 The running example we will use throughout

this paper consists of a relation schema and a set of functional

dependencies as follows:

rel(A, B, C, D, E, F).

F = {AB → C, C → A, D → E, DE → F, E → D, E → F}

The same instance expressed in Prolog [5] looks as follows:

schema(rel, [a, b, c, d, e, f]).

fd(rel,[a,b],[c]). fd(rel,[c],[a]). fd(rel,[d],[e]).

fd(rel,[d,e],[f]). fd(rel,[e],[d]). fd(rel,[e],[f]).

Fig. 1 a set of necessary restrictions for the FD class defined in

Protégé

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

503

whereas its representation in our normalization ontology is

depicted in Fig. 2.

A. N-ary Relations in Our Ontology

In the Prolog normalization framework [5], attributes

represented through the Attribute set of values of the LHS and

Schema classes on the has_attr property constitute an ordered

sequence in order to achieve efficiency in Prolog, but the order

of attributes within the Attribute sequence has certainly no

semantic meaning. The order of attributes in our ontology

within the Attribute sequence be it for the LHS class or the

Schema class, are also irrelevant in terms of semantics. There

is anyway only a loose support currently in OWL to deal with

ordered sequences as discussed below.

OWL supports by default the representation of binary

relations through properties. For instance, the property has_rhs

is a binary relation between an individual of the FD class, say

fd1, and another individual, say rhs1 of the RHS class. On the

other side, if following the Prolog normalization framework,

the has_schema and has_attr properties would require the

definition of their range to be of more complex structures like

n-ary relations, also referred to as sequences. There are

currently three alternatives in OWL for expressing sequences:

RDF lists [35], OWL lists [38], and OWL n-ary relations [37].

RDF lists retain order of individuals in a sequence, but can be

reasoned with only when applying OWL Full reasoners. OWL

lists are well suited for representing and reasoning with

individuals in a sequence but are still in their infancy level as

regards popularity. N-ary relations on the other side provide a

pattern for representing sequences which retain order and can

be reasoned with as well, but are more general and cost an

additional superfluous effort for dealing with their generality.

Fig. 3 illustrates the use of OWL n-ary

Fig. 3 n-ary representation in OWL of the Attribute sequence

(a, b) given FD: ab�c.

relations for representing Attribute values on the has_attr

property of the LHS class as an ordered sequence.

a) Instance view

fd1

lhs1_1

lhs1_2

rhs1

a

b

c

has_rhs

has_att

r

has_attr

next_lhs

has_att

r

has_lhs

(subClassOf LHS, on

next_LHS maxcardinality=0)

FD

RHS

LHS

Attribute

FinalLHS

isa

has_attr

(ObjectProperty,

functional, exact

cardinality=1)

b) Class view

next_lhs

(ObjectProperty,

functional, domain

& range=LHS)

has_rhs

(ObjectProperty,

functional)

has_lhs

(ObjectProperty,

functional)

rhs3 rhs2 rhs1 lhs6 lhs5 lhs4 lhs3 lhs2 lhs1 rhs6 rhs5 rhs4

has_lhs has_lhs has_lhs has_lhs has_lhs has_lhs has_rhs has_rhs has_rhs has_rhs has_rhs has_rhs

schema1

has_attr has_attr
has_attr has_attr has_attr has_attr

rel has_schema

a

rel

fd1 fd2 fd3 fd5 fd4 fd6

holds_over
holds_over holds_over holds_over holds_over holds_over

has_attr

has_attr

has_attr

has_attr
has_attr

has_attr

has_attr has_attr has_attr

has_attr has_attr

has_attr

has_attr

a b c e d f

Fig. 2 The running example Example 1 represented in our normalization system

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

504

None of the three considered representations of sequences

in OWL has a fully-pledged implementation of SWRL

constructs to reason with. We have hence decided to model

Attribute instances as sets of values where the order of its

members does not matter, which is fully in conformance with

the semantics of the relational database model. Future

considerations might cover dealing with attributes as ordered

sets of values within a database schema or the left-hand side of

a functional dependency.

IV. THE RULE LAYER

Observing the development of Semantic Web rule systems

with their formal foundations on Description Logics, and

having in mind the intersection that exists between Description

Logics and Logic Programming, we decided to consider the

Prolog system for normalization of relations developed by Ceri

and Gottlob [5] as a starting point when designing our

normalization system.

Hybrid approach. A straightforward approach would then

be to follow the hybrid architecture of layering LP languages

like Prolog on top of the OWL ontology layer as in PrOWLog

[16] or SWORIER[17], i.e.:

• Ontology layer - Translate the OWL ontology layer

introduced in the previous section into Prolog as advised

by Volz et al. (2003) [23], [24] for the OWL-into-Prolog

translation in general inclusive subtle translation issues

like: negation, complementary classes, disjunctive heads,

open world assumption (OWA), enumerated classes,

equivalent individuals, duplicate facts, and cardinality.

This translation is not complex since both OWL and

Prolog base on the same subset of logic (Horn Clause)

[17].

• Rule layer - Simply adopt Prolog rules available in [5] for

building the rule layer of our normalization system.

A pure Semantic Web approach. Although the above

approach promises to require less efforts for building our

normalization system since there are already theories defined

for the OWL-into-Prolog translation in general, we merely

tend to introduce a rather pure Semantic Web approach which

builds solely upon Semantic Web technologies at both layers:

• Ontology layer - There is no need to translate the OWL

ontology into Prolog: simply use the ontology defined in

the previous section.

• Rule layer - Here, instead of adopting Prolog rules, provide

a Semantic Web rule system to reason over the OWL layer

that is introduced in the previous section. We have hence

expressed them in SWRL rules which were initially defined

in Prolog. This is much like dealing with Prolog-into-

SWRL translation.

We will in the next section describe a set of SWRL rules

which constitute the core of our normalization rule layer, as

well as in Section 4.2 list some initial findings towards

building a complete normalization system following always the

pure Semantic Web approach.

A. SWRL Rules in our Normalization System

In the theory of normalization of relations, the algorithm of

finding the closure of a set of attributes presents the main

building block of all other algorithms, like that of finding all

keys of a relation, or of decomposing a relation into Third

Normal Form (3NF) using Bernstein's algorithm.

Recall the definition of the attribute closure algorithm given

a set X of attributes with respect to a group F of dependencies

(cf. Fig. 4) and its implementation in Prolog as provided in [5]

(cf. Fig. 5).

The correspondences between the Prolog implementation

(Fig. 5) and the algorithm (Fig. 4) are as follows: algorithm

line 2: line 6 in Prolog; algorithm line 3: the recursive call of

the closure subgoal (line 5), and the cut operator '!' in Prolog;

algorithm lines 4, 5, 6: the fd subgoal in line 1, line 2, and line

3 in Prolog; algorithm line 7: line 4 in Prolog.

Example 2 Consider the relation instance rel and a set of

functional dependencies as provided in Example 1. If we pose

a query for finding the closure CLOSURE_OF_X of the attribute

set [a,d,e] to the Prolog normalization system (cf. rules in Fig.

5):

?- closure(rel, [a,d,e], CLOSURE_OF_X).

the result returned will be:

CLOSURE_OF_X = [a,d,e,f].

How is this result inferred? The rule closure examines every

FD of the base of facts whose LHS is a subset of the current

attribute closure X=[a,d,e], and whose RHS is not a subset of

X=[a,d,e]. The first FD which satisfies these two subgoals is DE

→ F. The built-in operator union then computes the union W

of X=[a,d,e] and RHS=[f] resulting into W=[a,d,e,f], following

1 closure(REL,X,CLOSURE_OF_X):- fd(REL,LHS,RHS),

2 subset(LHS,X),

3 not subset(RHS,X),

4 union(W, X,RHS,REL),!,

5 closure(REL,W,CLOSURE_OF_X).

6 closure(REL,X,CLOSURE_OF_X):- CLOSURE_OF_X = X.

Fig. 5 the Prolog implementation of the attribute closure

algorithm

Algorithm (closure(X, F))

1 Let X be a given set of attributes over the set F of FDs

2 CLOSURE_OF_X = X;

3 repeat until there is no change: {

4 if there is a FD: LHS -> RHS in F such that

5 (LHS subset of CLOSURE_OF_X and

6 RHS not subset of CLOSURE_OF_X),

7 then set CLOSURE_OF_X = CLOSURE_OF_X U RHS

8 }

Fig. 4 the attribute closure algorithm

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

505

with the recursive call of the predicate closure with now W

instead of X as the attribute set at the input. The recursive

invocation of the predicate closure follows whenever there is a

FD in F which makes all subgoals preceding the predicate

closure in the rule body evaluate to true (the cut operator '!').

In our normalization system, the algorithm for finding the

closure of a set of attributes is implemented through two

SWRL rules as given in Fig. 6.

Both rules evaluate once for each instance ?clo of the

AttrClosure class which owns two properties:

• the clo_attr property which holds the set of input attributes

(see 1 in Fig. 6), and

• the closure property which yields the set of attributes

constituting the closure (see CLOSURE_OF_X in Fig. 5) of

attributes given in clo_attr.

The first rule (line 1) initializes the closure set to the set of

input attributes for which the closure should be computed.

In the second rule, we use three attribute sets: ?sk consists

of the set of the currently computed attribute closure (line 2)

initially set equal to the set of input attributes (first rule), ?sl

collection consists of left-hand side attributes of the current FD

(line 3), and ?sr consists of right-hand side attributes of the

current FD (line 4). Once we have constructed collections, we

apply the groupBy built-in operator of the SQWRL library [25]

which constitutes groups for each (closure, FD) pair on each of

the three collections ?sk, ?sl, and ?sr (lines 5-7). Groups

created enable that we run solely the second rule once per each

closure to be computed, but recursively (in a loop) over all

dependencies since each FD requires the currently computed

closure as its input. On each group (see the '˚' operator for

performing over a group) we test whether the current

dependencies’ LHS is a subset of the currently computed

attribute closure ?sk, and whether its RHS is not a subset of

that same ?sk collection (line 8). If these two built-in subgoals

contains and notContains of SQWRL succeed, we then build

the union ?u of the RHS attributes with the actual attribute

closure collection, and retrieve all elements of that union's

result collection ?u through the built-in sqwrl:element clause

(line 9).

Example 3 If we compute the attribute closure for the same

input data as in Example 1, this time in our normalization

system, we will gain the same result set (cf. Fig. 7) as in

Example 2. The clo_5 instance, say, of the AttrClosure class

will hold information about computed attribute closure through

two properties: clo_attr which holds the information for input

attribute set ade, and closure which will bind clo_5 to the

computed attribute set closure adef (Fig. 7).

We have tested the correctness of the attribute closure

implementation in our normalization system through a set of

experiments summarized in the following table:

The chart below (cf. Fig. 8) illustrates the complexity

distribution among five tests run in our system.

B. Rule Layer Challenges

Following are some of the challenges encountered while

building the rule layer of our system which have also been

identified by other researchers when investigating the

1 AttrClosure(?clo)^clo_attr(?clo,?attrs) → closure(?clo,?attrs)

2 AttrClosure(?clo)^closure(?clo,?attrs)^sqwrl:makeBag(?sk,?attrs)^

3 has_lhs(?fd,?lhs) ^ has_attr(?lhs,?at) ^ sqwrl:makeBag(?sl,?at)^

4 has_rhs(?fd,?rhs) ^ has_attr(?rhs,?bt) sqwrl:makeBag(?sr,?bt) ^

5 sqwrl:groupBy(?sk,?clo,?fd) ^

6 sqwrl:groupBy(?sl,?clo,?fd) ^

7 sqwrl:groupBy(?sr,?clo,?fd) ˚

8 sqwrl:contains(?sk,?sl) ^ sqwrl:notContains(?sk,?sr) ^

9 sqwrl:union(?u,?sr,?sk) ^ sqwrl:element(?k,?u) →

10 closure(?clo,?k)

Fig. 6 the SWRL implementation of the attribute closure algorithm

Fig. 7 the individual clo_5 holding the closure adef of the ade

attribute set

Test

no.

Number of

attributes

within the

relation

schema

Number

of FDs

Number

of closure

inputs

Number of

OWL

axioms

exported

to Jess

Number of

axioms

inferred

(Jess Rule

engine)

Ceri and

Gottlob's

system vs.

our system

results

Test1 6 5 5 45 16 equal

Test2 5 5 5 45 21 equal

Test3 6 6 5 49 19 equal

Test4 7 8 6 64 24 equal

Test5 9 10 6 83 17 equal

Number of

attributes

within the

relation

schema

Number of

FDs

Number of

axioms

inferred

(Jess Rule

engine)

Test1

Test3

Test5

0

5

10

15

20

25

Test1

Test2

Test3

Test4

Test5

Fig. 8 the chart view of the evaluation of the rule closure

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

506

correspondences between DL and LP [23], [24], or are due to

Semantic Web rule systems being yet under development [15].

We next propose alternative approaches to addressing these

concerns which are evident in the Semantic Web.

1) Open-World Assumption: Enumeration

SWRL together with OWL shares the open world

assumption (OWA) [26]. This is not the case with Prolog

which embraces the closed world assumption. This distinction

is not surprising, since SWRL roughly belongs to the union of

DL and Horn Logic [27], while Prolog is a language of Logic

Programming. If Prolog fails to find some instance satisfying

the goal it will simply return false.

Because of the OWA, SWRL rules that attempt to

enumerate individuals or properties in an ontology are not

always possible. One cannot write a rule that makes an

inference based on, say, the number of individuals or property

values in an ontology unless OWL statements state those

numbers explicitly.

Example 4 When decomposing a relation into BCNF, the

algorithm tests the relation whether it has two attributes; if it is

true, then the relation is already in BCNF.

This test in Prolog has been captured by checking whether

the list X contains two elements using the following statement

[5]:

X = [_,_]

The rule fails if the list X has more than two elements.

The same test is not expressible in SWRL [26]. A possible

approach in overcoming this shortage in expressivity of OWL

is using the property cardinality restriction. Hence, a rule that

classifies an individual as a BCNF relation (a relation with two

attributes) finds that a given individual is a member of the

Relation class, and has the (exact) cardinality two on the

property has_attr as follows:

Relation(?r)^has_schema(?r,?s)^(has_attr=2)(?s)

→ inbcnf(?r)

Because of the OWL's (and SWRL's) open world

assumption, this rule shall actually match individuals that may

have no values for the has_attr property in the current

ontology, but for which the existence of such values may be

meanwhile deduced from OWL axioms. It is not possible to

express this type of match in SWRL [26] unless we "close the

world" as readily provided in our system since using the Jess

rule engine [29] for reasoning. Another alternative SWRL rule

may also perform closed world enumeration as required for

classifying a relation to be a BCNF relation:

Relation(?r)^has_schema(?r,?s)^has_attr(?s,?attr)˚sqwrl:

makeSet(?ss,?attr)^sqwrl:groupBy(?ss,?r)˚sqwrl:size(?n,?s

s)^swrlb:lessThan(?n,3) → inbcnf(?r)

The above SWRL rule uses the size SQWRL built-in

operator to compute the number of attributes in a given

relation schema, and if that size is less than 3 (see the lessThan

SWRL built-in operator), the relation is asserted as a new

individual to the inbcnf class in our OWL layer.

2) Unique Name Assumption

OWL's open world semantics does not allow one to assume

that two individuals are automatically distinct if they have

different names, i.e., OWL does not have a unique name

assumption (UNA). Additionally, due to the normal rule

pattern matching, two variables can also match the same

individual in a rule. SWRL supports UNA, thus extending

OWL capabilities in this direction. SWRL supports the

sameAs, differentFrom and allDifferent clauses to determine if

individuals refer to the same underlying individual or are

distinct. In Prolog, UNA is enabled with operators not and

equal (=).

Example 5 If we wish to capture the semantics that two

attributes A and B of a relation are different to each other, we

can write not A=B in Prolog, whereas in SWRL the same is

expressed through A owl:differentFrom B. In our system, we

rather state that all individuals of the Attribute class are

distinct to each other by using a single owl:allDifferent

annotation in OWL.

3) Nonmonotonicity: Fact Assertion, Modification and

Retraction

Like OWL, SWRL supports monotonic inference only.

Hence, SWRL rules cannot be used to modify information in

an ontology. If SWRL rules allowed ontology modifications,

nonmonotonicity would ensue. For this reason, it is also not

possible to modify or retract information in an ontology using

SWRL [26]. Asserting new facts to OWL using SWRL is

allowed as long as that implies only adding new individuals,

no way of retracting any of existing ones.

Example 6 In the Prolog system for normalization of

relations [5], the following facts:

fd/3, inbcnf/1, remember/1, tnfdecomp/2, group/2, key/2,

clo/3, schema/2, fdj/3, allkeys/1, decomp/2, in3nf/1,

bcnfdecomp/2

are asserted and retracted from the database dynamically as

needed. For example, in the second step of the Bernstein’s

algorithm for decomposing relations to a third normal form,

when partitioning the set of FDs into groups with identical left

hand sides, a new fact group(REL,LHS) is asserted in the base of

facts. In the third step, groups with equivalent keys are

merged, which implies that both group facts are retracted from

the base of facts and a new group fact is asserted consisting of

both keys. This is not allowed in SWRL.

The SWORIER team [17] has developed an extension

module to their system which is able to assimilate dynamic

changes that are provided at run time, including adding new

facts, or removing facts. A similar workaround may be

adopted for our system to support the modification and

retraction of facts dynamically as needed.

An alternative approach in addressing this issue is using the

latest W3C standard for rule systems, namely Rule Interchange

Format (RIF) [39] or rather its production rule dialect (RIF-

PRD) [40] since it is best suited for our application. RIF-PRD

supports knowledge base modifications through ‘Assert’,

‘Retract’ and ‘Modify’ actions. The lack of an RIF-PRD

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

507

implementation, and, on the other side, the availability of

several implementations for SWRL have guided us towards

currently relying only on SWRL systems when designing our

approach.

4) Nonmonotonicity: Negation as Failure

Another important distinctive feature between Prolog and

SWRL is negation as failure (NAF). This is the consequence

of SWRL’s monotonicity. Translating the Prolog’s NAF into

SWRL is among the main issue addressed when developing

our system since there is obviously no support for negation as

failure in Semantic Web.

Example 7 When determining the closure of a set of

attributes (Fig. 5) in Prolog, the clause not subset(RHS,X) is

applied which is a typical example of the NAF [5]. In our

system, we overcame the lack of support for NAF in SWRL by

deploying pre-defined SQWRL predicates as follows: we

“closed the world” by arranging members of both sets RHS

and X into collections using the built-in predicates makeSet or

makeBag, and then compare two collections through the

notContains operator of SQWRL extension of SWRL (see

SWRL rule in Fig. 6).

Another rationale would lead to deploying the recently

available OWL 2 construct for asserting negative facts about

an individual [30]. This is usually costly since it involves

asserting explicitly all known negative facts to a database: in

the above example, the "not subset" relationship for each pair

of possible combination of attributes in sets.

5) Nonmonotonicity: Classical Negation

While SWRL does not support negated atoms or negation as

failure, classical negation is possible in OWL/SWRL through

the use of the owl:complementOf class description in OWL or

SWRL which states that the class extension consists of those

individuals that are NOT members of the class extension of the

complement class [26].

Example 8 An OWL complementOf axiom which states

that, if a key is not a member of the class KnownKey, then it

should be classified as a member of the class NonKey, is

asserted in our system:

NonKey owl:complementOf KnownKey

Of course, with OWL's (and SWRL's) open world

assumption, this conclusion can only be reached for

individuals for which it may definitely be concluded that they

cannot be members of the class KnownKey. A SWRL rule

which reasons over complementary classes KnownKey and

NonKey may be written as follows:

KnownKey(?x)^tbox:isComplementOf(?y,?x) → NonKey(?y)

It will assert individuals to the NonKey class extension

whenever there is an individual found belonging to the

KnownKey class extension, and a complementOf class

description asserted to hold between classes KnownKey and

NonKey in our ontology.

6) Recursion

Recursion is not directly supported in SWRL since we

cannot use results of rules when reasoning over a set of rules.

Since we use Jess to reason over SWRL rules, the recursion is

supported enabling thus the use of rule results at any level of

recursion.

Example 9 In order to determine a closure of a set of

attributes we must consider every input FD. We cannot find

the closure through one rule which will loop over all

dependencies, since each FD requires the currently computed

closure as its input. Thus we are forced to compute the same

rule once per each FD until all FDs are exhausted, and every

FD will eventually contribute its RHS if certain conditions are

fulfilled (cf. Fig. 6).

7) Disjunction and Alternatives

When translating Prolog rules for normalization of relations

into description logics (DL), we do not have the problem of

disjunction in the head, since every rule is Horn-like.

In the Prolog normalization system [5], there are rules

which require expressing alternatives instead of a conjunction

of atoms. Prolog solves this problem with the “;” operator.

Yet another way of representing alternatives in Prolog exists,

i.e., describing each alternative in a separate clause.
Example 10 An example Prolog rule consisting of

alternative atoms is applied when finding a minimal cover for

a set of dependencies [5]. The rule named elimredundfds is

employed for eliminating redundant dependencies, and looks

as follows:

The first four clauses of this rule (lines 2-5) will succeed if a

dependency’s right hand side is not a subset of its left hand

side closure. If this test fails, the clauses in lines 2, 3 and 6 will

succeed, and the dependency will be eliminated from the base

of facts since it is redundant and can thus be implied from the

FD set.

Before translating this rule into SWRL, we simply rewrite it

into two rules with equivalent heads [23], [31], [32]

elimredundfds, eliminating thus the need for explicitly

expressing alternatives in SWRL. Seems like it would take less

efforts to implement this rule in RIF-PRD with the use of

disjunction operator Or. The presentation syntax of this rule

would look as in Fig. 7.

1 elimredundfds(REL):-

2 retract(fd(REL,LHS,RHS)),

3 closure(REL,LHS,Z),

4 (not(subset(RHS,Z)),

5 asserta(fd(REL,LHS,RHS)));

6 (subset(RHS,Z)),

7 fail.

8 elimredundfds(REL).

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

508

V. CONCLUSION

In this research we have explored the ability of the

Semantic Web technologies to support the development of a

system for normalization of relations. Few systems for

normalization of relations are already in place [5]-[11] to

support schema refinement, but are rarely used.

Early examples, like the Metalog [33] system in the World

Wide Web Consortium (W3C), has shown that combining

logic programming and Semantic Web is a quite natural and

fruitful step: and in fact, the burst of research in Semantic Web

developments has eventually started to touch, connect and

reinterpret many topics that were and are mainstream of the

logic programming area [34].

Further, hybrid systems like SWORIER [17] and PrOWLog

[16] exist which provide ontologies and a Prolog engine to

reason over, as well as a study by Volz et. al. [23], [24] which

elaborates the mapping from description logic languages like

SWRL into logic programming languages like Prolog. One

could follow such an approach, the hybrid approach of

combining DL and LP languages to support ontologies and

reasoning over them as is required for implementing the

normalization system. We rather introduced a novel approach

in building a pure Semantic Web system for normalization of

relations led in the first place by the work conducted by Ceri

and Gottlob [5] and the Semantic Web vision for the future

Web. In [5], a system for normalization of relations by using

Prolog rules has been developed.

A translation bridge from logic programming into

description logics may well have been of use when developing

our system targeted to rely solely on the Semantic Web

technologies which have their foundations in description

logics. Our work lays some initial findings in mapping

between these two distinct logic languages, i.e., the SWRL

into Prolog mapping. There are companies and researchers

who have translated RDF and OWL into Prolog as described

in [23], [17], [16]. Thea [31] is an example which supports

translation of a rather restricted form of Prolog (unary and

binary) into SWRL. RIF-PRD provides a promising solution

for making our normalization system complete, which as for

now is limited due to no support in place in SWRL for the

knowledge base modification actions such as those assumed to

be provided by any RIF-PRD implementations, namely

‘Assert’, ‘Retract’ and ‘Modify’.

We believe in the first place that the development of our

system will be useful for understanding normalization

algorithms, and their applicability in solving day to day

database design problems. The system may particularly be well

suited for the design of small database applications, and also

as a teaching aid. In addition, we hope this work will

encourage further integration of existing desktop and

traditional Web applications into Semantic Web, hence

making the data, like corporate data and hidden Web relational

databases, and the Semantic Web applications understood by

machines supplement each other.

APPENDIX

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >

<!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY protege "http://protege.stanford.edu/plugins/owl/protege#" >

<!ENTITY xsp "http://www.owl-ontologies.com/2005/08/07/xsp.owl#" >

<!ENTITY swrla "http://swrl.stanford.edu/ontologies/3.3/swrla.owl#" >

<!ENTITY tbox "http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl#"

>

<!ENTITY abox "http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl#"

>

<!ENTITY rdfb "http://swrl.stanford.edu/ontologies/built-ins/3.4/rdfb.owl#"

>

<!ENTITY swrlx "http://swrl.stanford.edu/ontologies/built-

ins/3.3/swrlx.owl#" >

<!ENTITY swrlm "http://swrl.stanford.edu/ontologies/built-

ins/3.4/swrlm.owl#" >

<!ENTITY sqwrl "http://sqwrl.stanford.edu/ontologies/built-

ins/3.4/sqwrl.owl#" >

<!ENTITY swrlxml "http://swrl.stanford.edu/ontologies/built-

ins/3.4/swrlxml.owl#" >

<!ENTITY temporal "http://swrl.stanford.edu/ontologies/built-

ins/3.3/temporal.owl#" >

]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/norm_e.owl#"

 xml:base="http://www.owl-ontologies.com/norm_e.owl"

 xmlns:rdfb="http://swrl.stanford.edu/ontologies/built-ins/3.4/rdfb.owl#"

 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

 xmlns:swrlx="http://swrl.stanford.edu/ontologies/built-

ins/3.3/swrlx.owl#"

 xmlns:abox="http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl#"

 xmlns:sqwrl="http://sqwrl.stanford.edu/ontologies/built-

ins/3.4/sqwrl.owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:swrl="http://www.w3.org/2003/11/swrl#"

 xmlns:swrlm="http://swrl.stanford.edu/ontologies/built-

ins/3.4/swrlm.owl#"

 xmlns:swrlxml="http://swrl.stanford.edu/ontologies/built-

ins/3.4/swrlxml.owl#"

 xmlns:temporal="http://swrl.stanford.edu/ontologies/built-

ins/3.3/temporal.owl#"

 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

Prefix (ex <http://normonto.org/ex1#>)

Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)

(* ex:rule_elimredundfds *)

Forall ?fd such that And(?fd #ex1: FD

 ?fd [ex1:has_lhs ?lhs]

 ?fd [ex1:has_rhs ?rhs])

 (If

 AND(?lhs [ex1: has_clo List(?z)]

 External (pred:list-contains(List(?z), ?rhs)))

)

 Then retract(?fd)

Fig. 7 the RIF-PRD implementation of the rule elimredundfds

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

509

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:tbox="http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl#"

 xmlns:swrla="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#">

 <owl:Ontology rdf:about="">

 <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-

ins/3.3/abox.owl"/>

 <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-

ins/3.4/rdfb.owl"/>

 <owl:imports rdf:resource="http://sqwrl.stanford.edu/ontologies/built-

ins/3.4/sqwrl.owl"/>

 <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-

ins/3.4/swrlxml.owl"/>

 <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-

ins/3.4/swrlm.owl"/>

 <owl:imports

rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl"/>

 <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-

ins/3.3/temporal.owl"/>

 <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-

ins/3.3/swrlx.owl"/>

 <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-

ins/3.3/tbox.owl"/>

 </owl:Ontology>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <rdf:Description rdf:about="#schema1"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection"/>

 </owl:AllDifferent>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <rdf:Description rdf:about="#lhs1"/>

 <rdf:Description rdf:about="#lhs2"/>

 <rdf:Description rdf:about="#lhs3"/>

 <rdf:Description rdf:about="#lhs4"/>

 <rdf:Description rdf:about="#lhs5"/>

 <rdf:Description rdf:about="#lhs6"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <rdf:Description rdf:about="#fd1"/>

 <rdf:Description rdf:about="#fd2"/>

 <rdf:Description rdf:about="#fd3"/>

 <rdf:Description rdf:about="#fd5"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <rdf:Description rdf:about="#rhs1"/>

 <rdf:Description rdf:about="#rhs2"/>

 <rdf:Description rdf:about="#rhs3"/>

 <rdf:Description rdf:about="#rhs4"/>

 <rdf:Description rdf:about="#rhs5"/>

 <rdf:Description rdf:about="#rhs6"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <swrl:Variable rdf:ID="at"/>

 <swrl:Variable rdf:ID="attr"/>

 <swrl:Variable rdf:ID="attrs"/>

 <swrl:Variable rdf:ID="bt"/>

 <swrl:Variable rdf:ID="clo"/>

 <swrl:Variable rdf:ID="elsk"/>

 <swrl:Variable rdf:ID="fd"/>

 <swrl:Variable rdf:ID="i"/>

 <swrl:Variable rdf:ID="k"/>

 <swrl:Variable rdf:ID="l"/>

 <swrl:Variable rdf:ID="lhs"/>

 <swrl:Variable rdf:ID="n"/>

 <swrl:Variable rdf:ID="r"/>

 <swrl:Variable rdf:ID="rhs"/>

 <swrl:Variable rdf:ID="s"/>

 <swrl:Variable rdf:ID="sk"/>

 <swrl:Variable rdf:ID="sl"/>

 <swrl:Variable rdf:ID="slel"/>

 <swrl:Variable rdf:ID="sm"/>

 <swrl:Variable rdf:ID="sr"/>

 <swrl:Variable rdf:ID="srel"/>

 <swrl:Variable rdf:ID="ss"/>

 <swrl:Variable rdf:ID="st"/>

 <swrl:Variable rdf:ID="t"/>

 <swrl:Variable rdf:ID="u"/>

 <swrl:Variable rdf:ID="un"/>

 <swrl:Variable rdf:ID="x"/>

 <swrl:Variable rdf:ID="y"/>

 <Attribute rdf:ID="a"/>

 <owl:Class rdf:ID="AttrClosure"/>

 <swrl:Imp rdf:ID="rule-closure-initial">

 <swrl:body>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;ClassAtom"/>

 <swrl:argument1>

 <rdf:Description rdf:about="#clo"/>

 </swrl:argument1>

 <swrl:classPredicate rdf:resource="#AttrClosure"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2>

 <rdf:Description rdf:about="#attrs"/>

 </swrl:argument2>

 <swrl:argument1>

 <rdf:Description rdf:about="#clo"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#clo_attr"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </swrl:body>

 <swrl:head>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2>

 <rdf:Description rdf:about="#attrs"/>

 </swrl:argument2>

 <swrl:argument1>

 <rdf:Description rdf:about="#clo"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#closure"/>

 </rdf:Description>

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

510

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </swrl:AtomList>

 </swrl:head>

<swrla:isRuleEnabled>rdf:datatype="&xsd;boolean">false

</swrla:isRuleEnabled>

 </swrl:Imp>

 <owl:Class rdf:ID="Attribute"/>

 <Attribute rdf:ID="b"/>

 <Attribute rdf:ID="c"/>

 <AttrClosure rdf:ID="clo_1">

 <clo_attr rdf:resource="#a"/>

 <clo_attr rdf:resource="#b"/>

 <clo_attr rdf:resource="#d"/>

 </AttrClosure>

 <AttrClosure rdf:ID="clo_2">

 <clo_attr rdf:resource="#e"/>

 </AttrClosure>

 <AttrClosure rdf:ID="clo_3">

 <clo_attr rdf:resource="#d"/>

 </AttrClosure>

 <AttrClosure rdf:ID="clo_4">

 <clo_attr rdf:resource="#d"/>

 <clo_attr rdf:resource="#e"/>

 </AttrClosure>

 <AttrClosure rdf:ID="clo_5">

 <clo_attr rdf:resource="#a"/>

 <clo_attr rdf:resource="#d"/>

 <clo_attr rdf:resource="#e"/>

 </AttrClosure>

 <owl:ObjectProperty rdf:ID="clo_attr">

 <rdfs:domain rdf:resource="#AttrClosure"/>

 <rdfs:range rdf:resource="#Attribute"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="closure">

 <rdfs:domain rdf:resource="#AttrClosure"/>

 <rdfs:range rdf:resource="#Attribute"/>

 </owl:ObjectProperty>

 <Attribute rdf:ID="d"/>

 <Attribute rdf:ID="e"/>

 <Attribute rdf:ID="f"/>

 <owl:Class rdf:ID="FD">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#holds_over"/>

 <owl:someValuesFrom rdf:resource="#Relation"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 <rdfs:subClassOf>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_lhs"/>

 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 1

 </owl:cardinality>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_lhs"/>

 <owl:someValuesFrom rdf:resource="#LHS"/>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_rhs"/>

 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 1

 </owl:cardinality>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_rhs"/>

 <owl:someValuesFrom rdf:resource="#RHS"/>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </rdfs:subClassOf>

 </owl:Class>

 <FD rdf:ID="fd1">

 <has_lhs rdf:resource="#lhs1"/>

 <has_rhs rdf:resource="#rhs1"/>

 <holds_over rdf:resource="#rel"/>

 </FD>

 <FD rdf:ID="fd2">

 <has_lhs rdf:resource="#lhs2"/>

 <has_rhs rdf:resource="#rhs2"/>

 <holds_over rdf:resource="#rel"/>

 </FD>

 <FD rdf:ID="fd3">

 <has_lhs rdf:resource="#lhs3"/>

 <has_rhs rdf:resource="#rhs3"/>

 <holds_over rdf:resource="#rel"/>

 </FD>

 <FD rdf:ID="fd4">

 <has_lhs rdf:resource="#lhs4"/>

 <has_rhs rdf:resource="#rhs4"/>

 <holds_over rdf:resource="#rel"/>

 </FD>

 <FD rdf:ID="fd5">

 <has_lhs rdf:resource="#lhs5"/>

 <has_rhs rdf:resource="#rhs5"/>

 <holds_over rdf:resource="#rel"/>

 </FD>

 <FD rdf:ID="fd6">

 <has_lhs rdf:resource="#lhs6"/>

 <has_rhs rdf:resource="#rhs6"/>

 <holds_over rdf:resource="#rel"/>

 </FD>

 <owl:ObjectProperty rdf:ID="has_attr">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Schema"/>

 <owl:Class rdf:about="#Side"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <rdfs:range rdf:resource="#Attribute"/>

 </owl:ObjectProperty>

 <owl:FunctionalProperty rdf:ID="has_lhs">

 <rdf:type rdf:resource="&owl;ObjectProperty"/>

 <rdfs:range rdf:resource="#LHS"/>

 <rdfs:subPropertyOf rdf:resource="#has_side"/>

 </owl:FunctionalProperty>

 <swrl:Imp rdf:ID="rule_closure">

 <swrl:body>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2>

 <rdf:Description rdf:about="#lhs"/>

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

511

 </swrl:argument2>

 <swrl:argument1>

 <rdf:Description rdf:about="#fd"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#has_lhs"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2>

 <rdf:Description rdf:about="#rhs"/>

 </swrl:argument2>

 <swrl:argument1>

 <rdf:Description rdf:about="#fd"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#has_rhs"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2>

 <rdf:Description rdf:about="#at"/>

 </swrl:argument2>

 <swrl:argument1>

 <rdf:Description rdf:about="#lhs"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#has_attr"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2>

 <rdf:Description rdf:about="#bt"/>

 </swrl:argument2>

 <swrl:argument1>

 <rdf:Description rdf:about="#rhs"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#has_attr"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;ClassAtom"/>

 <swrl:argument1>

 <rdf:Description rdf:about="#clo"/>

 </swrl:argument1>

 <swrl:classPredicate rdf:resource="#AttrClosure"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2>

 <rdf:Description rdf:about="#attrs"/>

 </swrl:argument2>

 <swrl:argument1>

 <rdf:Description rdf:about="#clo"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#closure"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#sk"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#attrs"/>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;makeBag"/>

 </swrl:builtin>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#sk"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#clo"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#fd"/>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;groupBy"/>

 </swrl:builtin>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

512

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#sl"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#at"/>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;makeBag"/>

 </swrl:builtin>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#sl"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#clo"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#fd"/>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;groupBy"/>

 </swrl:builtin>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#sr"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#bt"/>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;makeBag"/>

</swrl:builtin>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first>

<rdf:Description rdf:about="#sr"/>

</rdf:first>

<rdf:rest>

<rdf:List>

 <rdf:first><rdf:Description rdf:about="#clo"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

<rdf:first><rdf:Description rdf:about="#fd"/>

</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:List>

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</swrl:arguments>

<swrl:builtin>

<rdf:Description rdf:about="&sqwrl;groupBy"/>

</swrl:builtin>

 </rdf:Description>

</rdf:first>

 <rdf:rest>

<swrl:AtomList>

<rdf:first>

<rdf:Description>

<rdf:type rdf:resource="&swrl;BuiltinAtom"/>

<swrl:arguments>

<rdf:List>

<rdf:first><rdf:Description rdf:about="#sk"/>

</rdf:first>

<rdf:rest>

<rdf:List>

<rdf:first>

<rdf:Description rdf:about="#sl"/>

</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:List>

</rdf:rest>

</rdf:List>

</swrl:arguments>

<swrl:builtin>

<rdf:Description rdf:about="&sqwrl;contains"/>

</swrl:builtin>

</rdf:Description>

</rdf:first>

<rdf:rest>

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

513

<swrl:AtomList>

<rdf:first>

<rdf:Description>

<rdf:type rdf:resource="&swrl;BuiltinAtom"/>

<swrl:arguments>

<rdf:List>

<rdf:first><rdf:Description rdf:about="#sk"/>

</rdf:first>

<rdf:rest>

 <rdf:List>

 <rdf:first><rdf:Description rdf:about="#sr"/>

</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/></rdf:List>

</rdf:rest>

 </rdf:List>

</swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;notContains"/>

</swrl:builtin>

 </rdf:Description>

 </rdf:first>

<rdf:rest>

<swrl:AtomList>

<rdf:first>

 <rdf:Description>

<rdf:type rdf:resource="&swrl;BuiltinAtom"/>

<swrl:arguments>

<rdf:List>

<rdf:first><rdf:Description rdf:about="#u"/>

 </rdf:first>

<rdf:rest>

<rdf:List>

<rdf:first><rdf:Description rdf:about="#sr"/>

 </rdf:first>

<rdf:rest>

 <rdf:List>

 <rdf:first>

<rdf:Description rdf:about="#sk"/>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

</rdf:List>

 </rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</swrl:arguments>

<swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;union"/>

</swrl:builtin>

</rdf:Description>

</rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

<rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

<rdf:first><rdf:Description rdf:about="#k"/>

 </rdf:first>

 <rdf:rest>

<rdf:List>

 <rdf:first><rdf:Description rdf:about="#u"/>

 </rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:List>

</rdf:rest>

</rdf:List>

 </swrl:arguments>

 <swrl:builtin>

<rdf:Description rdf:about="&sqwrl;element"/>

 </swrl:builtin>

</rdf:Description>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

</rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </swrl:body>

 <swrl:head>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2>

 <rdf:Description rdf:about="#k"/>

 </swrl:argument2>

 <swrl:argument1>

 <rdf:Description rdf:about="#clo"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#closure"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </swrl:AtomList>

 </swrl:head>

 <swrla:isRuleEnabled rdf:datatype="&xsd;boolean">false

 </swrla:isRuleEnabled>

 </swrl:Imp>

 <owl:FunctionalProperty rdf:ID="has_rhs">

 <rdf:type rdf:resource="&owl;ObjectProperty"/>

 <rdfs:range rdf:resource="#RHS"/>

 <rdfs:subPropertyOf rdf:resource="#has_side"/>

 </owl:FunctionalProperty>

 <owl:ObjectProperty rdf:ID="has_schema">

 <rdfs:domain rdf:resource="#Relation"/>

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

514

 <rdfs:range rdf:resource="#Schema"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_side">

 <rdfs:domain rdf:resource="#FD"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="holds_over">

 <rdfs:domain rdf:resource="#FD"/>

 <rdfs:range rdf:resource="#Relation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="in3nf">

 <rdfs:subClassOf rdf:resource="#Relation"/>

 </owl:Class>

 <owl:Class rdf:ID="inbcnf">

 <rdfs:subClassOf rdf:resource="#in3nf"/>

 </owl:Class>

 <owl:Class rdf:ID="LHS">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_attr"/>

 <owl:allValuesFrom rdf:resource="#Attribute"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Side"/>

 </owl:Class>

 <LHS rdf:ID="lhs1">

 <has_attr rdf:resource="#a"/>

 <has_attr rdf:resource="#b"/>

 </LHS>

 <LHS rdf:ID="lhs2">

 <has_attr rdf:resource="#c"/>

 </LHS>

 <LHS rdf:ID="lhs3">

 <has_attr rdf:resource="#d"/>

 </LHS>

 <LHS rdf:ID="lhs4">

 <has_attr rdf:resource="#d"/>

 <has_attr rdf:resource="#e"/>

 </LHS>

 <LHS rdf:ID="lhs5">

 <has_attr rdf:resource="#e"/>

 </LHS>

 <LHS rdf:ID="lhs6">

 <has_attr rdf:resource="#e"/>

 </LHS>

 <Relation rdf:ID="rel">

 <has_schema rdf:resource="#schema1"/>

 </Relation>

 <Relation rdf:ID="rel_a">

 <has_schema rdf:resource="#schema2"/>

 </Relation>

 <Relation rdf:ID="rel_b"/>

 <Relation rdf:ID="rel_key"/>

 <owl:Class rdf:ID="Relation">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_schema"/>

 <owl:allValuesFrom rdf:resource="#Schema"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 </owl:Class>

 <swrl:Imp rdf:ID="rule-inbcnf">

 <swrl:body>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;ClassAtom"/>

 <swrl:argument1>

 <rdf:Description rdf:about="#r"/>

 </swrl:argument1>

 <swrl:classPredicate rdf:resource="#Relation"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2>

 <rdf:Description rdf:about="#s"/>

 </swrl:argument2>

 <swrl:argument1>

 <rdf:Description rdf:about="#r"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#has_schema"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;IndividualPropertyAtom"/>

 <swrl:argument2><rdf:Description rdf:about="#attr"/>

 </swrl:argument2>

 <swrl:argument1><rdf:Description rdf:about="#s"/>

 </swrl:argument1>

 <swrl:propertyPredicate rdf:resource="#has_attr"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#ss"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#attr"/>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;makeSet"/>

 </swrl:builtin>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#ss"/>

 </rdf:first>

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

515

 <rdf:rest>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#r"/>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;groupBy"/>

</swrl:builtin>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first><rdf:Description rdf:about="#n"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first><rdf:Description rdf:about="#ss"/>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&sqwrl;size"/>

 </swrl:builtin>

 </rdf:Description>

 </rdf:first>

 <rdf:rest>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;BuiltinAtom"/>

 <swrl:arguments>

 <rdf:List>

 <rdf:first>

 <rdf:Description rdf:about="#n"/>

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first rdf:datatype="&xsd;long"> 3

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </swrl:arguments>

 <swrl:builtin>

 <rdf:Description rdf:about="&swrlb;lessThan"/>

 </swrl:builtin>

 </rdf:Description>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </rdf:rest>

 </swrl:AtomList>

 </swrl:body>

 <swrl:head>

 <swrl:AtomList>

 <rdf:first>

 <rdf:Description>

 <rdf:type rdf:resource="&swrl;ClassAtom"/>

 <swrl:argument1>

 <rdf:Description rdf:about="#r"/>

 </swrl:argument1>

 <swrl:classPredicate rdf:resource="#inbcnf"/>

 </rdf:Description>

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </swrl:AtomList>

 </swrl:head>

 <swrla:isRuleEnabled rdf:datatype="&xsd;boolean"> false

 </swrla:isRuleEnabled>

 </swrl:Imp>

 <owl:Class rdf:ID="RHS">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_attr"/>

 <owl:allValuesFrom rdf:resource="#Attribute"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Side"/>

 </owl:Class>

 <RHS rdf:ID="rhs1">

 <has_attr rdf:resource="#c"/>

 </RHS>

 <RHS rdf:ID="rhs2">

 <has_attr rdf:resource="#a"/>

 </RHS>

 <RHS rdf:ID="rhs3">

 <has_attr rdf:resource="#e"/>

 </RHS>

 <RHS rdf:ID="rhs4">

 <has_attr rdf:resource="#f"/>

 </RHS>

 <RHS rdf:ID="rhs5">

 <has_attr rdf:resource="#d"/>

 </RHS>

 <RHS rdf:ID="rhs6">

 <has_attr rdf:resource="#f"/>

 </RHS>

 <owl:Class rdf:ID="Schema">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_attr"/>

 <owl:allValuesFrom rdf:resource="#Attribute"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 </owl:Class>

 <Schema rdf:ID="schema1">

 <has_attr rdf:resource="#a"/>

 <has_attr rdf:resource="#b"/>

 <has_attr rdf:resource="#c"/>

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

516

 <has_attr rdf:resource="#d"/>

 <has_attr rdf:resource="#e"/>

 <has_attr rdf:resource="#f"/>

 </Schema>

 <Schema rdf:ID="schema2">

 <has_attr rdf:resource="#c"/>

 <has_attr rdf:resource="#e"/>

 </Schema>

 <owl:Class rdf:ID="Side"/>

</rdf:RDF>

REFERENCES

[1] R. Stephens, Beginning Database Design Solutions. Wiley Publishing,

Nov. 2009.

[2] J. Madhavan, A. Halevy, S. Cohen, X. Dong, S. Jeffery, and D. Ko

Structured Data Meets the Web: A Few Observations. Data

Engineering, vol. 4, no. 31, 2006.

[3] R. Ramakrishnan, and J. Gehrke, Database Management Systems. 2nd

ed. McGrawHill, 1998.

[4] E. F. Codd, “Further Normalization of the Data Base Relational Model,”

in Database systems, Englewood Cliffs, N.J.: Prentice-Hall. 1972, pp.

33–64.

[5] C. Stefano, and G. Georg, “Normalization of relations and Prolog,”

Communications of the ACM , vol. 29, no. 6, pp. 524-544, 1986.

[6] A. Yazici, and Z. Karakaya, “JMathNorm: A Database Normalization

Tool Using Mathematica,” ICCS (2), Lecture Notes in Computer

Science, vol. 4488, pp. 186-193, 2007.

[7] A. Mitrovic, “NORMIT: A Web-Enabled Tutor for Database

Normalization,” International Conference on Computers in Education

(ICCE), pp. 1276-1280. Auckland, New Zealand, Dec. 2002.

[8] M. Bouzeghoub, G. Gardarin, and E. Metais, “Database design tools:

An expert system approach,” 11th VLDB, pp. 82-95, Stockholm,

Sweden, Aug. 21, 1985.

[9] L. Kerschberg, “Expert database systems,” in The 1st International

Conference on Expert Database Systems, Kiawah Island, S.C., Oct.

1984.

[10] R. M. Lee, “Database inferencing for decision support,” Decis. Support

Syst. , vol. 1, no. 1, pp. 57-68, 1985.

[11] W. D. Potter, “DESIGN-PRO: A multi-model schema design tool in

Prolog,” in The 1st International Conference on Expert Database

Systems, pp. 747-759, Kiawah Island, S.C., Oct. 1984.

[12] V. Hirankitti and T. M. Xuan, “A Meta-logical Approach for

Reasoning with Ontologies and Rules Expressed In OWL 2”, WSEAS

Intl. Conf. on Applied Computer Science, pp. 360-366, October 2010.

[13] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”

Scientific American , vol. 284, no. 5, pp. 34-43, 2001.

[14] R. Fagin, “Functional dependencies in a relational database and

propositional logic,” IBM J. Res. Dev. , vol. 21, no. 6, pp. 534-544,

1977.

[15] I. Horrocks, P. F. Patel-Schneider, H. Boley, S.Tabet, B.Grosof, and M.

Dean, SWRL: A Semantic Web Rule Language Combining OWL and

RuleML. W3C Member Submission. [Online]. Available:

http://www.w3.org/Submission/SWRL/, May 21, 2004.

[16] T. Matzner, and P. Hitzler, “Any-World Access to OWL from Prolog,”

Lecture Notes in Computer Science, vol. 4667, pp. 84-98, 2007.

[17] K. Samuel, I. L. Obrst, S. Stoutenburg, K. Fox, P. Franklin, A. Johnson,

“Translating OWL and semantic web rules into prolog: Moving toward

description logic programs,” TPLP, vol. 8, no. 3, pp. 301-322, 2008.

[18] R. A. Mena, “Towards a Semantic Web: Ontology Development based

on the Extraction of Semantic Concepts from Digital Documents”,

WSEAS Intl. Conf. on Computers, pp. 519-525, July 2009.

[19] M. K. Smith, C. Welty, and D. L. McGuinness, (2004, February 10).

OWL Web Ontology Language Guide. [Online]. Available:

http://www.w3.org/TR/owl-guide/

[20] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.

McGuinness, and P. F. Patel-Schneider. (2004, February 10). OWL Web

Ontology Language Reference. W3C Recommendation. [Online].

Available: http://www.w3.org/TR/owl-ref/

[21] H. Boley, and S. Tabet (2001). Rule Markup Language. [Online].

Available: www.dfki.uni-kl.de/ruleml

[22] H. Boley, S. Tabet, and G. Wagner, “Design rationale of RuleML: A

markup language for semantic Web rules,” The International Semantic

Web Working Symposium (Stanford University). July 30 – Aug. 1, 2001.

[23] R. Volz, S. Decker, and D. Oberle, (2003). “Bubo - Implementing OWL

in rule-based systems,” [Online]. Available:

http://www.daml.org/listarchive/joint-committee/att-1254/01-bubo.pdf

[24] R. Volz, Web Ontology Reasoning with Logic Databases. PhD Thesis,

AIFB, University of Karlsruhe, 2004.

[25] CollectionsSQWRL. (n.d.). [Online]. Available:

http://protege.cim3.net/cgi-bin/wiki.pl?CollectionsSQWRL

[26] M. O’Connor, (2010, February 12). SWRLLanguageFAQ. [Online].

Available: http://protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ

[27] B. Parsia, E. Sirin, B. C. Grau, E. Ruckhaus, and D. Hewlett,

“Cautiously approaching SWRL,” in Preprint submitted to Elsevier

Science. 2005.

[28] F. M. Pinto, and M. F. Santos, “Ontological Assistance for Knowledge

Discovery in Databases Process”, WSEAS Intl. Conf. on Computers, pp.

453-458, July 2009.

[29] Jess: the rule engine for the Java platform. (n.d.). (2010, May 16).

[Online]. Available: http://www.jessrules.com/

[30] C. Golbreich, E. K. Wallace, and P. F. Patel-Schneider, (2009, October

27). OWL 2 Web Ontology Language New Features and Rationale.

W3C Recommendation. [Online]. Available:

 http://www.w3.org/TR/owl2-new-features/

[31] V. Vassilades, , J. Wielemaker, and C. Mungall, “Processing OWL2

ontologies using Thea: An application of logic programming,” OWLED,

CEUR Workshop Proceedings, vol. 529, 2009.

[32] G. Antoniou, and F. van Harmelen, A Semantic Web Primer, 2nd ed.

MIT Press, 2008.

[33] M. Marchiori, “Towards a People’s Web: Metalog, Web Intelligence,”

IEEE Computer Society, pp. 320-326, 2004.

[34] M. Marchiori, “Introduction to the Special Issue on Logic Programming

and the Web,” TPLP, vol. 8, no. 3, pp. 247-248, 2008.

[35] D. Brickley, R.V. Guha, and B. McBride, (2004, Feb. 10). RDF

Vocabulary Description Language 1.0: RDF Schema. W3C

Recommendation. [Online]. Available: http://www.w3.org/TR/rdf-

schema/.

[36] I. Pah, I. (M.) Maniu, G. Maniu, and S. Damian, “A conceptual

framework based on ontologies for knowledge management in e-

learning systems”, WSEAS Intl. Conf. on Education and Educational

Technology, pp. 283-286, November 2007.

[37] N. Noy, R. Rector, P. Hayes, and C. Welty, (2006, April 12). Defining

N-ary Relations on the Semantic Web. W3C Working Group Note.

[Online]. Available at http://www.w3.org/TR/swbp-n-aryRelations/

[38] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.

McGuinness, P. F. Patel-Schneider, and L. A. Stein. (2004, Feb. 10)

OWL Web Ontology Language Reference. W3C Recommendation.

[Online]. Available: http://www.w3.org/TR/owl-ref/

[39] M. Kifer, and H. Boley, (2010, June 22). RIF Overview. W3C Working

Group Note. [Online]. Available: http://www.w3.org/TR/rif-overview/

[40] C. S. Marie, G. Hallmark, and A. Paschke, (2010, June 22). RIF

Production Rule Dialect. W3C Recommendation. [Online]. Available:

http://www.w3.org/TR/rif-prd/

[41] D. Chiribuca, D. Hunyadi, and E. M. Popa, “The Educational Semantic

Web”, WSEAS Intl. Conf. on Applied Informatics and Communications,

pp. 314-219, August 2008.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 4, Volume 5, 2011

517

