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Abstract— To grasp a more reliable representation of reality and 

to get more resilient and antifragile system development techniques, 

researchers and scientists need two intelligently articulated hands: 

both stochastic and combinatorial approaches synergically articulated 

by natural coupling. The Geometric Science of Information (GSI) 

coupled to Computational Information Conservation Theory (CICT) 

can offer an effective framework to develop more competitive reality 

modeling. The first attempt to identify basic principles to get stronger 

modeling solution for scientific application has been developing at 

Politecnico di Milano University since the 1990s. This paper is a 

relevant contribute towards arbitrary multi-scale systems biology, 

biomedical engineering and computer science modeling, to show how 

GSI and CICT can offer stronger and more effective system modeling 

solutions for more reliable and resilient simulation. 

 

Keywords— arbitrary-scale system modeling, biomedical 

engineering, CICT, GSI.  

I. INTRODUCTION 

N biology and biomedical research many questions are too 

complex to describe, let alone solve, in a practicable length 

of time. Even Stochastic vs. Combinatorially Optimized Noise 

generation ambiguity emphasises the information double-bind 

(IDB) problem in current most advanced instrumentation 

systems, just at the inner core of human knowledge extraction 

by experimentation in Science [1]. In fact, even the most 

sophisticated instrumentation system is completely unable to 

reliably discriminate so called "random noise" (RN) from any 

combinatorially optimized encoded message, called 

"deterministic noise" (DN) [2]. Epistemic and aleatory 

uncertainties are fixed neither in space nor in time. What is 

aleatory uncertainty in one model can be epistemic uncertainty 

in another model, at least in part. And what appears to be 

aleatory uncertainty at the present time may be cast, at least in 

part, into epistemic uncertainty at a later date [3]. 

Paradoxically if you don’t know the underlying hidden 

generating process for the folded information you can’t tell the 

difference between an information-rich message and a random 

jumble of letters [2]. The observer, having incomplete 
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information about any generating process, and no reliable 

theory about what the data correspond to, will always make 

inference mistakes, but these mistakes have a certain pattern 

[3]. Statistical and applied probabilistic theory is the core of 

classic scientific knowledge; it is the logic of "Science 1.0"; it 

is the traditional instrument of risk-taking. Unfortunately, the 

"probabilistic veil" can be very opaque computationally in 

arbitrary multi-scale modeling, and misplaced precision leads 

to information dissipation and confusion [4]. To develop 

resilient and antifragile application, we need stronger 

biological and physical system correlates; in other words, we 

need asymptoctic exact global solution panoramas combined 

to deep local solution computational precision with 

information conservation and vice-versa. Can we achieve this 

goal? 

II. THE ROOT OF THE PROBLEM 

To find an innovative solution, we just need to remember 

the Relativity’s father inspiration quote: "We cannot solve our 

problems with the same thinking we used when we created 

them." Every approach that uses analytical function applies a 

top-down (TD) point-of-view (POV) implicitly. These 

functions belong to the domain of Infinitesimal Calculus (IC). 

In a multi-scale modeling framework, from a system 

computational pespective, all approaches that use a TD scale-

free POV allow for starting from a global panorama of system 

parameter exact analytic solution families (macroscale infinite 

precision quantification). Then, going through system 

mesoscale, more and more shallow computational precision 

solution to real specific needs is reached, to arrive to system 

microscale where system parameter quantification is 

dominated by noise (quantification uncertainty). In other 

words, from global to local POV overall system information 

precision is not conserved, as misplaced precision leads to 

information dissipation and confusion [3,4] (see Fig. 1). In 

fact, usually further analysis and validation (by probabilistic 

and stochastic methods) is necessary to get localized 

computational solution of any practical value, in real 

application. A local discrete solution is worked out and 

computationally approximated as the last step in their line of 

reasoning, that started from an overall continuous system 

approach (from continuum to discreteness ≡ TD POV). 

Unfortunately, the IC methods are NOT applicable to discrete 
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variable. To deal with discrete variables, we need the Finite 

Differences Calculus (FDC). FDC deals especially with 

discrete functions, but it may be applied to continuous function 

too. As a matter of fact, it can deal with both discrete and 

continuous categories conveniently. In other words, if we want 

to achieve an overall system information conservation 

approach, we have to look for a convenient bottom-up (BU) 

scale-relative POV (from discreteness to continuum view ≡ 

BU POV) to start from first, and NOT the other way around! 

Then, a TD POV can be applied, if needed (Fig.1). Current 

human made application and system can be quite fragile to 

unexpected perturbation because Statistics can fool you, 

unfortunately. Deep epistemic limitations reside in some parts 

of the areas covered in risk analysis and decision making 

applied to real problems [4]. We need tools able to manage 

ontological uncertainty more effectively [5],[6]. 

 

 
Fig. 1 Top-Down (TD) and Bottom-Up (BU) scale-relative 

Point-of-View (POV) in a Multi-scale Modeling Framework 

(see text). 

III. MATHEMATICAL THEORIES FOR SYSTEM MODELING 

In the past, many attempts to arrive to a continuum-discrete 

articulated  mathematical formulation have been proposed, all 

of them with big operational compromises. The most recent 

ones find their roots at the beginning of the 1980s, even if their 

publication may record a later public release [7]-[10]. The 

basic framework of statistics has been virtually unchanged 

since English statistician Ronald Fisher (1890-1962), Polish 

mathematician Jerzy Neyman (1894-1981) and British 

statistician Egon Pearson (1895-1980) introduced it starting in 

the second half of the 1920s, till the first half of the 1940s. In 

1945, by considering the space of probability distributions, 

Indian-born mathematician and statistician Calyampudi 

Radhakrishna Rao (1920-) suggested that families of statistical 

distributions with continuous parameters may be regarded as 

Riemannian manifolds with parameters playing the role of 

coordinates. He used Fisher information matrix in defining the 

metric, so it was called Fisher–Rao metric [11]. This allowed 

the use of differential geometrical methods in the analysis of 

estimation, testing and other inference problems. The 

Riemannian geometry of statistical models was then studied as 

a mathematical curiosity for some years, with an emphasis in 

the geodesic distances associated with the Levi-Civita 

connection for this metric. In 1972, Russian mathematician 

Nikolai Chentsov proved that the Fisher information matrix is 

the only invariant Riemannian metric for statistical manifolds 

(up to some scalar factor), defined on the tangent space, that is 

decreasing under Markov morphisms (published in his Russian 

monograph and translated into English in 1982 by the AMS 

[12]). Because Markov morphisms represent coarse graining 

or randomization, it means that the Fisher information is the 

only Riemannian metric possessing the attractive property that 

distinguishability of probability distributions becomes more 

difficult when they are observed through a noisy channel. 

Since the 1980s the application of geometrical concepts to 

statistical theory and practice has been producing a number of 

different approaches which can be considered foundational to 

the modern Geometric Science of Information (GSI) [13]. This 

differential geometrization of Statistics [13] links with 

information theory through entropy functions, which appear as 

special cases of divergences. Its natural setting as part of 

probability theory in general, rendered this theory what is 

known today as the field of Information Geometry (IG). A 

greater amount of attention was devoted to the IG subject after 

American statistician B. Efron (1938-) introduced the concept 

of statistical curvature (called "e-curvature"), pointing out its 

importance to statistical inference, as well as implicitly using a 

new affine connection, which would be known as the 

"exponential connection" [14]. Every simply-connected 

Riemann surface can be given one of three geometries 

(Euclidean, spherical, or hyperbolic). Hyperbolic Geometry 

(HG) is the most prevalent geometry in this picture and also 

the most complicated.  

 

 
Fig.2 The Poincaré upper-half plane (PUHP) for 2-D 

problems, and the Siegel upper-half space (SUHS) for 3D 

problems (PUHP rotational symmetry along Y axis) [13]. 

 

In the two dimension hyperbolic case, the Beltrami-Klein 

model can be related to the Poincaré disk model (due to 

Riemann) and to the Poincaré upper-half plane model (PHUP). 

PHUP is named after French mathematician Henri Poincaré 

(1854–1912), but originated with Italian mathematician 

Eugenio Beltrami (1835–1899), who used it, along with the 
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Klein model and the Poincaré disk model, to show that 

hyperbolic geometry was equiconsistent with Euclidean 

geometry. The Poincaré disk model and the PHUP model are 

isomorphic under a conformal mapping. HG can describe a 

projective relativistic geometry. In the case of multivariate 

Gaussian probability distribution functions (pdfs), we can 

consider to replace the PUHP model by the Siegel Upper-Half 

Space (SUHS), as it is shown in Fig. 2. IG is applicable to 

convex analysis, even when it is not connected with 

probability distributions. This widens the applicability of IG to 

convex analysis, machine learning, computer vision, Tsallis 

entropy, economics, game theory, etc. The first attempt to 

identify basic principles, to synergically articulate CICT by 

natural coupling to GSI and IG, for scientific research and 

application, has been developing at Politecnico di Milano 

University since the 1990s. In 2013, the basic principles on 

CICT, from discrete system parameter and generator, appeared 

in literature and a brief introduction to CICT appeared in 2014 

[1]. Traditional Number Theory and modern Numeric Analysis 

use LTR (left-to-right) mono-directional interpretation for Q 

Arithmetic single numeric group generator, so information 

entropy generation cannot be avoided in contemporary 

computational algorithm and application. On the contrary, 

according to CICT, it is quite simple to show information 

conservation and RTL (right-to-left) generator reversibility, by 

using basic considerations only. Eventually, CICT defines an 

arbitrary-scaling discrete Riemannian manifold uniquely, 

under HG metric, that, for arbitrary finite point accuracy level 

W going to infinity, under the criterion of scale relativity 

invariance, is isomorphic (even better, homeomorphic) to 

classic IG Riemannian manifold (exact solution theoretically).  

IV. OPERATIVE CONSIDERATIONS 

To better understand the CICT fundamental relationship that 

tie together numeric body information of divergent and 

convergent monotonic power series in any base (in this case 

decimal, with no loss of generality) with D ending by digit 9 is 

given by the following CICT fundamental correspondence 

equation [2]: 
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where D  is the additive 10
W

 complement of D, i.e. D  = (10
W

 

- D), W is the word representation precision length of the 

denominator D and "Div" means "Divergence of". Further 

generalizations related to D ending by digit 1, 3 and 7 are 

straightforward [15]. Furthermore, When D  > D the formal 

power series on the left of (01) can be rescaled mod D, to give 

multiple convergence paths to 1/D, but with different 

"convergence speeds." The total number of allowed 

convergent paths, as monotonic power series, is given by the 

corresponding QL value, at the considered accuracy level L [2]. 

So, increasing the level of representation accuracy, the total 

number of allowed convergent paths to 1/D, as monotonic 

power series (as allowed conservative paths), increases 

accordingly and can be counted exactly, and so on, till 

maximum machine word length and beyond, like discrete 

quantum paths denser and denser to one another, towards a 

never ending "blending quantum continuum," by a TD 

perspective [2].  

V. COMPUTATIONAL EXAMPLE 

CICT can be considered a natural framework for arbitrary-

scale Systems Biology, Biomedical Engineering and  

Computer Science Modeling, in the current landscape of 

modern GSI. We present an example that takes advantage 

from scale related self-similarity modeling. Looking back to 

geometric series one can see a remarkable correspondence to 

the self-similarity concept. If we formally scale the following 

series S: 
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with the factor q, we obtain:  
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This is the well-known "self-similarity" property of 

geometric series. The value of the sum S is 0.10  plus the scaled 

down version of the whole series. Naturally, self similarity 

only holds for the limit, but not for any finite stage. For 

example, let us suppose finite stage k = 2: 

 

qqS
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2 1  , then: 
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As an example, for the sake of simplicity, let us use decimal 

base representation system, with no loss of generality, and let 

us consider q = 3/10 as LTR elementary generator. Then, we 

obtain the following convergent series: 
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as stated previously. 
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For finite stage, as we already stated, let us suppose k = 2, 

then: 
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and 
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Apparently by finite step we lost self-similarity, the 

fundamental property of geometric series, and this fact may 

seem, at first sight, a strong limitation to proceed further. But, 

self-similarity is still there, just a little less manifest. We can 

turn an apparent limitation into a striking computational 

advantage. In fact, it is possible to conceive an evolutive self-

similar arithmetic correspondence (called complementary 

series or co-series) to original geometric series, step by step, 

which can act as a continuous connection from finite geometric 

power increment to its asymptotic limit to conserve 

characteristic computational information in a coherent way. To 

compute the corresponding LTR evolutive complementary 

arithmetic co-series (additive complement series), we 

introduce the fundamental concept of "coherent 

correspondence". Therefore, given any single term of original 

geometric series Sk, as sk with an operational representation 

Nk/Dk , its "coherent correspondent term" mc for correspondent 

complementary co-series M1 is given, in this case, by (Dk-

Nk)/(Dk)
2
. So, the correspondent LTR complemenary co-series 

M1 of our example is given by: 
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As a matter of fact, M1 is just the first co-series of a countable 

family Mr of complementary co-series to original series S, at 

different accuracy level r, given by: 
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where D is the reduced denominator of the limit of original 

series S and Sc is its finite stage sum at stage c. So, in other 

words, each Mr  is an irreducible co-domain, at different 

accuracy level r, for the original domain S. It is immediate to 

verify the following co-series limiting values: 

 

M2 = 7{10
2
/98703} = 7{10

2
/(99*997)}   , 

M3 = 7{10
3
/9987003} = 7{10

3
(999*9997)}   , 

…                                                                                         (13) 

M7 = 7{10
7
/999999870000003} 

      = 7 {10
7
/(9999999*99999997)}   , 

 

and so on. So, in other words, each Mr  represents an 

irreducible co-domain, at accuracy level r, for the original 

domain S, with q = 3/10 as LTR elementary generator, in this 

case. Then, co-domain multiscale evolutive structured 

information, synthesized by its limiting value, can be used for 

deterministic noise source coherent tuning or checking for the 

presence of such specific generator in system "background 

noise." In fact, their numeric limiting values, by elementary 

arithmetic long division algorithm, supply us with cyclic 

remainder sequences perfectly tuned to deterministic source 

generators. By this kind of operational flexibility, a machine 

can generate autonomously, either on-the-fly or in advance 

stored in a-priori knowledge-base, combinatorially optimized 

exponential cyclic sequences (OECS) [2] to check for the 

presence of suspect "deterministic noise sources" in its probing 

field and then acting accordingly to compensate and to obtain 

a virtually homogeneous and uniform machine experimental 

reference domain. Following this line of thought, it is possible 

to overcome the dreadful ambiguity and limitations of the 

traditional Shannon entropy concept [2], and to solve the IDB 

problem successfully. 

VI. CONCLUSION 

CICT new awareness of a rational hyperbolic framework of 

encoded heterogeneous hyperbolic structures (reciprocal 

space), underlying the familiar Euclidean surface 

representation system (direct space) can open the way to 

holographic information geometry. This formulation has the 

great merit of maintaining close contact between the 

mathematical description and the physical phenomenon 

described, showing how to obtain a purely algebraic 

formulation of information and physical laws relating directly 

elementary information generators to experimental 

measurements. In fact, traditional elementary arithmetic long 

division remainder sequences can be interpreted as 

combinatorically optimized exponential cyclic sequences 

(OECS) for hyperbolic geometric structures, as points on a 

discrete Riemannian manifold, under HG metric, 

indistinguishable from traditional random noise sources by 

classical Shannon entropy, and current most advanced 

instrumentation approach. CICT defines an arbitrary-scaling 

discrete Riemannian manifold uniquely, under hyperbolic 

geometry (HG) metric, that, for arbitrary finite point accuracy 

level W going to infinity under scale relativity invariance, is 

isomorphic (even better, homeomorphic) to classic 

Riemannian manifold (exact solution theoretically). In other 

words, HG can describe a projective relativistic geometry 

directly hardwired into elementary arithmetic long division 

remainder sequences, offering many competitive 

computational advantages over traditional Euclidean approach 

only. More generally, CICT is a natural framework for 

arbitrary multi-scale computer science and systems biology 

modeling in the current landscape of the modern Geometric 

Science of Information (GSI). Specifically, high reliability 

organization (HRO), mission critical project (MCP) system, 

very low technological risk (VLTR) and crisis management 

(CM) system will be highly benefitted mostly by these new 

techniques. The present paper is a relevant contribute towards 
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arbitrary multi-scale systems biology, biomedical engineering 

and computer science modeling, to show how GSI and CICT 

as coupled resource can offer stronger and more effective 

system modeling solutions for more reliable, effective and 

powerful complex system simulation. 
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