
Abstract— Control of flexible structures is an open problem. 

Such structures can be very different, for example, robot arm or 

satellite solar panel. The common point between these structures is 

their very light weight and large length. Light structure control 

requires less energy, smaller actuators but a much more complex 

control system to deal with vibrations. In this paper a flexible rotatory 

beam is modeled by Euler-Bernoulli hypothesis and its angular 

position is controlled. This kind of model is, most of the time, highly 

non-linear. As a result, controller designed by linear control 

technique can have its performance and robustness degraded. To deal 

with this problem, the State-Dependent Riccati Equation (SDRE) 

method is used to design and test a position control algorithm for the 

rigid-flexible non-linear model. The Matlab/Simulink simulation is 

based on the characteristics of real flexible link equipment driven by 

a DC servomotor. This work serves to show the relevance this non-

linear controller showing advantages it has over a more classic LQR 

controller. In future work, this controller will be tested with the real 

rotatory beam to validate the model and the SDRE control efficiency. 

Keywords — adaptative control, flexible , LQR , non-linear, 

rotatory beam, SDRE. 

I. INTRODUCTION 

Even if the design of flexible Euler-Bernoulli is a well-
known problem, it is still a subject of research [3, 13]. 
Moreover, most of the time, equations are linearized. Here, a 
first order non-linear kinematics is developed. The SDRE 
method [5] is an approach that can deal with non-linear plant; it 
linearizes the plant around the instantaneous point of operation 
and produces a constant state-space model of the system 
similar to LQR [6] control technique. The process is repeated 
in the next sampling periods therefore producing and 
controlling several state dependent linear models out of a non-
linear one. In other words, SDRE controller is an adaptive 
LQR. For simplification, this work does not incorporate the 
Kalman filter technique; since it is assumed that all the states 
are known. Several simulations have proven the 
computationally feasibility for real time implementation [8]. 
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II. SDRE METHODOLOGY 

Linear Quadratic Regulation (LQR) approach is well-
known and its theory has been extended for the synthesis of 
non-linear control laws for non-linear systems [6]. This is the 
case for satellite dynamics that are inherently non-linear. 
Several methodologies exist for control design and synthesis of 
these highly non-linear systems; these techniques include a 
large number of linear design methodologies [10] such as 
Jacobian linearization and feedback linearization used in 
conjunction with gain scheduling [11]. Non-linear design 
techniques have also been proposed including dynamic 
inversion and sliding mode control [12], recursive back 
stepping and adaptive control [9]. 

Comparing with Multi-objective Optimization Non-linear 
control methods [2] the SDRE method has the advantage of 
avoiding intensive interaction calculation, resulting in simpler 
control algorithms more appropriated to be implemented in a 
satellite on-board computer.  

The Non-linear Regulator problem [5] for a system 
represented by the SDRE form with infinite horizon, can be 
formulated minimizing the cost function given by 
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with the state       and control       subject to the non-
linear system constraints given by 
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where        and        are the system input and the 
output matrices respectively, and      where   is the 
dimension of the output vector of the system.   is the feed 
forward matrix and will be considered null as in most of the 
systems there is no direct action of the control on the output.    
represents the initial conditions vector and        and  
       are the weight matrices semi defined positive and  
defined positive respectively. 

Applying a direct parameterization to transform the non-
linear system into State Dependent Coefficients (SDC) 
representation [4], the dynamic equations of the system with 
control can be written in the form 

  ̇   ( )   ( )  (3) 
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with   ( )   ( ) , where        is the states matrix.   is 
not unique. In fact there are an infinite number of 
parameterizations for SDC representation. There are at least 
two parameterizations    and    for all       satisfying 

  ( )     ( )  (   )  ( ) (4) 

The choice of parameterizations must be made in 
accordance with the control system of interest. However, this 
choice should not violate the controllability of the system, i.e., 
the matrix controllability state dependent 
[ ( )  ( ) ( )   ( )    ( )] must be full rank.  

The State-Dependent Algebraic Riccati Equation (SDARE) 
can be obtained applying the conditions for optimality of the 
variation calculus. In order to simplify expressions, state 
dependent matrix are sometimes written without reference to 
the states  : i.e.  ( )   . As a result, the Hamiltonian for the 
optimal control problem Eq.(1) and Eq(2) is   
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where       is the Lagrange multiplier.  

Applying to Eq.(5) the necessary conditions for the optimal 

control given by  ̇   
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Assuming the co-state in the form  ( )   ( ) , which is 
dependent of the state, and using Eq.(8), the feedback control 
law is obtained as  

  ( )      ( )  ( ) ( )  (9) 

Substituting this results into Eq.(7) gives 

  ̇   ( )   ( )   ( )  ( ) ( )  (10) 

To find the function  ,    ( )  is differentiated with 
respect to the time along the path 
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Substituting Eq.(11) in the first necessary condition of 
optimal control Eq.(6) and arranging the terms more 
appropriately results in  
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Two important relations are obtained to satisfy the equality 
of  Eq.(12). The first one is state-dependent algebraic Riccati 
equation (SDARE) which solution is  ( ) given by 

                     (13) 

Once  ( ) is known, it is possible to know our controller   
explicitely. The expression of our controller can be extracted 
from Eq.(9)  

       ( )  ( ) ( ) (14) 

The second one is the necessary condition of optimality 
which must be satisfied, it is given by 
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For some special cases, such as systems with little 
dependence on the state or with few state variables, Eq.(13) can 
be solved analytically. On the other hand, for more complex 
systems, the numerical solution can be obtained using an 
adequate sampling rate.  It is assumed that the parameterization 
of the coefficients dependent on the state is chosen so that the 

pairs ( ( )  ( )) and ( ( )  ( )) are in the linear sense for 

every   belonging to the neighborhood about the origin, point 
to point, stabilizable and detectable, respectively. Then the 
SDRE non-linear regulator produces a closed loop solution that 
is locally asymptotically stable. An important factor of the 
SDRE method is that it does not cancel the benefits that result 
from the non-linearity of the dynamic system, because, it is not 
require inversion and no dynamic feedback linearization of the 
non-linear system. 

III. ROTATORY BEAM’S DEFINITION 

A. Beam definition 

Fig. 1 shows a representation of a flexible rotatory beam; it 
consists of a beam fixed to the rotor motor at one end and free 
at the other one. Euler-Bernoulli beam is used; this means that 
deformations are considered small. Parameters of the beam are 
the following: length  , linear density  , rigidity     and the 
rotor motor parameters are: angular position  ( ), which is a 
rotation along the  -axis so gravity has no influence, inertia, 
   torque    and radius of the hub  . The beam displacement 
is  (   ) and the deflection angle is  (   ). To simplify 
notation,   and   are used without referring to their variables 
and their partial derivative relative to the time   and the 
position   are respectively written  ̇ and   . 

It can be noted than the angular deflection (or beam slope) 
is related with de displacement according to: 

  (   )  
  (   )

  
    (16) 
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 Representation of the flexible beam Fig. 1.

B. Kinematics 

Let   be a point of the beam. In the beam frame 
 (     ), coordinates of   are 
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The velocity of this point is the derivative with respect to 
the inertial frame   (     ). The beam is considered 
inextensible, so  ̇   . 
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C. Kinetic and potential energies 

Kinetic energy of this system can be represented by two 
terms. The first one due to the motor rotation and the other due 
to the beam rigid-flexible motion 

 

   
 

 
   ̇  

   
 

 
 ∫   

   

 

 

   

(19) 

Second or more order in displacement   such as the axial 
displacement   (   ) won’t be considered because of small 
deformations hypothesis. Then the total kinetic energy is 
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The potential energy of a flexible beam is given by 

   
 

 
   ∫     
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In order to use energies to write the equations of motion, 
the beam deformation variable, that is, the displacement  , is 
need to be known explicitly. To do that, the assumed modes 
method is used. 

D. Assumed modes 

The motor rotation produces beam transverse vibrations. It 
is needed to analyze an infinitesimal element of the beam and 
consider moments and forces acting on it. Important elements 
of this analysis are shown in Fig. 2.   is the shear force,   is 
the angular moment and   is the linear density. 

 

 Forces affecting the flexible beam Fig. 2.

The application of the fundamental principle of the 
dynamics leads to Eq.(22) where the first one is the force in the 
direction of the axis   and the second one is the moment along 
the axis  .  
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Moreover, for a prismatic beam, the rigidity     is a 
constant so 

       
   

   
 (23) 

Combining Eq.(22) and Eq.(23) leads to the general 
equation for transverse vibration of an uniform beam. 
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Looking for a solution for this equation as a product of 
temporal and spatial function of the form  (   )   ( ) ( ) 
given by 

 

 ( )                       
         

 ( )                 
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Boundary conditions at beam ends are essential to 
determine the shape function   and parameters       and  . 
As the beam is clamped to the rotor, displacement and 
deflection are null at     (Eq.(26)) Likewise, the shear force 
and bending moment are zero at     (Eq.(27)).  

  ( )                 
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Substituting   from Eq.(25) into Eq.(26) and Eq.(27)   
gives a system of four equations. This system can be easily 
reduced to one equation called characteristic equation.  

                (28) 

The solution of Eq.(28) is an infinite set of spatial natural 
pulsations   where   is the mode number. The shape function 
  (or space Eigen function) from Eq.(25) associated to the 
mode  , called   , can now be written analytically. The first 
four mode shape are plotted in Fig. 3. 
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A finite number, of modes   is assumed to shape the beam 
deformation. The solution, Eq.(30), is a linear combination of 
all these modes: 

  (   )  ∑  ( )  ( )         

 

   

 (30) 

Now that the displacement  (   ) is known explicitly, 
motion equations can be written using the Lagrange theory. 

 

 First four shape functions  ( ) Fig. 3.

E. Dynamic equation 

In this section, Lagrange theory is used to develop motion 
equations. The generalized coordinates are the rigid motion,   
and the flexible modes  . External force   along the axis   is 
considered null and along   is equal to   ,  the rotor torque.  
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Substituting the expression of the displacement of Eq.(30) in 
kinetic and potential energies (Eq.(20) and Eq.(21) 
respectively) 
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and combining these results with Eq.(31) leads to the two 
Lagrange equations, according to the generalized coordinates   
and  : 
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that can be expressed on a matrix format 
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with the following parameters 
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Finally, some classical vibrating systems can be identified in 
Eq.(35):   the mass  matrix,    the damping matrix,   the 
rigidity matrix and   the external force vector. 
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F. DC motor 

This system is controlled with the voltage delivered by the 
motor, thus, it is needed to express the motor torque    in 
function of the motor supply voltage   . 

A classical model for a DC motor, taking  losses into 
account, is giving in Eq.(38). The parameters involved in this 
equation are: the friction constant between the rotor and stator 
   the efficiency of the motor   , the efficiency of gears   , 

the motor torque constant   , the transmission constant of 
gears   , the back EMF constant    and the motor armature 

resistance   . All these parameters lead to the well-known 
motor equation 

    
        

  

(        ̇)     ̇ (38) 

Defining    as 
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it is now possible to explicit the vector of external forces 
  [   ]  as 
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Substituting the result from Eq.(40) in Eq.(37) gives  
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]       (41) 

Thus, in the global matrix equation of the system appears 
an additive damping term   ̇.  

It can be denoted than this system is not linear as the mass 
  and damping matrix    are not constants and depends on 

   ̇ and  ̇. According to small deformation hypothesis, the 

non-linear term        in the mass matrix   Eq.(37) is really 

small (order two in  ), so it can be negligible. Therefore, since 

 ̇ and  ̇ are not necessarily small    terms Eq.(37) cannot be 
negligible [3]. 

To check the validity of these assumptions Fig.(4) 
represents the impulse response (1 second, amplitude 5V)  to 
three different models: the linear model, the fully non-linear 
model and the non-linear model without non-linear term in the 
mass matrix   (partially non-linear). As it is possible to notify, 
fully and partially non-linear model have almost the same 
response whereas the linear model is quite different. 

IV. SIMULATION STRATEGY 

A. State Space Model 

To be able to apply the SDRE technique, this system has to 
be represented using the state space model Eq.(3). States vector 
  and control   are defined as  

   [   ̇  ̇]               (42) 

 

 

 Comparaison between different plant models Fig. 4.

Reorganizing Eq.(41), the classic state space representation is 
obtained. 
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with  , the number of flexible modes, and  , the identity 
matrix. Having a look at Eq.(43), matrix   depends on the state 
and matrix    is constant.. 

B. SDRE implementation 

The algorithm is described in the Fig.(5). As the matrix   
depends on the states it must be determined on every step. So, 
for every iteration of the simulation, states vector   is 
measured, the Riccati solution    is obtained  from Eq.(11) the 
feedback control   is determined thanks to Eq.(15) and then, 
the new matrix   is obtained. 

Implementation of this algorithm has been done using the 
MATLAB-Simulink. Riccati equation has been determinated 
via the S-function sfun_lqrysim [1] which permits working 
with real time simulation solving Riccati equations in Simulink 
without calling the Matlab interpreter. Fig.(6)  represents the 
Simulink solution for the feedback control  . 

 

 SDRE algorithm Fig. 5.

C. Performance requirements 

Due to the physical features of the system, maximum 
voltage supply of the motor is 5V.   
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Referring to performance objectives, those are temporal 
requirements since the model is non-linear and frequency 
analysis is not possible. Only one overshoot of the beam 
angular position    is accepted, after what it shall be stabilized 
in the region     in a minimum setting time   . To analyze 
the flexible motion the displacement at beam's extremity is 
measured. As small deformation hypothesis may not be 
infringed, maximum overshoot is         which corresponds 
to     of the beam length. Table I summarizes requirements 
defined in this section. 

TABLE I.  PERFORMANCE REQUIREMENTS 

Parameter Performance Condition 

  overshoot Only one 

  Rise time Minimum 

    (   ) Overshoot    [cm] 

   Voltage    [V] 

V. SIMULATION RESULTS 

TABLE II.  MODEL PARAMETERS VALUES 

Beam Values Motor Values 

  48.26       0.004           

    0.54         0.002       

  0.1347           0.1527       

A. Model values 

Table II shows the values used for the simulation. 

B. Vibration mode analysis 

To know the vibration frequencies, an eigenvalue analysis 
of the full system represented by Eq.(41) is done. For this 
analysis damping and external forces are considered null. 
Results are shown in table III. 

TABLE III.  VIBRATION FREQUENCIES 

Mode    1 2 3 4 5 

f (  ) 4.6 16.1 42.7 83.0 136.9 

The estimation error for natural frequencies using Euler-
Bernoulli theory is all the more important that the mode 
number is high [7]. That’s why in this simulation, only the 
rigid mode and the first three flexible modes are taking into 
account.  

C. Variation of parameters   and   

SDRE technique is the generalized method of LQR for state 
dependent equation. In this paper, it is supposed that it is 
possible to get the SDRE solution   on-line (real time). If it 
was not possible, the solution would have been to calculate 
many SDRE point designs and to use scheduling, i.e.  ( ).  In 
this study, LQR weights,   and  , are chosen constant so they 
do not depend on the states. It means that the produced 
controller will depend on the states only because of non-

linarites in   (   matrix, in Eq.(37), depend on    ̇ and  ̇). 

Fig. 6.    Simulink feedback calculus with SDRE algorithm 
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The controller performance is directly related with these 
weights. 

From the cost function represented by Eq.(1) it can be 
noted that matrix   is linked with the states   and matrix   
with the control signal  . In order to influence at each state 
separately   matrix is chosen diagonal. Thus, each diagonal 
term is related to one state and acts as a penalty: the higher the 
value, less the influence of the state. The matrix  , (here a 
scalar because there is only one control variable) allows to size 
the control signal. In the same way as for  , a high value of   
penalizes the control signal. That is why, sometimes,   can be 
called of performance weight and   energy weight. 

In order to choose these parameters a set of   and   values 
are tested. It has been notified during experiments that 
modifications on   influences almost only the control signal 
and not the dynamic response. For these reason, to determine   
and   values, first a set of   values are tested; then, using the 
value that best matches the dynamical requirements, a set of   
values are experimented to find the one which fulfilled the 
motor requirement: motor voltage       . 

From the results of this simulation it is possible to 
determine the influence of each term inside   on the output. 
The first one related to   reduces the setting time but increases 
overshoot in angle position and displacement. The second one, 
related to flexible states does not show a significant influence. 
The third one, related to the angular velocity helps to reduce 
slightly overshoot in  . Finally, the last one related to the 
derivative of flexible states appears to reduce significantly 
displacement overshoot. Table IV represents   values from 
which have been tried according to the logic described above to 
finally get   ; the best   fulfilling our requirements Eq.(44).. 
The chosen value for   is 5. 

TABLE IV.  PARAMETERS   TESTED 

       ̇  ̇ 

   1 1 1 1 

   100 1 1 1 

   100 1 5 320 

   100 1 1 320 

 

 
       (                       ) 

    
(44) 

Responses for a step input of 60° are shown in Fig. 7. Fig. 8 
shows that the value of     enabled to fit the condition 
      . 

 

 

 Step response of the linear plant for differents   Fig. 7.

 

 Control    for     Fig. 8.

D. Comparaison with constant LQR controllers 

To prove difficulties to control this system with a classic 
controller, constant LQR controllers have been tested for 
controlling the non-linear model in order to show advantages 
of an adaptive SDRE controller. Same weights as for the SDRE 
have been used to compare the behavior of our system 
controlled with LQR. Fig. 9 shows these results. 

It can be seen clearly that these LQR controllers don't 
succeed to control the flexible beam. It shows that the flexible 
beam non-linearity is not negligible and plays an important part 
in the beam dynamic, and then an adaptive controller such as 
SDRE is necessary. 
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 Comparaison of some constants LQR with the best SDRE Fig. 9.

VI. CONCLUSIONS 

In this paper, the model of a rotatory Euler-Bernoulli beam 
is successfully built and the required performance objectives 
and physical requirements are achieved. This study shows how 
to implement a SDRE (State-Dependent Riccati Equation) 
controller for simulation. This controller model can be useful to 
control many other highly non-linear systems. The SDRE is 
tested here with a simple model for a flexible rotatory beam 
and shows great performances. Utility of the SDRE controller 
has been proved showing that a classic LQR controller can't 
control efficiently such non-linear systems. One of the main 
interests of this work is that, changing values of physical 
parameters such as beam length, or inertia, this model can 
easily be extended to many other systems such as satellite solar 
panels and antennas or robotic arm. In a future work this 
controller will be tested with the real rotatory beam in order to 
verify the real time implementation feasibility. 
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