

Abstract— In this paper it is described a generic system

architecture for increasing the flexibility of manufacturing systems;

there is also briefly explained how to configure the different resource

modules that actually control the tasks of the physical device and put

together a work cell consisting of other FMS resources. Using the

principles of distributed object technology there could be

implemented each resource in the work cell as a distributed object. A

resource, modelled as a distributed object, has a well-defined

interface, describing the data and the methods that it supports. A

distributed object can execute either on the same computer or another

networked computer. Finally, an example on building a FMS using a

hierarchical approach is presented.

Keywords—Work cell, Modeling, Conceptual Model, Reference

Architecture, Supervisory Control.

I. INTRODUCTION

T the enterprise level, manufacturing organizations are

faced with accelerating technological cycles, global

competition and an increasingly mobile work force.

These accelerating technological cycles translate into short

product life cycles and increasing product complexity. This

results in a product portfolio that is difficult to integrate from a

vertical perspective. To this purpose, corporations reorganize

to work efficiently to produce a diverse portfolio of products

rather than large quantities of a limited product portfolio.

This research and development effort will focused on the

concept of developing a generic reference architecture model

for the specification, development, control and reconfiguration

of a manufacturing enterprise at a work cell level. It introduces

the concept of scalable flexibility in manufacturing from the

shop floor to enterprise level.

II. PROBLEM FORMULATION

A. Model architecture

 The actual concept of a work cell will be considered as the

fundamental building block for the hierarchical synthesis of

large and complex systems at all levels of a manufacturing

enterprise; from the simple device to the fully automated

factory. The techniques for the automatic synthesis of the

control policies for the work cell and the hierarchical

manufacturing system will be developed. Furthermore,

software modules that allows for the implementation of the

work cell architecture in a distributed computing environment

will also be developed and tested through real industry test

cases.

 The problem of supervisory control/synchronization in a

flexible-manufacturing environment is one of the most difficult

problems designers’ faces in the conceptualizing of a Flexible

Manufacturing System. It is clear that manufacturing flexibility

induces complexity.

Fig.1 Conceptual Model of a work cell

The conceptual model of such a work cell is shown in Fig. 1.

This work cell contains a single processor, a buffer for holding

waiting jobs, I/O ports that act as entry/exit points for jobs

entering and leaving the work cell and a transportation unit

that may be an AGV or a robot.

There is a module that controls each physical device in the

work cell. The work cell controller synchronizes the activities

of the work cell by sending messages to the resource modules.

Designed to support hierarchical synthesis, implies that a

number of work cell modules can be used to synthesize a

multi-work cell network which, in turn, would have its I/O,

inter work cell transportation systems and buffers. It would

operate autonomously, in that it would co-ordinate the work

flow between each work cell, accept new jobs through its I/O

and output completed jobs. Again, it would do so by means of

its own supervisory controller. The client-server architecture is

employed where all resources (at the lowest level) are

synchronized with their activities by sending messages to the

cell controller. At higher levels, the work cell would send

messages to its own supervisory controller to coordinate the

functioning of each work cell. The different tasks that must be

addressed when describing the specifications for reference

architecture of a work cell are described as follows:

- Specify resource models.

- Specify job models.

Consideration the Work cell Conceptual Model

for increasing the Flexibility of Manufacturing

I.O. Popp

A

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015

ISSN: 2074-1308 68

B. Description of the System Architecture

1. Architecture

System architecture refers to the architecture of a system or

a specific construction. It is the result of a design process for a

specific system and lists out the functions of components, their

interfaces, and constraints. This design is the basis for detailed

design and implementation steps. Defining architecture serves

multiple purposes, as given in [1]:

- It provides abstract models for the description of

complex systems.

- It reduces the amount of changes to as few modules as

possible during a re-design process.

- The architecture indicates the most vital components and

constructs that should not be violated when adapting the

system to new uses.

2. Modeling of the Work cell

To generically model the work cell we use what is known as

a Resource Allocation System (RAS) [3, 5]. A resource

allocation system consists of a set of concurrently executing

processes, which, at certain phases of their execution require

the exclusive use of a number of system resources to run to

completion. The resources are finite in number and they are

characterized as reusable, since their allocation and

reallocation affect neither their quantity nor quality

Furthermore, in the context of FMS, they can be classified

as sequential, since it is assumed that every process undergoes

a predefined sequence of resource allocation and deallocation

steps. The resources it requests at each stage in its route can

characterize every process/job in the system. Depending on the

nature of the resources for system resources posted by

processes at each stage in their routes, one has RASs of

varying complexity.

3. Flexible manufacturing system resources

The resource model specification consists of the following:

- Device Behavior and Interface Model: Specifying the

commands the device is capable of responding to and the

response that is expected from the device. Both normal and

exception/error responses must be specified.

- Device Capability Model: This encodes the abilities of the

device. A capability model could be as simple as specifying

the set of device programs currently resident on the device

(implicit characterization) to a complete model of the device,

its internal structure and characteristics (an explicit

characterization).

- Work Cell Behavior (Supervisory Control) and Interface

Model: This model specifies how the devices in the work cell

interact with each other to accept process and output jobs.

- Work Cell Capability Model: This is analogous to the

discussion on the device capability model.

 - Coordination Model: For coordinating purposes, a finite

state model of the resource is used. This model captures

whether the resource is available or claimed or the next

resource is claimed. A coordination model similar to the one

suggested in [2, 4] is used.

For a single-processor work cell, we shall keep the job

model relatively simple. A route characterizes a job. This route

is a strict sequence of devices visited by the job in the work

cell starting with the device that performs the work cell's input

and ending with the device that performs its output. The

sequence must include at least one visit to the device that

serves as its processor.

C. Resource Models and Job Models

1. Description

A single processor work cell can be thought of as a unit

consisting of transportation units, storage units and a single

processing unit each functioning autonomously over a

predefined set of instructions. The work cell is responsible for

physical interfacing with devices that bring the jobs to it,

internal handling, transportation and the temporary storage of

the jobs during their processing in the cell. The cell controller

coordinates the functioning of these units to process the

different jobs sent to the work cell. The most basic building

block of the system is a programmable machine (or device).

This is standardized by an assumption of interface (MMS) and

structure.

Resource models are used to describe the resources of a

work cell. We use three different views to describe the

resource models. Firstly, the resource models that describe the

behavior of the device, that is, the interaction between the

resources and the work cell controller are needed to support

the implementation of the controller module. Secondly we

need models that specify the functional abilities of the work

cell. Thirdly, we need to model the coordination of the

resources. The physical model of a resource in this context

would be a programmable machine tool or some other FMS

resource. In this framework, a device simulator that supports a

standard interface has been used instead. A conceptual model

of the device is shown in Fig. 2.

Fig. 2 A conceptual model of a device

The controller architecture proposed in this system use a

client - server architecture where all the devices/resources in

the system synchronize their activities by sending messages to

the central controller. Each device in the system has a

corresponding module in the cell-control system, called the

virtual manufacturing device (Fig. 3). The VMD handles the

resource-specific control tasks.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015

ISSN: 2074-1308 69

2. Behavior Model

The virtual manufacturing device (VMD) can be split into two

parts: the generic part provides a uniform interface to the cell

controller and enables it to be reused from previous

applications. The generic part keeps track of the current state

of the external resource and is used to send and receive

messages from the cell controller; the specific part of the

module is actually a wrapper around the device that translates

the high-level messages handled by the generic part to the

proprietary protocol handled by the physical device

Fig. 3 Mapping from a physical device to a virtual manufacturing

device.

This part of the module can also be thought of as a device

driver. The device driver also provides some of the functions

that are not provided by the physical device but promised by

the generic interface. For example, the device driver

incorporates the notion of input and output ports that act as

transfer points for the parts flowing into the system.

D. Work cell and Resource Model Implementation

Common Object Request Broker Architecture (CORBA)

An object-oriented approach is used to model the various

resources of the FMS. Using multiple inheritance and function

overloading, a uniform operational logic can be adopted for

different cell configurations. Each resource would, however,

also support a device specific interface that might be

applicable to other application objects in the system but play

no role in the operation of the work cell. The program consists

of object models for the transportation units, the storage units,

the processor unit and the I/O ports. It also consists of a

control module that is based on the supervisory control theory

developed in [1, 2, 4].

From the implementation point of view, it is required the

communication software that would handle message passing

between the different resources of a work cell. Using the

principles of distributed object technology, could implement

each resource in the work cell as a distributed object. A

resource, modeled as a distributed object, has a well-defined

interface, describing the data and the methods that it supports.

A distributed object can execute either on the same computer

or another networked computer. CORBA is an accepted

middle-ware standard for building distributed applications. It

provides a robust, heterogeneous, inter-operable, multi-

platform environment and hence we propose to use CORBA

based architecture for the implementation of out architecture.

CORBA is an industry middle-ware standard for building

distributed, heterogeneous, object-oriented applications. It

details the interfaces and characteristics of the object request

broker (ORB) of the Object Management Architecture (OMA).

The ORB is mainly responsible for facilitating communication

between clients and objects. The ORB delivers requests to

objects and returns any responses to the clients making the

requests. The client does not know where the target object

resides, how the target object is implemented, whether the

object is currently activated, and the communications

mechanisms used. It allows for client-server and peer-to-peer

communication as well. Any distributed object, under the

CORBA standard, has to support a list of methods called an

interface. The interface has to be defined in OMG Interface

Definition Language (OMG IDL) and these definitions would

be mapped to a higher level programming language like C++

or Java. This enables us to build clients and servers using

different programming languages.

Program structure

Using a CORBA based framework for the implementation

of the single processor work cell. Resource is an abstract base

class from which all the other objects have been derived. An

object relationship diagram clarifies the relationship between

the different objects used in the architecture. It makes it clear,

for e.g., that all the resources contain a port in their class

definition. Each resource module, in essence, behaves like an

object server and responds to queries from other application

objects. The focus, when developing the resource modules, has

been on identifying a set of interface functions that it should

support. Recall that the FMS resources have been classified

under one of the four categories listed below:

1. Transportation unit

2. Storage Unit

3. I/O Port

4. Processor Unit

The interface of all the different resource modules is defined

using OMG IDL. The work cell class is also derived from the

resource class and it presents a similar control interface for

upward compatibility. The principal difference is that the work

cell contains a supervisory control module. Figures 4 and 5

shows the class hierarchy and the object relationship diagrams

for the work cell architecture.

Fig. 4 Class hierarchy diagram for the work cell/station architecture

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015

ISSN: 2074-1308 70

The control logic used by the module to ensure deadlock

free behavior is based on the supervisory control theory

developed in [6] and [7]. This makes it easier to build a

manufacturing system using a hierarchical approach.

Fig. 5 Object Relationship Diagram for the work cell architecture

The software modules that are used to control the physical

devices in an FMS are called the resource modules or the

virtual manufacturing devices (VMD). These are divided into

the generic and the equipment specific part, also called the

device driver.

The controller module knows the status of every resource

under it so that correctness of operation is ensured. The work

cell module presents an interface similar to the resource

module for upward compatibility but in addition it has a

dispatcher that schedules the flow of events in it and a

controller module that supervises the set of allowable events.

Message Passing: The work cell module has a

standardized sequence for sending a handshake message. The

handshake message between any two resources is handled

through the controller. The sequence of messages that are

exchanged during the unloading of a job from a processor

(Pri), at port P1, by a transportation device (Tri) is listed

below. The transportation device loads the job into port P1 as

well:

• Pri->prepareRemoveJob(tid,P1);

• Tri->prepareAcceptJob(tid,P1);

• Pri->send_Message(message1);

• Tri->send_Message(message1);

• Pri->removeJob(tid,P1);

• Pri->sendMessage(message2);

• Tri->acceptJob(Jobid,P1);

• Tri->sendMessage(tid,P1);

This sequence of handshake messages completes the

unloading of a job from a processor Pri to a transportation unit

Tri. Note that the entire message passing scheme is

asynchronous and so we have a provision for the resources to

signal the controller when it has completed a specified

operation. The equipment specific part or the device driver of

a resource contains the code for controlling the physical unit.

The different codes to be run are read in by the device driver

from a configuration file.

The resource modules for the different class of devices have

some fundamental differences. For e.g., the generic resource

module for a storage unit has an internal data structure to keep

track of the free buffer locations and the length of time

occupied by the jobs in each buffer space. When a new job is

loaded into the storage unit, the module assigns a free buffer

location to the incoming job, makes the appropriate call to the

device driver of the storage unit and updates it own data

structure. A module for a processor needs to support a function

to run a NC program. It sends back a message to the controller

on completing the processing of a job. This stage is absent in

other resource modules. Thus, the dispatcher in the work cell

makes sure that this stage is called on all processors but is

bypassed on other resources.

Further, the controller also ensures that conflicting

operations on a resource are never issued simultaneously. Let

us consider a case where a resource is prepared to accept a job

at one of its input ports (say) P1, and then the resource cannot

prepare to accept another job even if it has additional free

capacity until the first job has been accepted by the resource.

Thus, atomicity of a certain set of operations is ensured at the

resource level.

Resource Configuration:

As per our architecture:

• Every resource in the work cell consists of a port(s).

• Jobs enter/exit a resource only through ports.

• Every port in the device is defined as interfacing with

another device in the work cell.

Thus, these ports are the material transfer points. Since every

physical piece of equipment in the system need not provide

this functionality, the device driver (or the specific part of the

VMD) holds the information about these ports and provides

the cell controller with this functionality. The connectivity

information is defined in the configuration file of the work cell

controller. Whenever a job route is defined and uploaded to

the system, it is verified to make sure that it is compatible with

the connectivity information.

The device driver of each resource is configured so that it

would know the actual programs (NC programs) it needs to

execute on the physical device on receiving an instruction

from the cell controller. The device driver would have a

mapping function that would translate a call (say)

prepare_to_acceptJob at port P1 into a corresponding NC

program. These translation maps would be read in from

corresponding configuration files of the resource modules.

A sample configuration is given in Fig. 6. As shown in the

figure, every device in the system has a set of ports associated

with it. The work cell has a list of input ports and output ports

associated with each device. In the above example, P1 is both

an input port and output port for MT1. Similarly, P1 is an

output port and P3 is an input port for PC1. P_2 is both an

input and output port for PC1.

The various programs that can be supported by the resource

are specified in the configuration file. It is also possible to

dynamically add programs to the resource through the control

interface of the module.

The work cell can be setup to support different

manufacturing environments. A work cell can be configured to

have multiple buffers, separate I/O ports, combined

storage/transportation and so on. The ports associated with

each device and the connectivity information is defined in the

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015

ISSN: 2074-1308 71

work cell configuration file. The job routes supported at the

work cell level are also specified in the configuration file. The

operational logic of the work cell controller in such

architecture is relatively independent of its configuration. The

appropriate procedure calls (handshake messages) are made on

the devices sequentially as given in the job definition.

Fig. 6 Resource configuration in a work cell with two devices

The figure 7 shown below depicts the interaction of the

resource modules, the device simulators and the work cell

controller. The display server shown in the figure is a

visualization server implemented using Java 3D. The resource

modules (VMDs) that control the device simulators feed the

display server with commanded positions of the links of the

various mechanisms. Omnibroker is a CORBA compliant

ORB that is used for communication between the various

distributed objects.

Fig. 7 Interaction of the device simulators, resource modules

 and cell controller in a distributed environment

A screen shot of the display server is shown in Figure 8.

Fig. 8 Screen shot of the display Server

(in Java3D)

E. A Software Framework for Work Cell Architecture

A framework for organizing resources consisting of

hardware devices (such as machine tools, robots, conveyors

etc.) and software modules such as (cell controller, monitoring

software) in a CIM environment has been developed.

The following section is focalised on the basic building

blocks of the framework. The resources are classified into four

different categories based on their functionality viz.

1) Storage

2) Ports

3) Processors

4) Transportation

As defined earlier, a work cell is a composite member

composed of some of these basic resource. Figure 9 describes

how recursive composition can be used so that the same

framework could be used to build a simple work cell

composed only of basic resources (leaf nodes) or a complex

work cell that is defined recursively in terms of other work

cells.

Each of the resources in the work cell (including the work

cell) is a CORBA object so that it can plugged into a

distributed environment with minimal ease. Though the

resources of a work cell have been classified into the four

basic resources, it is possible to model systems where such a

strict taxonomy is not applicable. Some sample examples on

how to model some typical systems are given later in the

section.

Fig. 9 Plug-in supervisory controller used in the work cell

(strategy pattern)

Figure 10 captures the use of the strategy pattern in the work

cell. The work cell controller uses different structural control

policies depending on the work cell configuration and job

routes.

The four different controllers that could be plugged into the

work cell are:

1. SCP1 - Used in the absence of counter-flow jobs.

Deadlock avoidance is trivial. Suffices to check for capacity

availability on device.

2. SCP2 - Used in case of a circular flow and shared

input/output. The total number of jobs has to be less than the

sum of capacities of all the resources at all times.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015

ISSN: 2074-1308 72

3. SCP3(SCP_RAS) - Optimal One step look ahead policy.

Used when the capacity of the device is greater than one.

4. SCP4(SCP_Decompose)- Default case. Handles the most

general case by route decomposition.

Fig. 10 Work cell – Resource Part Hierarchy (Composite Pattern)

The use of such a design enables us to plug different

supervisory controllers into the work cell server. The new

controller has to be derived from the abstract class

SCPController. That is to say, the controller has to have the

same interface as the SCPController so that the rest of the

classes can be reused as is.

The OMT diagram (Fig. 11) explains the design of the

device drivers for the devices. There might be a need to plug

different device simulators into our architecture. However, the

interface of each of these simulators might not be available to

the resource module expects. We therefore define a device

driver object that acts as an adapter for the simulator objects.

The device driver publishes the interface expected by the

resource module and is linked with the simulator so that it can

make the appropriate calls on the simulator for each of its

method.

Fig. 11 The OMT diagram for the transaction class and the

received message used in the work cell and the resource server class.

Note: the use of a Finite State Automata class in Fig. 11. All

transactions and messages in the work cell as well as resources

are derived from a state Machine. This implies that all the

resources have a strict notion of their current states and all the

events are state driven. The use of a formal FSA object helps

in reducing the bookkeeping that have to be otherwise kept at

the server side.

III. PROBLEM SOLUTION

A. Modeling work cells and manufacturing systems using

this framework.

The steps involved in modeling work cells and

manufacturing systems are described in this section.

• The configuration files for each of the basic resource has to

be written. These files define the capacity of the resource, the

capabilities of the machine (programs, configurations) and the

group to which it belongs amongst other things.

• The configuration file for the work cell has to be written.

This file defines all the resources that a work cell is composed

of. In addition, this configuration file contains defines the

connectivity information and the various routes followed by

the different job types.

• To attach machine simulators to each of the basic resources,

device driver files have to be written that translates commands

from the module controllers to the simulators and vice versa.

The fields that are mandatory fields in a configuration file

are the following:

• The name used to locate the resource in the distributed

environment.

• The type of the resource

• The serverkind field that serves as a de-multiplex key.

• The (buffer) capacity of the resource.

• The port numbers in a resource

• The total number of setups supported by the resource.

• The programs supported in each setup. A program Id (PID)

and a filename describe a program.

The additional fields that have to be described in a

configuration file for a composite member are described

below:

• The members (resources) that the work cell is composed of.

• The capacity of each of the resource. (This information is

duplicated so that the work cell need not make an

additional request to the resource during setup.)

• The in-ports and out-ports of each of its resource.

• The connectivity information that describes how the ports of

the resources are connected to each other.

• There are two keywords used in defining the connectivity

information. 'TO' is used to describe one-way connectivity

between ports while 'ONTO' means that the connectivity

between the ports is two-ways.

• The different job types (routes) supported in each

configuration. A route is described by a sequence of stages

each stage defined by the resource that the job needs at that

stage.

The device drivers for a storage type and a processor type have

been described above. The steps involved in defining a device

driver are given below:

• Define the ports of the device.

• The link of the mechanism associated with the port.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015

ISSN: 2074-1308 73

• The location of the port with respect to the link co-

ordinates.

• Define the programs associated with accept, remove,

prepareAccept and prepareRemove commands at various

ports.

• Define the mapping between programs IDs (PID) and the

programs that would be run by the devices.

However, the portmaps have to be defined differently if the

capacity of the device is greater than one. The program

associated with the accept, remove, prepareAccept and

prepareRemove commands are indexed both by the port and

the buffer ID.

B Test Cases modeled using this architecture.

Case 1: A simple work cell composed of base resources has

been tested successfully using our architecture. The work cell

consists of a three-axis machine tool (a unit processor), a pallet

changer and an input/output buffer (Fig. 12). The pallet

changer is fed jobs/parts from the work cell buffer and it feeds

the jobs into the machine tool. The pallet changer picks up a

processed job from the machine tool and transfers the job into

the output buffer of the work cell.

Fig. 12 Schematic sketch of a work cell consisting of a pallet changer

and a machine tool.

In the above setup, the capacity of the work cell is four

while the processor is of unit capacity. In such a configuration,

the interactions between the pallet changer and the processor

are dynamic in the sense that they are dependent on the

processing time spent by each job on the machine tool and the

time at which different jobs enter the system. The controller of

the work cell automatically allows/disallows different

transitions thereby avoiding conflicts.

Figure 13 Screen Shot of a unit processor work cell

Note that the configuration files for basic resources are very

simple while the configuration file for the work cell is more

involved. This is not specific to this test case but is a more

general situation.

Case 2: A work cell consisting of two Universal high speed

placement machines (HSP) in serial and a conveyor that

shuttles jobs between the two were modeled using this

architecture (Fig. 14). The work cell supports two different job

types. The two job types are defined in terms of the devices

that they visit.

• Job1 - < HSP1 Conveyor HSP2>

• Job2 - < HSP2 Conveyor HSP1>

Each of the HSPs is modeled as a unit capacity processor

while the conveyor is modeled as a unit capacity transportation

unit. Since there are counter flow jobs in the system and the

conveyor is a shared resource of unit capacity, there is a

potential for deadlocks. The work cell controller makes sure

that such situations don't arise.

Fig. 14 Schematic Sketch of the HSP cell

Each of the HSPs is modeled as a unit capacity processor

while the conveyor is modeled as a unit capacity transportation

unit. Since there are counter flow jobs in the system and the

conveyor is a shared resource of unit capacity, there is a

potential for deadlocks. The work cell controller makes sure

that such situations don't arise.

Some sample configuration files for the resources and the

work cell are given below. The device driver files for the HSP

and the conveyors are also listed below. Note the similarity

between the configuration file of the Universal machine and

the 3-axis machine tool in the previous example.

This is because the control information for both the

machines (unit capacity processors) is the same. The device

driver files for each of these machines is obviously different

and is specific to the simulator that is used to model the

machine. The work cell configuration file for this system is

written down exactly the same way as explained at the start of

this section. Notice that the geometry at each stage has been

defined as 'user defined' in the route definition.

This is a keyword in the language that means that the

geometry of the part at each stage would be redefined by the

operation that takes place at that stage. That is, the part

geometry has to be shared between stages.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015

ISSN: 2074-1308 74

Fig. 15 Screen Shot of the HSP cell

Case 3: In this case is configured a system with a real-time

simulator of a machine axis. The purpose of this case was to

assess the ability of this system to co-exist with emerging

standards for devices (Open Modular Architecture Control or

OMAC, in this case) and exploit the fact that the underlying

descriptions of both systems were finite state machines.

The test case is consisted and supervisor running on a Linux

operating system and communicating with an OMAC axis

simulator running on a QNX system.

The scenario consisted of two such single axes devices, with

a fictitious job being sent to them. He wanted to check if you

could access the axes states, send them commands and co-

ordinate their actions according to the protocol defined.

Although conceptual interface easily found, a significant effort

was spent for the following reasons:

 a. Lacking a real-time CORBA environment, had to write

a socket connection between the device driver running on the

Linux system and the axes running on QNX. The important

point here that we learnt was that, when selecting software

enabling environments, one must make sure that they support

the different operating systems one might encounter (1 man-

week)

b. Was attempted to drive a Java3D display server over the

network. The overall performance was poor. Could only

achieve about rates of about 10 samples per second, when the

all the components, the real time simulator, the supervisor and

the display server, ran locally. Was expect much worse

performance across the internet.

c. Was spent most of time understanding the real-time

software and modifying it from being a controller to a

simulator (2 man-weeks)

d. Configuring the system when had the above (i.e., writing

up the configuration files, etc.) took about an hour.

IV. FINAL REMARKS

This research and development effort proposes such a

reference architecture that will allow for the control and

reconfiguration of a flexible manufacturing work cell. This

architecture will address many different issues, such as, the

type of resources in the system, system capabilities, system

behavior, and architecture interfaces. It also develops the rules

for synthesizing complex manufacturing systems.

Defining such reference architecture will serve multiple

purposes as follows:

• It provides an abstract model for the description of complex

systems.

• It reduces the amount of modifications to a limited number of

modules during a re-design of processes to support the varying

product portfolio.

• It identifies the most vital components within the reference

architecture system.

• It identifies the constraints that should not be violated when

adapting the system to new uses.

The reference architecture will describe the types of system

components, their functionality’s, dependencies, possible

interactions and constraints. In addition, the reference

architecture also incorporates some of the rules concerning

system development in a specific domain to achieve the

following:

• A unified terminology.

• Design simplicity allowing faster and cheaper design of the

system architecture.

• Higher quality systems.

• Interfacing and re-usability of modules between different

applications.

• Partitioning of implementation tasks amongst different

development groups.

• Tractability between solution independent requirements and

final realization.

The structural approach that was adopted is that of a hierarchy.

A ―Standard‖, configurable, self-contained, autonomous

module serves as building block for hierarchical synthesis of

larger and more complex systems. At each level of the

hierarchy the sub-system is persevered as an autonomous and

self-contained unit. At the lowest level, a single processor

work cell is identified as follows:

• It has a single processing unit or element

• It is self-contained; with a processing element, a buffer

element, an internal transportation element and an input/output

(I/O) element for physical interfacing with the outside world.

• It is autonomous as it contains its own internal co-ordination

or supervisory controller which completes all logical and

informational interfacing with the external world

• It is configurable as the internal buffer, transport, I/O and

processing can be effected by a single device or can be

effected by a mix of devices. Further, when comprised of a

number of devices, the supported workflows can be configured

by appropriate specifications and will be effected by the cell's

supervisory controller.

• The single-processor work cell presents a standard interface,

for processing jobs, to the external world (in a hierarchy, the

level above). Also, it communicates to its components (in a

hierarchy, the level below, which in this case, would be

physical devices) through some standard interfaces.

• The single-processor work cell implements a standard

protocol for physical material transfer between its components

and between its I/O and the external world.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015

ISSN: 2074-1308 75

V. CONCLUSION

In this paper, are summarize the results presented in the

research, highlight the significant features of the work and

present some guidelines for future research and extensions of

the present work.

It is described a generic system architecture for flexible

manufacturing systems. Furthermore, the product specification

has been integrated with the control system. The approach

adopted can be summarized as follows:

- The use of object-oriented approach to model the various

FMS resources as resource modules or VMDs. The

classification of the various resources into four principal types

based on their behavior is given below. These serve as the

basic object types for the resource models in the architecture.

 Transport Unit; Storage Unit; Processor Unit; I/O Port

Unit

- Specification of job routes as a sequence of job stages.

- Automatic synthesis of a supervisory controller given a set of

resources and the product routes.

The use of automatic synthesis of supervisory controllers

allows a high degree of flexibility in the system. Whenever

there has been a significant change in the system configuration

(when new job routes have been defined or when resources

have been added/removed), the control-laws are recalculated

and re-synthesized.

It is suggested hierarchical synthesis as a strategy for rapidly

configuring large systems. A methodology for formally

modeling hierarchical resource allocation systems is

developed. A distributed hierarchical control policy for

ensuring deadlock free behavior in such a system has been

proposed. It is applied this methodology to model a FMS setup

under the framework of the architecture described.

Furthermore, the use of distributed object technology to

implement the system enables us to run each resource module

as a distributed object/server on a computer node. It is possible

to access the control panels associated with each resource from

a separate computer and this allows the operator to access the

system at different control levels (the resource or the work

cell).

The software module which was implemented based on this

architecture is highly configurable to suit the needs of a variety

of manufacturing environments. A CORBA based framework

has been used to develop the various object modules. This

gave the added benefit of being able to run the application

across multi-platforms (operating systems).

Future Work

In the hierarchical resource allocation systems it was

assumed that the base resources (physical equipment) were

part of only one HRAS. It would be interesting to analyze the

behavior of the system if the resources were to be shared

between sibling HRASs.

Security features have not yet been incorporated into the

system. Also, error handling has not addressed in this

architecture. Problems such as restarting after a breakdown

certainly need to be addressed. The structural control policies

presented in this work implicitly assumed the absence of

uncontrollable events, such as machine failures, and hence

further research has to be done towards the development of

deadlock-free control policies in the presence of such

uncontrollable events.

Currently, the software implementation of this architecture

has been restricted only to the resource and the work cell level.

The higher-level modules and the distributed, hierarchical

controller have not been implemented yet. Future work

includes the development of the higher-level modules and the

distributed controller that ensures deadlock free behavior of

the entire system. This would help in realizing a scalable,

'unifying' operating system for manufacturing systems.

REFERENCES

[1] A. Adlemo., M.Fabian and P.Gullander, Models for Specification and

Control of Flexible Manufacturing Systems, Technical Report, School

of Electrical and Computer Engineering, Chalmers University of

Technology, Goteborg, Sweden, 1997.

[2] M. Lawley., Structural Analysis and Control of Flexible Manufacturing

Systems, PhD Thesis, University of Illinois at Urbana-Champaign,

1995.

[3] K. Karthik, An Architecture for control and specification of flexible

manufacturing systems, MS Thesis, University of Illinois at Urbana-

Champaign, 1998.

[4] S. Reveliotis, Structural Analysis and Control of Flexible Manufacturing

Systems with a Performance Perspective, PhD Thesis, University of

Illinois at Urbana-Champaign, 1996.

[5] I.O. Popp, I. Barsan, Consideration regarding the design of the system

architecture for FMS, 3rd International Conference OPTIROB,

Bucuresti, 2008, pp. 229-233.

[6] I.O. Popp, I. Barsan, Using an Object-oriented Approach for Scalable

Flexibility in Manufacturing, Advanced Materials Research, Trans Tech

Publications, Switzerland, Vols. 463-464, 2012 pp. 1035-1038.

[7] R. Mackiewicz, "An overview to the Manufacturing Message

Specification", http://litwww.epfl.ch/MMS/mms_IntroSISCO.txt, 1994.

[8] Z.A, Banaszak, B.H. Krogh, "Deadlock avoidance in flexible

manufacturing systems with concurrently competing flows", IEEE

Trans. on Robotics and Automation, Vol. 6, pp. 724-734, 1990.

[9] J. Brzezinski, J.M. Helary, M. Raynal. and M. Singhal, "Deadlock

models and general algorithms for distributed deadlock detection",

Technical Report, The Ohio State University, 1994.

[10] H. Cho., T.K. Kumaran. and R.A. Wysk, "Graph-theoretic deadlock

detection and resolution for flexible manufacturing systems", IEEE

Trans. on Robotics and Automation", Vol.11, pp 413-421, 1995.

[11] "MMS: A Communication Language for Manufacturing", Research

Reports ESPRIT Project 7096. CCE-CNMA, Springer-Verlag, Vol.2,

1995.

[12] Grady Book, "Object-Oriented Design with Applications",

Benjamin/Cummins, Redwood City, California, 1991.

[13] "Computer Integrated Manufacturing (CIM) Framework Specification

Version 2.0", SEMATECH. INC, 1998.

[14] "Virtual Factory Equipment Interface (VFEI) Version 2.2",

SEMATECH. INC, 1995.

[15] http://www.sleepycat.com/db, http://www.javasoft.com,

http://www.ooc.com

I.O. Popp Place and/or date of birth: Sibiu, Romania, 10.03.1961.
Doctor engineer (PhD), „L.Blaga‖ University of Sibiu, 1999.

Graduate diploma/Engineering studies: Mechanical engineer in the

speciality: Machine Building Manufacturing Technology, Technical

University of Cluj-Napoca, Mechanical Faculty of Sibiu, 1986.

He has the work experience: Engineer of Technical Department of

Production, Mechanical Plant MIRSA Avrig, Sibiu County, 1986-1992.

Assoc. Prof. Dr. Popp: Machines and Industrial Equipments Department,

University ―Lucian Blaga‖ of Sibiu, Faculty of Engineering, Emil Cioran str.

No. 4, 550025, Sibiu, ROMANIA, ilie.popp@ulbsibiu.ro

Membership in professional societies and associations: AGIR (General

Associations of Engineers from Romania) 1994 - present.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015

ISSN: 2074-1308 76

http://www.sleepycat.com/db
http://www.javasoft.com/
http://www.ooc.com/

