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Abstract—In this paper, the applicability of Particle Swarm 

Optimization (PSO) to identify the modal parameters will be tested.  

PSO is a heuristic optimization method which does not require the 

calculation of the error derivatives with respect to the model 

parameters hence the Jacobian matrix formulation is not required.  

The modal parameters will estimated by optimizing the modal model 

using PSO in order to  decrease  the error between the modal model 

and the measured frequency response functions (FRFs) of the 

structure under test. The applicability of PSO to optimize the modal 

model is evaluated by means of real-life measurement example. 

 

Keywords—Complex structures, Frequency response functions, 

Modal parameter identification, Particle swarm optimization.  

I. INTRODUCTION 

ODAL analysis is currently one of the key technologies 

used for analysing the dynamic behaviour of complex 

structures such as cars, trucks, aircrafts, bridges, offshore 

platforms and industrial machinery A number of textbooks 

give a good overview of the theory and practice in the domain 

of modal analysis [1-4]. Modal analysis is a process whereby a 

structure is described in terms of its natural characteristics, 

which are the resonance frequencies, damping ratios and mode 

shapes - its dynamic properties. These modal parameters are 

the basic characteristics of any vibration (resonance) mode. A 

small force exciting the structure at one of these resonance 

frequencies causes large vibration responses resulting in 

possible structural damage. The damping ratios of the different 

vibration modes control the vibration level at the 

corresponding resonance frequency. The mode shape that is 

not global but local property of the structure describes how the 

structure will vibrate when it is excited at a certain resonance 

frequency. For the mode shape, local property means that it 

depends on the number of measured degrees of freedom 

(DOFs) and the locations of these DOFs with respect to the 

structure under test. Indeed, we can also say it is global 

property in the sense that it depends on the mass and stiffness 
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distribution of the structure under test.  Indeed, getting 

accurate estimates for these parameters helps to better 

understanding, modelling and controlling the dynamics of the 

vibratory structures. 

In this contribution, based on successfully experiences 

obtained with the application of Particle Swarm Optimization 

(PSO) in other areas [5-8], the authors decided to investigate 

the applicability of PSO technique in the field of modal 

parameter identification. PSO is a heuristic optimization 

method which is different from the optimization algorithms 

that are being used in the modal parameter estimation 

community.  PSO was originally contributed by Kennedy and 

Eberhart [9] and was first introduced for simulating social 

behaviour as a stylized representation of the movement of 

organisms in a bird flock or fish school. PSO algorithm is a 

population based algorithm that makes few or no assumptions 

about the optimized problem and can search very large spaces 

of candidate solutions. 

The validation of applying PSO to modal parameter 

estimation in this paper will be done using a real-life 

measurement from aerospace application.  The outline of the 

paper is as follows: in section II, a review over the modal 

parameter estimation techniques will be given. Then, the 

problem statement will be described in section III. In section 

IV, a theoretical background about PSO will be given. Some 

validation results will be shown in section V. Then, some 

concluding remarks are given in section VI. 

II. MODAL PARAMETER ESTIMATION: A REVIEW 

Over the last decades, a number of algorithms have been 

developed to estimate modal parameters from measured 

frequency or impulse response function data. The algorithms 

have evolved from very simple single degree of freedom 

(SDOF) techniques to algorithms that analyse data from 

multiple-input excitation and multiple-output responses 

simultaneously in a multiple degree of freedom (MDOF) 

approaches. In the time domain modal parameter identification 

techniques, the Complex Exponential (CE) algorithm is one of 

the earliest modal analysis methods. The CE was improved 

using least square solution by Brown et al. [10], and it was 

called Least Square Complex Exponential (LSCE) method. 

The LSCE method was developed for MIMO systems as the 

Polyreference Least Square Complex Exponential (pLSCE) by 

Vold et al.[11]. Even though the pLSCE method uses FRFs as 

an input, it essentially operates in the time domain. This is 
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achieved by computing the impulse response functions (IRFs) 

from the FRFs by inverse Fourier transformation. In the 

frequency-domain modal parameter identification side,  a very 

popular implementation of the frequency-domain linear least 

squares estimator optimized for the modal parameter 

estimation is called Least Squares Complex Frequency-domain 

(LSCF) estimator [12]. That method was first introduced to 

find initial values for the iterative maximum likelihood method 

[13]. The LSCF estimator uses a discrete-time common 

denominator transfer function parameterization. In [14], the 

LSCF estimator is extended to a poly-reference case (pLSCF). 

The pLSCF estimator uses a right matrix fraction description 

(RMFD) model. Both of those estimators have been developed 

for handling modal data sets that are typically characterized by 

a large number of response DOFs, high modal density and a 

high dynamic range. LSCF and pLSCF estimators were 

optimized both for the memory requirements and for the 

computation speed.  The main advantages of those estimators 

are their speed and the very clear stabilization charts they yield 

even in the case of highly noise-contaminated frequency 

response functions (FRFs). 

LSCF and pLSCF estimators are curve fitting algorithms in 

which the estimation process is achieved without using 

information on the statistical distribution of the data. By taking 

knowledge about the noise on the measured data into account, 

the modal parameters can be derived using the so-called 

frequency-domain maximum likelihood estimator (MLE) with 

significant higher accuracy compared to the ones developed in 

the deterministic framework.  MLE for linear time invariant 

systems was introduced in [15] and it is extended to 

multivariable systems in [16]. A multivariable frequency-

domain maximum likelihood estimator was proposed in [13] to 

identify the modal parameters together with their confidence 

intervals where it was used to improve the estimates that are 

initially estimated by LSCF estimator. In [17], the poly-

reference implementation for MLE was introduced to improve 

the starting values provided by pLSCF estimator. Both of the 

ML estimators introduced in [13, 17] are based on a rational 

fraction polynomial model, in which the coefficients are 

identified. The modal parameters are then estimated from the 

coefficients in a second step. In these estimators, the 

uncertainties on the modal parameters are calculated from the 

uncertainties on the estimated polynomial coefficients by using 

some linearization formulas. These linearization formulas are 

straightforward when the relation between the modal 

parameter and the estimated coefficients is explicitly known 

but can be quite involved for the implicit case. Moreover, they 

may fail when the signal-to-noise ratio is not sufficiently large 

[18]. 

A combined deterministic–stochastic modal parameter 

estimation approach called Polymax Plus has been introduced 

and successfully validated in [19-24]. This estimator combines 

the best features of both the  pLSCF estimator [14] of having a 

clear stabilization chart in a fast way  and the MLE –based 

estimation [13] of having consistent estimates of the modal 

parameters together with their confidence bounds.   A recent 

maximum likelihood modal parameter identification method 

(ML-MM), which identify directly the modal model instead of 

rational fraction polynomial model, is introduced and validated 

with simulated datasets and several real  industrial applications 

in [25-31]. Basically, the design requirements to be met in the 

ML-MM estimator were to have accurate estimate for both of 

the modal parameters and their confidence limits without using 

the linearization formulas which have to be used in case of 

identifying a rational fraction polynomial models.  And, 

meanwhile, to have a clear stabilization chart which enables 

the user to easily select the physical modes within the selected 

frequency band. Another advantage of the ML-MM estimator 

lies in its potential to overcome the difficulties that the 

classical modal parameter estimation methods face when 

fitting an FRF matrix that consists of many (i.e. 4 or more) 

columns, i.e. in cases where many input excitation locations 

have to be used in the modal testing.  For instance, the high 

damping level in acoustic modal analysis requires many 

excitation locations to get sufficient excitation of the modes.   

 

  All the previously mentioned modal parameter 

identification methods are based on fitting a mathematical 

model (e.g. polynomial-based models or modal model) to the 

measured data (i.e. FRFs). This fitting can be done either in a 

linear-least squares sense (e.g. pLSCF) or in a non-linear least 

squares sense (e.g. MLE or ML-MM). In case of non-linear 

least squares-based estimators [13, 28, 32, 33], a non-linear 

optimization algorithm is required since the cost function to be 

minimized is nonlinear in the parameters of the model. In 

system identification community Levenberg- Marquardt 

method [33, 34], which combines Gauss-Newton and Gradient 

descent methods,  is commonly used  to minimize the cost 

function of these estimators. 

III. PROBLEM STATEMENT 

The modal model is considered as one of the important 

objectives of any modal estimation process, by which we are 

characterizing the system dynamics in terms of its modal 

parameters (i.e. poles, mode shapes and participation factors). 

This model proposes that the frequency response function 

matrix of the system can be formulated in its modal  form as 

follows [3]: 
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with   o iN N

kH Ω


  the frequency response function matrix 

with oN  the number of the measured outputs and iN  the 

number of the measured inputs, kΩ kj  the polynomial 

basis function in case of using continuous-time formulation (s-
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domain), 
k  the circular frequency in rad/sec., oN 1

rψ


 , 

i1 NT

rL


 , 
rλ the mode shape, the participation factor and the 

pole corresponding to the r
th

 mode. o iN N
LR


  and 

o iN N
UR


  are the lower and upper residual terms. Since the 

modal model formulation uses a limited number of modes to 

model the FRF matrix within the analysis frequency band, the 

lower and upper residual terms are used to compensate for the 

residual effects that come from the out-of-band modes. 

Equation 1 considers a displacement FRF, while often the 

acceleration FRF is measured in modal analysis tests or 

sometime velocity FRFs like in case of using the Laser 

Doppler Vibrometer. In such cases, equation 1 should be 

corrected as follows: 

 

   

   

Vel k k Dis k

2

Accel k k Dis k

H Ω Ω H Ω

H Ω Ω H Ω





 (2) 

 

with 
Dis Vel Accel,    HandH H

 

the displacement, velocity and 

acceleration FRFs.  In case of operational modal analysis 

(OMA), the upper and lower residual terms (operational 

residuals) are different from the residuals in case of 

experimental modal analysis (EMA) used in equation 1. They 

were determined by verifying the asymptotic behaviour of the 

output spectra of a single-degree of freedom system excited by 

a white noise in [35]. Once the modal model is derived for a 

certain structure, a number of applications of modal analysis 

can be instigated using this modal model. In the following, 

some of the applications in which the modal model can be 

used 

 Correlation of FEM  

 Damage detection 

 Structural modification 

 Sensitivity analysis 

 Forced response prediction 

 Substructure coupling 

 Active and semi-active control 

 

It is obvious that all the above-mentioned applications heavily 

depend on the extracted modal parameters. In other word, a 

successful applicability of all those applications depends on 

the quality of the modal model. The quality of the estimated 

modal model mainly depends on the quality of the measured 

data and on the asymptotic properties of the modal parameter 

estimator used to extract the modal model parameters from the 

measured data. As mentioned in section II, in the literature 

there are several modal parameter estimators are successfully 

introduced and validated to obtain accurate modal model.  In 

this contribution, the objective now is to try PSO in optimizing 

the modal model presented by equation 1 with the aim to have 

accurate modal parameters (i.e.     ,  , , ),T

r r rL LR UR  for the 

structure under test within the analysis frequency band.  

Therefore, to optimize the modal model in equation 1 the 

following cost function (equation 3) will be minimized using 

PSO: 

 

   
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1 1

, ,
fo i

NN N

PSO k l k

l k

E   
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   (3) 

 

with 
fN  the number of the frequency lines and 

     ˆ, Ω ,l k l k l kE H H      is the error between the 

modal model  ˆ Ω ,l kH   represented by equation 1 and the 

measured FRFs  l kH   at frequency line k . So, the cost 

function is simply the sum of the squares of the absolute value 

of the error over all the inputs, outputs and frequency lines.  

So, the modal parameters of the modal model in equation 1 

will be tuned by the PSO algorithm in the way which 

minimizes the cost function described above by equation 3. To 

reduce the computational time taken by PSO, the poles 
r  and 

the participation factors 
rL  are taken as the parameters to be 

optimized by PSO, and then the mode shapes 
r  and the 

residual terms (  & LR UR ) are calculated in a linear least 

squares sense as implicit functions of the optimized poles and 

participation factors using equation 1. 

IV. PARTICLE SWARM OPTIMIZATION 

Recently, particle swarm optimization (PSO) has attracted a lot 

of attention because it’s easy to implement, robust, fast 

convergence, and for its ability to solve many optimization 

problems. PSO algorithm optimizes a problem using a 

population (swarm) of candidate solutions (particles). Particles 

have their own positions, and fly around in the problem 

solution space looking for best fitness value. Those particles 

are initially scattered in the solution space with initial 

positions. The position )(
  and velocity )(

v of a particle   

at the generation  , are iteratively enhanced in the solution 

space towards the optimum solution. Each movement of a 

particle is influenced by its local best position )(
b  and the 

global best position )(
g  obtained from all candidates in the 

solution space. When the process repeated for sufficient 

number, the best solutions eventually will be found. Equation 

(4), shows the mathematical formula used for updating the 

positions and the velocities of the particles [36]; 
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 (4) 

 



 

is the constriction coefficient, acc1 and acc2 are 

acceleration coefficients, rand1 and rand2 are random numbers 

between 0 and 1. The values used in this study for  , acc1 and 

acc2 are 0.729, 2.05 and 2.05 respectively [36]. Figure 1 

shows a flow chart for the optimization procedures. 
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Figure 1: Optimization procedures flow chart 
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Figure 2: Typical FRFs for the tested business jet (the frequency 

axis is hidden for confidentiality) 

V. VALIDATION RESULTS 

A. Inflight Dataset Example 

In this section, the proposed PSO for modal parameter 

estimation will be validated using experimentally measured 

FRFs that were measured during a business jet in-flight testing. 

These types of FRFs are known to be highly contaminated by 

noise.  During this test, both the wing tips of the aircraft are 

excited during the flight with a sine sweep excitation through 

the frequency range of interest by using rotating fans.  The 

forces are measured by strain gauges. Next to these measurable 

forces, turbulences are also exciting the plane resulting in 

rather noisy FRFs.  Figure 2 shows some measured frequency 

response functions (FRFs), which clearly show the noisy 

character of the data. During the flight, the accelerations were 

measured at nine locations while both the wing tips were 

excited (two inputs).  

The PSO needs an initial guess about the number of the 

modes within the analysis band. The pLSCF estimator is 

applied to the measured FRFs to have a clue about how many 

modes are expected in the desired band. It was found that there 

are 13 physical vibration modes within the analysis band. The 

modal model (1) is then optimized by minimizing the cost 

function (3) using the PSO technique. To start the PSO, lower 

and upper bounds have to be defined for all the parameters that 

have to be optimized (i.e. the poles and participation factors). 

The pole   
r    consists of real and imaginary parts. For each 

mode, the undamped resonance frequency is  / 2
rn r     

and the damping ratio is   /r r rRe    .  Assuming 

lower and upper bounds for the poles can be made easier if the 

pole for each mode is written as a function of the resonance 

frequency and damping ratio. The pole can be written as a 

function of 
rn  and 

r  as 21
r rr r n n rj        . 

So, instead of optimizing the poles, the frequencies 
rn  and 

damping ratios 
r  will be optimized. The resonance frequency 

for all the modes is bounded by the minimum and maximum 

frequency of the analysis band. The damping ratio is allowed 

to vary between 0 and 10% since the stable systems have to 

have a positive damping and 10 % is a logical value for the 

damping ratio for the mechanical structures.  The real and 

imaginary parts of participation factors are allowed to vary 

between -1 and 1.  

It should be said that modal parameters estimation using 

PSO in such complex cases will depend on the user’s 

experience and, in most of the cases, the procedure must be 

repeated a few times modifying the lower and upper bounds 

for the optimized parameters until the results converge to 

optimum values. 
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Figure 3: Decreasing of the error at different iteration 
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Figure 3 shows the decreasing of the cost function as a 

function of the number of iterations. In this case study, there 

are 9 outputs and 2 inputs and 13 modes. For this data set, the 

number of parameters to be optimized by PSO is 78 

parameters: the frequency and the damping ratio for each 

mode ( 2 2 13mN   ) plus the real and the complex parts of 

the participation factors for each mode ( 2 2 13 2m iN N    ).  

The Maximum number of iterations taken was 1000 iterations, 

and the PSO takes about 5 minutes to achieve those iterations. 

To check the accuracy of the estimated (optimized) modal 

model, a simple but very popular way to validate the model is 

to compare the obtained model to the measurements.  Figure 4 

shows the quality of the fit between the measured and 

synthesized FRFs calculated based on the obtained modal 

model. 

It can be seen from this figure that the PSO is able to 

converge to a modal model that closely fits the measured data, 

which indicates that the model represents well the dynamic of 

the system under test in the analysis band. In Figure 5, the auto 

Modal Assurance Criterion (auto MAC) of the estimated mode 

shapes is shown.  It shows that the identified modes are not 

correlated except for some higher frequency modes. This 

correlation of the higher frequency modes is due to the spatial 

aliasing since the number of the measured outputs is only 9.  

Figure 6 shows some of the identified mode shapes.  

VI. CONCLUSION 

The estimation of modal parameters using Particle Swarm 

Optimization (PSO) was tried and its application to real 

measured data showed that it can be used with a dependency 

on the user’s experience and the quality of the defined lower 

and upper bounds of the optimized parameters.  In some cases, 

the procedure has to be repeated few times modifying the 

defined lower and upper bounds of the parameters to reach an 

optimum solution. The PSO does not require the calculation of 

error derivatives and Jacobian matrix which might be taken as 

an advantage for the method. On the other hand, the quality of 

the solution and the calculation time of the PSO in such 

application have been found to be highly dependent on the 

quality of the defined bounds for the parameters.  For the 

future work, the PSO will be investigated for the modal 

parameter estimation using more industrial applications.  
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Figure 4: Some typical synthesized FRF compared with the 

measured ones 
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Figure 5: Auto modal assurance criterion (MAC) of the 

identified mode shapes 
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Figure 6: Graphical representation of some typical 

estimated mode shapes 
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