
 

 

 

 

Abstract —In this paper, the problem of stabilizing a class of 

time delay systems by phase lead-lag controllers is investigated. 

One of the controller’s parameter is first determined by a 

necessary condition based on Kharitonov’s lemma. Then, the 

stabilizing regions in the space of the remaining parameters, for a 

fixed value of the first parameter, are determined using the D-

decomposition method. By sweeping over the first parameter the 

complete set of stability regions in the space of the controller can 

be identified. Further, gain margin and phase margin 

specifications are added in the design and robust phase lead-lag 

controllers are sought.  Illustrative examples are given to show 

the effectiveness of the proposed procedure. 

 

Keywords— Second order controller; time delay; D-

decomposition; stability; stabilization; phase margin; gain margin.  

I. INTRODUCTION 

Recently, the problem of determining all stabilizing fixed 

order, fixed structure, low order controllers for linear time 

invariant systems was addressed by several authors, see [1], [2] 

and [3] and the references therein. The problem is worthwhile 

as determining this set of all stabilizing controllers is a first and 

an essential step in calculating optimal fixed order controllers. 

This line of research was later extended to include time delay 

systems [4] and [5]. In fact, Studying stability of dynamical 

systems with time delay has received the attention of many 
researchers from the control community in the past decades; 

see [6] and the references therein. One of the main reasons for 

this continuing interest in this class of systems comes from the 

fact that many physical systems are inherently associated with 

time delays, this includes population dynamics, communication 

systems, nuclear reactors and power systems with loss-less 

transmission lines, see [6] and [7]. It is also known that delay is 

one of the main sources of poor performance and even 

instability [7] and [8]. This is another reason for the extensive 

literature on stability and stabilization of time delay processes. 

The above mentioned parameterization methods were 

successfully applied to get stabilizing classical low order 

controllers, such as PI controller [9], PID controller [10] and 

[11], and first order controllers [12] and [13]. In industrial 

processes, conventional controllers such as PI, PID, Phase-

lead, phase-lead and phase-lead-lag controllers are widely 

used.  

 

 

 

 

Traditionally phase-lead, phase-lag and phase lead-lag 

controllers are tuned using trial and error methods. An analytic 

method for designing these controllers has been around for 

decades [6]. In this paper, we propose a method to calculate 

stabilizing lead-lag controllers for delay systems. It consists of 

determining the admissible values of one of the controller’s 
parameters. Then, this parameter is fixed within the admissible 

range and the D-decomposition method is used to determine 

the stabilizing regions in the space of the remaining two 

parameters. By sweeping over the first parameter the complete 

set of stabilizing gains can be determined. This can be 

considered as a first step in the direction of designing optimal 

lead-lag controllers for delay systems. The obtained results are 

then extended to obtain robust lead-lag controllers by imposing 

gain and phase margin specifications ensuring stability 

margins, see [14] and [15], for the closed-loop system.  

The paper is organized as follows. In section II, the set of 

all stabilizing lead-lag controllers for time delay systems is 

calculated. In section III, the problem of stabilizing with a pre-

specified gain and phase margins is solved. Then an extended 

form for this controller to a PID controller is given. An 

illustrative example is given in section V. Finally, the last 

section gives some concluding remarks. 
 

 

 

 

 

 

 

Fig. 1.     Classical feedback system 

II. STABILIZING SECOND ORDER CONTROLLERS FOR TIME 

DELAY SYSTEMS 

      In this section, the stabilizing regions in the parameter 

space of a second order controller are determined. We 

consider the classical feedback system of Fig. 1, where the 

system’s transfer function is given by 

Ls
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with L > 0  the time delay. Many practical systems can be 

represented by (1).  

In [6], the dynamic behavior of temperature control in a mix 

process is represented by (1) and in [7] it is used to model a 

ship positioning an underwater vehicle through a long cable, 

to name just few examples. Our objective is to determine the 

set of all second order controllers given by 

 
2

3 1
2

2 1

s s
C(s)

s s

 


 
                                                     (2)                                

that stabilizes the feedback system of Fig 1.  

 In fact, the controller given by (2) is a lead-lag controller 

which combines the effects of phase lead and phase lag in 

certain frequency ranges and can realize the behavior of a PID 

controller [16]. Let  

 

2 3

1 4

(1 s)(1 s)
C(s)

(1 s)(1 s)

   


   
                      (3)     

with 1 2 3 4       . In order to get the same gain for high 

frequencies and low frequencies, we impose 2 3 1 4      

which leads to the following expression of C(s) 

2

2

s s 1
1 3C(s)
s s 1

1 2

   

   

                                                   (4)     

or equivalently the controller given by (2). The closed loop 

characteristic equation is given by  

2 2

2 1 3 1

* Ls
(s) (s s )Q(s) (s s )e


                    (5) 

 Our aim in this section is to determine the set of all 

stabilizing regions in the parameter space of the controller. As 

there are only three parameters 1 2 3( , , )   , the problem will 

be solved in two steps. First, we calculate the admissible 

ranges for one of the controller’s parameters. Next, this 

parameter is fixed within the admissible range and the 

stabilizing region in the space of the remaining two 

parameters, if it exists, is determined.  By sweeping over the 

admissible values of the first parameter, the complete set of 

stabilizing controllers can be obtained. 

A. Admissible values of  1 2( , )   

     Let us start by determining the admissible values in the 

parameter space of 1 2( , )  . In order to reduce the number of  

parameters 1 2 3( , , )   in the original stability problem from 

three into a simpler sub-problem with only two parameters, 

the following lemma will be used. 
 

     Lemma [17]. Consider the quasi-polynomial 

   1
n r

n 1 s(s) h s eil
i 0 l 1

    
 

 

 

 such that 
1 1 r    , with main term h 0

0r
 , and   

1 r 0   . If (s) is stable, then 
'
(s) is also a stable quasi-

polynomial, where 
'
(s)  is the derivative of (s) . 

 
 Now, the closed loop characteristic equation of the closed 

loop system of Fig. 1 is given by (5). Since the term Ls
e  has 

no finite roots, the quasi-polynomial *
(s) and 

Ls *
(s) e (s)    have the same roots, therefore stability of 

(s)  is equivalent to stability of *
(s) . In the sequel, the 

quasi-polynomial (s) will be used to study stability of the 

closed-loop system of Fig 1, where (s)  is given by 

2 Ls 2
1 2 3 2 1 3 1(s, , , ) (s s )e Q(s) (s s )           (6)    

Using the condition of Lemma, if (s) is stable then 
'
(s) is 

also a stable quasi-polynomial, where 
'
(s)  is given by 

2

1 2 3 2 2 1

3

'(s, , , ) (2s )P(s) (s s )P '(s)

2s

           

  
            (7)    

where 
Ls

P(s) Q(s)e . Repeating the same reasoning once 

again, If '
(s) is stable then 

''
(s)  is also stable, where 

''
(s) is 

given by 

2

1 2

1 2

''(s, , ) (s P ''(s) 4sP '(s) 2P(s) 2)

P ''(s) (sP ''(s) 2P '(s))

      

    
                  (8) 

At this step, note that the number of parameters is reduced and 

only two parameters appear in (8). It is possible now to apply 

the D-decomposition method [18], [19] and [20], and calculate 

the stabilizing regions in the parameter space of 1 2( , ).   To 

this end, we evaluate the characteristic polynomials on the 

imaginary axis by substituting s by jw and equating the real 

and imaginary parts of (8) to zero. Let 

P( j ) R( ) jI( )      

P '( j ) R '( ) jI '( )      

and  

P ''( j ) R ''( ) jI ''( )       

then we get the following set of equations represented in 

matrix form 

2

2

R '' I '' 2R ' R '' 4 I ' 2R 21

I '' R '' 2I ' I '' 4 R ' 2I2

      
 

      

    
        

       (9) 

      

Three cases will be considered: 
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      Case1:  Setting = 0 corresponds to the case of a root 

crossing the imaginary axis through the real line. This 

leads to the following equation  

 

      
1 2

2P '(0) 2(P(0) 1)

P ''(0) P ''(0)


            (10) 

  Case2: By sweeping over all   > 0, we consider the case 

of a pair of conjugate complex roots crossing the 

imaginary axis. Setting the real and imaginary parts of (9) 

to zero we get the following solution 

      

2

1

2
2 1

1 R '' 2I ' I '' 2R ' R '' 4 I ' 2R 2

I '' R '' I '' 4 R ' 2IB

         
 

     

    
        

   (11) 

     where   

      
2 2

1B R '' ( ) I '' ( ) 2(I '( )R ''( ) I ''( )R '( ))                (12) 

 Case 3. When ω → ∞ corresponds to a root leaving the 

left-half plane (alternatively the right half-plane) at infinity. 

Since 
Ls

e  does not have any finite roots, we consider the 

quasi-polynomial  

* Ls

2 Ls 2
2 1 3 1

(s)(s) e

(s s )Q(s)e (s s )

  

     
 

which has the principal term [21]. Clearly the quasi-

polynomial ∆(s) possesses a root chain of retarded type that 

goes deep in the left-half plane and does not affect stability 

properties [22]. In the rest of the paper this case will not be 

considered as it does not affect the stability regions, only 

the first two cases will be studied. 

The 1 2( , )  plane can be partitioned using equations (10) and 

(11) into several regions and stability of (8) can be checked by 

choosing a point inside a region and applying classical 

methods for testing stability such as Nyquist criterion or Bode 

method. 

B.  Stability regions in 1 3( , )  plane 

      Once the admissible values of 1 2( , )   are determined by 

the procedure described in the previous sub-section, one 

parameter is fixed within the admissible range and we 

determine the stability regions in the space of the remaining 

two parameters. We choose to fix 2 and calculate stability 

regions in 1 3( , )   plane. Using (6) and replacing
Ls

Q(s)e  by  

P(s)  we get  

2 2

1 2 3 2 1 3 1(s, , , ) (s s )P(s) (s s )                    (13) 

substituting s  by j  and equating the real and imaginary       

parts of (13) to zero, we get  

Case1: For   = 0 

1 0          (14) 

Case2 : For   > 0 

2 2

2
1

R( ) I( )

R( ) 1

       
 

 
                                        (15) 

2

1 2
3

( )I( ) R( )     
 


                                    (16) 

where P( j ) R( ) jI( )     . By the D-decomposition method, 

using (14), (15) and (16) for 0 the 
1 3( , )   plane can be 

partitioned into several regions and the stability region, if any, 

can be determined by employing classical methods. By 

sweeping over admissible values of
2  the complete set of 

stabilizing lead lag controller for the linear time delay system 

given by (1) can be calculated.  

 

 

 

 

 

 

 

Fig. 2.     Closed-loop feedback system with margin tester. 

III. STABILIZING WITH PRESPECIFIED GAIN AND PHASE 

MARGIN 

 In this section, controllers are designed to meet gain and 

phase margin specifications. Indeed, to ensure the stability of 

the closed loop system, we can modify the procedure 

described in the previous section, by integrating in chain as 

shown in Fig.2, a block of action 
jAe 

that introduces a gain 

margin A and phase margin  [5], [23]. The characteristic 

function of the system in Fig. 2 is given by 

2 2

2 1 3 1

j* Ls
(s) (s s )Q(s) A (s s )ee

  
            (17) 

multiplying this equation by 
(Ls j )

e
 

 does not change the 

study of stability. Then the quasi-polynomial (s) will be used 

to study stability of the closed-loop system of Fig.2 is given 

by 

2 (Ls j )
1 2 3 2 1

2
3 1

(s, , , ) (s s )Q(s)e

A(s s )

 
      

  
                  (18) 

the purpose of the proposed study is to determine the 

stabilizing values 1 2 3and,   giving the looped system a 

gain margin and phase margin imposed supplementary. As 
before, we will determine the set of the allowable values of 

1 2 )( ,   by the same principle, using the D-decomposition 

method described earlier. Thereafter for fixed values of 2 , 

we go in search of allowable values of couples 1 3 )( ,  , 

considering the gain margin and phase margin block.  
 

y 
C(s) G(s) + - 

r 
jAe 
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The second derivative of the characteristic function of the 

system is given by 

1 2

( j Ls)
t (s) t (s) t (s) e 2A1 1 2 2 3''(s, , )


                (19) 

with 

2 ' ''
t (s) L Q(s) 2LQ (s) Q (s)
1

    

2 ' ' ''
t (s) 2LQ(s) L Q(s) 2Q (s) 2LsQ (s) sQ (s)
2

      

2 2 ' 2 '
t (s) 2Q(s) L s Q(s) 4LsQ(s) 4sQ (s) 2Ls Q (s)
3

2 ''
s Q (s)

    



 

When A=1 then the phase margin of the system is  , and 

when  =0, then the gain margin of the system is A. 

Let 

Q(j ) R( ) jI( )      

Q'( j ) R '( ) jI '( )      

and  

Q''( j ) R ''( ) jI ''( )       

A. Gain Margin equal to A 

 We start by determining the admissible values of 1 2( , ) 

. Once they are determined, we choose to fix 2 and calculate 

stability regions in 1 3( , )   plane. Two cases are considered: 

Case1: For   = 0 

1 0                                                                  (20) 

Case2 : For   > 0 

2

2 2 2

1

(I(w)w cos(Lw) R(w)w sin(Lw))

w cos(Lw)R(w) w sin(Lw)I(w) Aw

I(w)sin(Lw) R(w)cos(Lw) A

  
 
   

  
  

      (21) 

3

(I(w)cos(Lw) R(w)sin(Lw))1

(wR(w)cos(Lw) wI(w)sin(Lw))2

2 2w I(w)cos(Lw) w R(w)sin(Lw)
A *

1
 
   
   
 
  

  


                 (22)                               

B. Phase Margin equal to   

 To impose a margin phase  , we just choose A=1.  We 

proceed the same way as before. Two cases are considered: 

 

 Case1: For   = 0 

1 0                                                                             (23) 

 

 

 

 Case2 : For   > 0 

2

2

2 2

1

(I(w)w cos(Lw ) R(w)w

sin(Lw )) w R(w)cos(Lw )

w I(w)sin(Lw ) w

I(w)sin(Lw ) R(w)cos(Lw ) 1

    
 

     
     

  
      

                 (24) 

 

3

(I(w)cos(Lw ) R(w)sin(Lw ))1

(wR(w)cos(Lw ) wI(w)sin(Lw ))2

2 2w I(w)cos(Lw ) w R(w)sin(Lw )

1
 
     
     
 
    

  


               (25) 

 

The intersection of the two regions, gives us the desired 
controllers that achieve the gain and phase margin 

specifications. 

IV. DESIGN OF A PID CONTROLLER 

     In this section, the stabilizing regions in the parameter 

space of a PID controller are determined. The proposed 

approach in this paper can be slightly modified and applied to 

PID controllers, which are a special case of second order 

controllers.  
Let 

2k s k s kd p i
C(s)

s

 
       (26) 

applied to a plant transfer function 

Ls
e

G(s)
Q(s)



  

As in precedent section, our aim is to determine the set of all 

stabilizing regions in the parameter space of the controller. We 

first determine the stability regions of p d(k ,k )  by applying 

the D-decomposition method. Then for a fixed dk , we 

determine the stabilizing regions in the plane of p i(k ,k ) as 

will shown in the next sub-section. 

a. admissible values of  p d(k , k )  

We start by determining the admissible values of p d(k , k ) . 

Two cases are considered: 
 

Case1: For   = 0 

p k = - (R(0) + j I(0))                                                           (27) 

 

Case2 : For   > 0 
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pk = - [R( )-L I( )- I( )]cos(L ) 

+ [ LR( )+ R( )]sin(L )

     

    
                   (28) 

 

d

sin(L )
k = [R( )-L I( )- I( )]

2

cos(L )
+ [ LR( ) +R( )]

2


    




  



                   (29) 

b. admissible values of  
p i(k , k )  

Once they are determined, we choose to fix dk and calculate 

stability regions in p i(k ,k )  plane. 

 Case1: For   = 0 

i k = 0                                                                                  (30) 

 Case2 : For   > 0 

pk = -R( )cos(L )+I( )sin(L )                                (31) 

ik = R( )sin(L )+ I( )cos(L )                             (32) 

V. ILLUSTRATIVE EXAMPLE 

Example 1. Consider stabilizing the third-order plant given by 

0.25s

3 2

e
G(s)

s 2s 3s 5




  

 

by a second order controller 

2

3 1

2

2 1

s s
C(s)

s s

   


   
 

as described in the previous section, we start by calculating the  

admissible values of 1 2( , ).   After deriving twice the 

characteristic polynomial of the closed loop system, the sub-

problem to be solved at this step is stabilizing the quasi-

polynomial given by 

 

5 4 3 2

1 2

0.25s 3 2

1

0.25s 4 3 2

2

0.25s

''(s, , ) (0.0625s 2.625s 24.1875s 28.8125s

23s 10)e (0.0625s 1.625s 8.1875s

5.8125)e (0.0625s 2.125s 15.1875s

15.3125s 8.5)e 2

      

     

    

  

 

Using (10) and (11), the stability region is found as shown in 

Fig. 3. Fixing a stabilizing value of controller parameter 
2  

within the stability region, for instance 2 2  , and applying 

(14), (15) and (16) we get the stability region in the 1 3( , ) 

plane as shown in Fig. 4. By sweeping over admissible values 

of 2  the complete stabilizing regions in the parameter space  

 

1 2 3( , , )   of the controller can be determined. In Fig. 5, a 

3D plot of the stabilizing regions is given for values of 
2  

between 2 and 10. The figure shows that for smaller values of 

2 , the stability region is getting smaller and eventually 

important while the parameter gets even bigger. The gain and 

phase margin are given by A=3 and  =45°, respectively. 

Fixing
2 2  , we obtain the stability region with specified 

phase and gain margins as shown in Fig. 6. The shaded 

regions shows the intersection between stability region with a 

gain margin equals 3 and stability region with a phase margin 

equals 45°. 

 

Example 2. Consider stabilizing the third-order plant given by 

0.25s

3 2

e
G(s)

s 2s 3s 5




  

 

by a PID controller 

2k s k s kd p i
C(s)

s

 
  

we start by calculating the admissible values of p d(k , k ) . 

After deriving twice the characteristic polynomial of the 

closed loop system, the sub-problem to be solved at this step is 

stabilizing the quasi-polynomial given by 

4 3 2

p d

0.25s

d

''(s, k , k ) (0.0625s 2.125s 12.1875s 11.3125s

6.5)e 2k

    

 

 

The solution of this problem can be achieved by using the D-

decomposition method. Applying (27), (28) and (29), Fig. 7 

shows the stability region in the p d(k , k )  plane. Now , let us 

fix dk 10  within the admissible set and go back to (30), 

(31) and (32), we get the stabilizing region in p i(k , k )  plane 

as shown in Fig. 8. 

VI. CONCLUSION 

 In this paper, the D-decomposition method is used to 

compute the stability regions of a second order controller 

applied to an n-th order all poles linear time delay system. The 

second order controller used to stabilize the feedback system 

is a lead lag controller. The proposed method is based on 

determining first the set of one of the controller’s parameter,

2 in our case, and then determining stability regions in the 

parameter space of the remaining two parameters. These 

results are extended to include gain and phase margin 

specifications. The proposed lead-lag controller, can be 

extended to a PID controller for some frequence range. First, 

The parameter dk is fixed a priori within an admissible range  

determined using the D-decomposition method.  
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Then the stabilizing region in the plane of 
p i(k , k ) of a PID 

controller is determined.  

 

 

Fig. 3.     Stabilizing region in the 1 2( , )  plane 

 

Fig. 4.  Stabilizing region in the 1 3( , )  plane for 2 = 2 

 
 

 
 

Fig. 5.     Stabilizing region in the 1 2 3( , , )   plane for

2 2 10     

 
 

Fig. 6.     Stabilizing regions with gain margin A=3  

and phase margin  =45° 

 

 

 

Fig. 7.  Stabilizing region in the p d(k , k ) plane 

 

 

 
 

Fig. 8.  Stabilizing region in the p i(k , k ) plane for dk 10   
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