
 

Abstract—Ships are vulnerable  when they are moored in bays
and ports or when they sail in high risk areas due to a low capacity
to perform maneuvers and the restrictive laws of certain countries to
prevent radar sensor usage. The development of a video surveillance
system is necessary to curb drug trafficking and ilegal immigration,
avoid collisions and support other sensor types. This paper proposes
a  maritime  vessel  tracker  named  EWRN  (Ensemble  Wizard’s
Rodrigo Nelson), composed of an ensemble of WiSARD weightless
neural  network  classifiers.  A  failure  detector  analyzes  vessel
movement  with  a  Kalman  filter  and  corrects  the  tracking,  if
necessary,  using  FFT matching.  The  use  of  the  WiSARD neural
network to track objects is uncommon. The additional contributions
of  the  present  study include:  a  performance  comparison  between
EWRN and four state of the art  trackers,  an experimental study of
the features that improve maritime vessel tracking, the first  use of
an  ensemble  of  classifiers  to  track  maritime  vessels  and  a  new
quantization algorithm that compares the values of pixel pairs.

Keywords—Ram  memory,  WiSARD  Weightless  Neural
Network, object tracking, quantization. 

I. INTRODUCTION

MALL boats and people on jet skis can attack maritime
vessels and warships. Small and agile boats are difficult

to  detect  and  track  correctly  with  a  radar  sensor.  The
development  of an  autonomous video surveillance system is
essential to improve port security and coastal defense, support
other sensor types and curb unwanted event occurrences such
as  illegal  fishing  and  immigration,  pirate  and  terrorist
attacks, ship collisions and drug trafficking [1, 2, 3, 4, 5, 6].

S

When Tracking is generally a challenging problem and has
been  widely studied.  It  is  used  for  surveillance  [5],  target
tracking [7], simulation of human gait motion [8], trajectory
tracking  for a mobile robot [9] and even to recognize hand
gestures  [10].  Object  tracking  is  an  essential  surveillance
system component.  The functions of a tracker include object
localization,  object association  and  movement  estimation  to
define the region of interest or ROI (the frame region wherein
the tracker will try to localize the vessel). 

According  to  [11],  tracking  by  detection  interprets  the
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problem as a binary classification problem and is one of the
most attractive and  researched fields in  visual  computation.
The tracker tries to find the function that  best separates the
features from the CVT class that  represent  the vessel being
tracked from the CNVT class features that represent the other
moving vessels as well as the environment [12]. The tracker
has one vessel detector (DVT) that is trained to recognize the
vessel  being  tracked  with  an  ensemble  of  classifiers.  The
features extracted from N different candidate regions CRi(t)
at each frame form the test dataset (1). The vessel position is
defined using Bayes’ rule [13] as the candidate region  that
provides  the  highest  probability  difference:  P(yi=CVT  |
CRi(t)) - P(yi=CNVT | CRi(t)).

CR i (t)={ CR(t)  | ∥L(CR(t))- L(CR(t-1))∥< r} (1)

L(v) is the centroid position of the vessel v, t is the frame
index and r is the ROI size. Machine learning techniques are
used to update the trackers when the vessel’s appearance or
shape changes [1]. The DVT can be trained online, offline or
using  a combination  of both techniques.  The classifiers  are
updated during tracking if they are trained online [11, 12, 13,
14,  15,  16],  otherwise,  they are  updated  offline  before the
tracker  initiates  [5,  15].  The  training  dataset  must  be
representative and contain the largest number of features from
both classes.

The  proposed  tracker  EWRN uses  tracking-by-detection.
EWRN has tree components: an object detector composed of
an  ensemble  of  WiSARD  weightless  neural  network  (first
RAM  memory),  a  second  RAM  memory  (RAM2)  and  a
position predictor. At each frame, the object detector returns
the  target  position  and  writes  it  into  RAM2.  The  object
detector acts as a classifier, recognizing a different class of bit
pattern.  At the first  frame,  the ensemble is trained with the
quantized pixels (target model) inside a frame region defined
manually  by  the  operator,  the  selection  window.  At  the
following  frames,  the  object  detector  receives  as  input  the
quantization  result  of all  pixels  inside  the  ROI.  The object
detector  tries  to  recognize  the  target  in  a  different  region
inside the ROI. Comparing the responses, the object detector
defines  the  target  position.  The  position  predictor  tries  to
estimate the object position in the next frame. The center of
the ROI in the next frame will be moved to this position (Fig.
1).  A  failure  detector  analyzes  vessel  movement  with  a
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Kalman  filter  and  corrects  the  tracking,  if necessary,  using
FFT matching. 

       

Fig.1  Object localization 

II. SURVEILLANCE SYSTEMS

The  main  surveillance  system  functions  are  detection,
processing  the  frame  image,  classification,  tracking  and
analysis of vessel behavior (Fig. 2). The initial detector can be
composed of a movement detector [1, 4, 6, 17, 18], an object
detector composed of an ensemble of classifiers trained offline
[5, 15] or be based on dataset models [2]. The frame regions
with the highest probabilities of containing maritime vessels
are  handled  by an  image  processor  [1,  4,  6,  17,  18]  that
eliminates noise, segments the regions and detects connected
components.  Features  are  extracted  from  the  connected
components  and  classified  as  either  maritime  vessel  or
environmental features [3, 5]. The tracker locates the vessel at
each frame using a model and sends trajectory information to
the analyzer [3, 4, 5, 6, 17, 18, 19]. The analyzer then decides
whether  the  vessel  is  a  threat.  

Fig.2 Components of a video surveillance system

III. STATE OF THE ART

The  sea  is  a  dynamic  environment,  which  makes  initial
vessel  detection  and  tracking  a  challenge  [5].  Certain
approaches  detect  the  horizon  line  [5,  6]  to  decrease  the
search area. Some algorithms use frequency information [2],
gradients  [6]  and  histograms  [20],  however,  recent  studies
have shown that detection by background subtraction and the
use  of  normal  distributions  to  model  the  environment  are
efficient [1, 4, 6, 17, 18]. Some authors [1] divide the frame
into N regions and extract  features such as entropy, energy,
homogeneity and/or contrast. Each region that have different
features from other regions contain a maritime vessel.

Conventional  video detection and tracking algorithms are
not suitable for maritime environments,  which have specific

characteristics that must be considered. Ocean dynamics and
features are  unpredictable,  which  makes their  mathematical
modeling  difficult  [1,  18].  An  image  can  be  corrupted  by
electronic  component  noise  and  by  environmental  clutter
caused by haze, fog, rain or low lighting conditions [17, 19].
A camera  can  be installed over a  vibrating  [19] or moving
platform  [6].  White  foam  over  the  sea  surface,  sunlight
reflections,  illumination-changing  conditions,  waves, objects
above the sea surface, birds and clouds over the horizon can
also cause tracking failures [1, 4, 5, 6, 17, 18].

The existing algorithms to track maritime vessels include
Mean-shift  [21],  successive  clustering  [6],  histogram
matching [5], active contour [17, 18], template matching [4,
19] and feature point matching [3]. The Kalman filter [3, 6],
which is used to estimate a vessel’s future position, produces
good results.

IV. THE WEIGHTLESS NEURAL NETWORK WISARD

The early artificial neural network (ANN) researches have
emerged in  the  40s with  the precursors  Warren  McCulloch
and  Walter  Pitts.  They  sought  to  develop  a  mathematical
neuron  model  base  on  natural  human  brain  neurons.
Encouraged  by  the  McCulloch  and  Pitts  neuron  model,
researchers  try  to  develop,  through  the  union  of  multiple
neurons,  a network capable of learning  and recognizing the
patterns provided as input. 

Weightless neural  network (WNN) is an important  branch
of research related to neural networks. In these networks, the
neuron input and output are sets of binary numbers and there
are no weights between neurons.  The activation function of
each  neuron  is  stored  in  look-up  tables  that  can  be
implemented  as  RAM memories  [22].  The  training  of  an
ANN  involves  the  adjustment  of  weights.  Unlike  these
networks,  the  training  process  of  the  WNN  is  carried  by
modifying the words stored in the look-up tables, allowing the
construction of flexible and fast training algorithms. With the
use  of  look-up  tables,  any  activation  function  can  be
implemented  at  the  nodes,  since  any  binary  value  can  be
stored in response to any set of input bits during training. The
fast training speed is due to the mutual independence between
nodes  when  a  new  input  data  is  presented.  The  training
process of an  artificial  neural  network changes the weights
values  and  the  network  behavior  relative  to  patterns
previously trained is modified. 

Weightless neural  network (WNN) is an important  branch
of research related to neural networks. In these networks, the
neuron input and output are sets of binary numbers and there
are no weights between neurons.  The activation function of
each  neuron  is  stored  in  look-up  tables  that  can  be
implemented  as  RAM memories  [22].  The  training  of  an
ANN  involves  the  adjustment  of  weights.  Unlike  these
networks,  the  training  process  of  the  WNN  is  carried  by
modifying the words stored in the look-up tables, allowing the
construction of flexible and fast training algorithms. With the
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use  of  look-up  tables,  any  activation  function  can  be
implemented  at  the  nodes,  since  any  binary  value  can  be
stored in response to any set of input bits during training. The
fast training speed is due to the mutual independence between
nodes  when  a  new  input  data  is  presented.  The  training
process of an  artificial  neural  network changes the weights
values  and  the  network  behavior  relative  to  patterns
previously trained is modified. 

[24]  proposed  the  creation  of  a  visual  system  that
automatically controls the movement of an offshore platform.
To  control  the  platform  movements,  a  WiSARD  network
identifies and follows some reference points on the quantized
images of the ship's  deck. Using these reference points,  the
movement  is  modeled  and  the  charge  and  discharge
operations can be performed. Counting how often each RAM
node address is accessed during the training phase [25], it is
possible  to  associate  the  most  accessed  addresses  with  the
patterns  used  in  the  training  phase.  Thus,  models  more
representative  for  each  class  are  created  (DRASiW).  To
reduce  the  neuron  saturation  problem  [26]  proposed  a
modification  of  the  original  WiSARD training.  A measure
that combines the concepts of cross-validation and Shannon's
information theory is used during the training phase to select
the  bests  connections  and  consequently  achieve  a  better
performance. The surveillance system based on WiSARD [27]
quantizes  only some relevant  regions.  The quantized  pixels
are placed at the WiSARD input module. When an abnormal
event is detected, such as people moving on railroad, an alert
is generated. Three types of networks were compared to the
WiSARD  network  relative  to  the  neuromuscular  disorders
diagnosis performance [29]. Although the WiSARD network
obtains  a  similar  diagnosis  performance,  the  training  time
was much smaller. The WiSARD network nodes can be easily
implemented  as  RAM  memories,  and  hence,  the  EWRN
hardware implementation is straightforward.

The  WiSARD neural  network  is  built  grouping  a  set  of
basic elements called discriminators. Each discriminator (Fig.
3)  recognizes  a  different  class  of  bit  pattern.  Each
discriminator is a set of k RAM memory nodes (Fig.2), each
addressed by N bits (N-input RAM node). Each RAM stores
2N words of one bit [22]. At an image containing k.N pixels,
one quantized pixel represents one bit. k sets of N randomly
chosen  bits  are  connected  to  k  RAM  bus  addresses.  The
discriminator  response  is  a  weightless  sum  of all  k  RAM
accessed words. Binding of k.N bits at bus addresses is called
input mapping.  Once the input mapping is set, this remains
constant during the training and classification phases.

Suppose that a WiSARD discriminator has k RAM nodes.
Before the discriminator training phase, the bit "0" is written
at  all  RAM  accessed  addresses.  A training  vector  set  X
representing  object  examples  of class  A is  prepared.  Each
example  has  k.N  bits.  During  the  training  phase,  each
example from X is placed at the discriminator input, one by
one. The bit "1" is written at all RAM accessed address of the

discriminator  being  trained.  Another  training  vector  set  Y
representing object examples of class B will be used to train
another  discriminator.  In  the  classification  phase,  one  test
vector is placed at the WiSARD input. The vector is classified
as  a  class  member  represented  by  the  discriminator  that
returns  the  greatest  response.  If  a  WiSARD  is  trained  to
recognize handwritten  letters,  each discriminator  recognizes
one  different  letter.  Each  discriminator  is  trained  with
quantized  images  containing  only  the  letter  it  needs  to
recognize.  One  discriminator  is  trained  with  images
containing  letter  A,  the  other  discriminator  is  trained  with
images containing letter B, and so on.

Fig. 3 WiSARD discriminator: a discriminator with k RAMs of 9bit
bus address where every bit is connected to a quantized pixel. Being

represented only three of nine pixels connected to each RAM. 

V. THE EWRN TRACKER

The EWRN tracker determines the vessel position in RGB
videos. The DVT is composed of 10 weak classifiers.  Each
classifier  is  an  independent  WiSARD neural  network.  The
features extracted from the candidate regions of each frame
are quantized to form 10 binary vectors, the weak classifier’s
input.  To  increase  their  diversity  and  independence,  the
training  and  testing  data  sets  of  each  weak  classifier  are
unique. The weak classifiers are arranged in sequence (Fig. 4)
to eliminate the highest number of unlikely candidate regions
with the initial  ensemble classifiers and are updated in  two
cases: when the ensemble response is lower than 90% of the
ensemble response obtained one frame after the last update,
and when the second highest  response (R2) obtained 17x17
pixels from the highest  frame response (R1) is greater  than
0.9R1. 

All  of the discriminators  of a  weak classifier  are  trained
with the same bit vector and with the quantization of features
extracted from the vessel’s bounding box. Each discriminator
is  responsible  for  recognizing  the  vessel  at  one  unique
candidate region. All the possible regions inside the ROI are
tested. 

The  DVT  detector  is  composed  of  10  weak  classifiers;
therefore,  10 discriminators  try to recognize the vessel at  a
different frame region inside the ROI (Fig. 5 and Fig. 6). The
10 bit vectors are extracted from each candidate region to be
tested by the  ensemble.  The  sum of the  10  discriminators’
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responses encircled in  red is proportional  to the probability
that the vessel is in the red frame region. The sum of the 10
discriminators’ responses encircled in green is proportional to
the  probability that  the vessel  is  in  the  green  pixel  region.
DVT determines the vessel position to be the candidate region
associated with  the line  of discriminators  that  produces the
highest response. If one of the 10 discriminators on the same
line produces a response that is less than 30% of the highest
possible response, or if the DVT analyzes the partial sum and
perceives  that  it  will  be  impossible  to  exceed  the  highest
response previously calculated, the subsequent discriminators
on this line will not test their inputs, and the candidate region
is discarded to decrease the average tracking time. 

The  EWRN  tracker  stores  vessel  positions.  The  failure
detector tests if the position indicated by the ensemble is valid
by  analyzing  its  movement  with  a  Kalman  filter.  If  the
movement is unlikely to occur, the position is corrected using
Fast Fourier Transform (FFT) matching. The new position is
the candidate region that has the most similar FFT response
to  the  FFT  model.  The  failure  detector  stores  a  high
confidence FFT model. This FFT model is only updated if the
ensemble’s  response  is  higher  than  95%  of  the  highest
possible response.

(a)

(b)
Fig.4 DVT is composed of 10 weak classifiers (a). 10 weak
classifiers represented as 10 sets os RAM memories (b).

VI. EXPERIMENTS AND RESULTS

The experiments were implemented with MATLAB 2011,
which was installed on a Positivo laptop with Windows XP,
and  had  the  necessary  computational  resources  to  test  the
algorithms. The laptop had one 320 GB HD, 4 GB of RAM
memory and a 1.6 GHz Intel Atom processor.

Few tracker datasets exist on the Internet,  and those that
are available are simple and unchallenging. For this reason, I
created a dataset  with 20 RGB videos with 240x320 pixels.
Overall, 9 videos were captured with a digital camera and 11
were downloaded from the Internet. Each video contains one

or more features that  hinder  the tracker.  Jet skis produce a
large  amount  of white  foam and  continuously change  their
appearance  and  shape (Fig.  7a).  Coast  proximity (Fig.  7b),
low contrast  (Fig.  7c)  and  partial  occlusion from the water
and other vessels (Fig. 7d) increase the difficulty of the data. 

Fig.5 Each discriminator line tests one candidate region inside the
ROI

Fig.6 The seach region of each discriminator of a weak classifier has
a different color (left). Responses of all discriminators  (right).

A. Quality Measures

The  tracking  quality  was  evaluated  using  quantitative
measures. The vessel bounding box was manually defined and
served as a reference. Three quality measurements were based
on the  position  differences between the  reference  bounding
box, BBR, and the bounding box determined by the tracking
algorithms,  BBD.  The  bounding  box overlap  degree  (OD)
between  the  BBR  and  BBD  was  defined  to  be  the  ratio
between their  intercession  and  union  [6]  (2).  The temporal
dice proposed by [6] is the frame quantity where the OD is
greater than a threshold, T. The threshold used in the present
study was T=0.5. This measure was altered to consider all of
the video frames (3). [13] and [19] utilized the tracking rate,
TR (4), which measures the number of frames for which the
tracker precision is high. The other quality measures used in
this  study were  the  average  tracking  and  update  time,  the
number  of  videos  whereupon  the  tracker  did  not  fail,  the
average number of updates and the number of videos wherein
the TDM was greater than 70%. 
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                           (a)                                          (b)

                     (c)                                          (d)
Fig.7  Dataset videos

(2)

(3)

(4)

B. Results

A total  of 6 experiments  were implemented to determine
the  factors  that  improve tracking  performance  in  maritime
environments. There are no in-depth studies on this subject in
the literature.  In  total,  4 state of the art  trackers were used.
The  tracker  proposed  by  [5]  applies  histogram  matching
using the Bhattacharyya coefficient  in  HSV color space. [2]
proposed  a  tracker  that  applies  FFT matching  to  the  pixel
gradient.  [19]  determines  the  vessel  position  with  template
matching  and  uses a particle filter  to increase the tracker’s
robustness to partial occlusions. The tracker proposed by [6]
extracts frame clusters and defines the vessel position as the
nearest cluster to the last vessel position. The Otsu algorithm
was  used  to  calculate  a  threshold  to  quantize  the  pixel
gradients.

Experiment  1  aimed  to  define  which  color  component
provides  the  most  efficient  tracker.  A  total  of  12  color
components were tested: gray and the components R, G, B, Y,
Cb, Cr, H, S, V, I, and Q belonging to the color spaces RGB,
YCbCr, HSV and YIQ. The component  V provides the best
tracking  quality  because  this  component  was  found  to  be
superior in 5 of the 8 quality measures.

Experiment  2  was  intended  to  define  which  feature
provides  the  best  tracking.  A  total  of  19  features  were
compared:  the V color  component  [5],  the  average  [6],  the
variance  [30],  the  entropy [1,  17],  5  Haar  Wavelet  feature
types [16] and 10 forms of gradient extraction [17]. Entropy,

wherein  each  pixel  value is  replaced  by the  entropy of the
pixels in  a 3x3 window, was found to be the most relevant
feature  because  it  was  found  to be superior  in  5  of the  8
quality measures. Each pixel value is replaced by the entropy
calculated with the pixels inside a 3x3 window.

The objective of the third  experiment  was to compare 15
quantization methods: the edge detectors proposed by Sobel,
Prewitt  and  Roberts [7,  31],  the  Otsu method [6],  the  ROI
average  value  used  as  a  threshold,  a  decision  tree  [32],  a
Bayes filter [19], an artificial  neural  network [33], an SVM
[30], a classifier based on the Normal distribution [11, 13, 14,
15] and  5 ensembles made up by the last  5 classifier  types
mentioned  above.  Each  classifier  was trained  with  features
from the  CVT class,  which  were extracted  from inside  the
bounding box, and features from the CNVT class, which were
extracted  far  from the  vessel  bounding  box but  within  the
ROI.  The ensembles quantized the pixels by voting without
weights. It was concluded that the decision tree provides the
best quantization quality because it was superior in 4 of the 8
quality measures.

Experiment  4  aimed  to  discover  the  WiSARD
configuration  that  provides the most efficient  tracking.  Two
configurations  were  tested:  one  WiSARD  network  and  an
ensemble  of  10  WiSARD  networks.  Three  quantization
algorithms were compared: the decision tree (Experiment 3)
and  two  proposed  algorithms  using  1)  pixel  pair  value
comparisons (Fig. 8) and 2) thresholds applied to the absolute
differences of pixel pair values. The first algorithm compares
the  values  of the  pixel  pairs  connected  to successive RAM
addressing  pins.  If  the  first  pixel  value is  greater  than  the
second one, the first pixel value is quantized to 1, otherwise,
the  first  pixel  value is  quantized to 0 (Fig.  8).  The second
algorithm compares the threshold with the absolute difference
of the  pixel  pair  values and  modifies  the  first  pixel  values
exactly as the first quantization method. RAM memories with
3, 7, 11 and 15 addressing pins and RAM generalization were
evaluated.  7-RAM  provides  better  tracking.  Without
generalization,  3-RAM is more efficient because the smaller
the  RAM size  is,  the  larger  the  discriminator  response  is,
which allows the discriminator  to better compensate for the
lack of generalization. The quantization method that performs
best  is  the  decision  tree;  however,  the  quantization  that
compares pixel values achieves nearly the same efficiency as
the  decision  tree.  Generalizing  1/3 of the RAM addressing
pins  produces  a  tracker  that  makes  fewer  errors.  Without
generalization, a vessel model has to be more precise because
the tracker fails in the frames wherein the vessel model does
not  localize  it  with  a  high  response.  If  several  bits  are
generalized, the tracker loses its capacity to differentiate the
features from candidate regions that are far away from other
regions.  The  RSWC7_2  VA tracker  performed  best.  It  is
composed  of  one  WiSARD network  with  7-RAM memory
generalizing  2 bits.  The pixels are  quantized by comparing
values.  The  ensemble  with  the  identical  configuration

OD=
area( BBD∩BBR)
area( BBD∪BBR)

TDM=
∑
i=1

N

GS(i)

Quantity of frames

TR=
N(GS>L)

Quantity of frames
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performs in a similar way. The ensemble is 11 ms faster, but it
is less precise (its TDM and TR are 2% lower compared with
the single WiSARD network).

Fig. 8 if pixel 1 > pixel 2 than pixel 1 is quantized to 1. Pixel 1 is
quantized to 0 otherwise. 

Experiment 5 was intended to select 4 classic trackers for
the last experiment. Ensembles composed of 5 classifier types
were compared: decision tree [32], Bayes filter [19], artificial
neural  network  [33],  SVM [30]  and  classifiers  based on  a
Normal  distribution  [11,  13,  14,  15].  The  following  5
algorithms were tested for selecting 10 weak classifiers online
from a pool with 20 weak classifiers to form the ensemble:
Bagging  [13,  16],  Online  Gentle  Boosying  [13],  Online
AdaBoosting [14],  Online Weighted MIL Boosting [34] and
the  selection  of the  10  best  weak classifiers  from the  pool
[13].  The  FFT  matching  [2],  template  matching  [5],
histogram  matching  [19],  feature  point  matching  [3],
mean-shift  [21]  and  successive  clusterization  [1,  6]
algorithms were also tested. To compare the ensembles,  the
CSVSME tracker, composed of 10 SVMs, and the CDNSME
tracker,  composed  of  10  normal  distributions,  were  both
updated  online  by selecting  the  10  best  weak classifiers  to
form  the  ensemble,  performed  best.  The  CSVSME  tracker
was  more  precise,  with  a  TR=0.83  (5%  higher  than  the
CDNSME tracker and 2% higher than the ensemble of SVM
classifiers updated with Online AdaBoosting) and TDM=0.62
(3% higher  than  the CDNSME tracker and 2% higher  than
the  ensemble  of  SVM  classifiers  updated  with  Online
AdaBoosting).  The  CDNSME  ensemble  updated  with  an
average time of only 18 ms, which is nearly 11 ms faster than
the  ensemble of decision  trees updated  with  Online  Gentle
Boosting. The RF tracker, which locates the vessel using FFT
matching,  was  the  best  single  classic  tracker  (not  an
ensemble). The RF tracker’s average tracking time is only 11
ms  and  it  is  more  precise  than  the  other  classic  tracking
algorithms  (TR=81%,  which  is  2%  higher  than  template
matching, and TDM=69%, which is 1% higher than template
matching).  For  the  above  reasons,  the  failure  detector
proposed in this article was implemented with FFT matching.

Experiment  6 aimed to compare the 2 best trackers from
experiment  5 with 4 state of the art  trackers and 4 trackers
based on the WiSARD weightless neural network. The vessel
models  and  ensembles  performed  best  when  they  were
updated  only as  necessary.  Updating  at  each  frame  causes
drift,  but  a  lack  of  updating  causes  tracking  failure.  The
RSWC7_2VA tracker performed best, which suggests that the
WiSARD  neural  network  can  be  used  to  track  maritime

vessels. Despite its average tracking time being 15 ms longer
than the average RF tracking time, the RSWC7_2VA tracker
was  more  precise  (TR=90%,  which  is  7%  higher  than
CSVSME,  and  TDM=76%,  which  is  7%  higher  than  FFT
matching).  The  average  execution  time  (tracking  +  model
update + frame processing times) was 55 ms.

It was necessary to modify the RSWC7_2VA algorithm to
cause fewer tracking failures.  The tracker  failed on 5 of 20
dataset videos. After exhaustive testing, it was concluded that
the following modifications were necessary: pixels associated
with the same RAM memory cannot be next to each other, the
V color component must be used when the frame contrast is
low (when the variance sum of the R, G and B pixel color
components inside the ROI < 0.225) and the failure detector
must be used to (section 5) avoid tracking failures in videos
wherein  the  water  nearly  occludes  the  entire  vessel.  After
modifying the 4 WiSARD trackers,  the tracker composed of
10  WiSARD  neural  networks  with  7-RAM  memory
generalizing  2 bits performed best,  and  represents  the final
configuration  of  the  EWRN  tracker.  The  pixels  were
quantized by comparing  pair  pixel  values (an  innovation of
the present study). The EWRN tracker analyzes 17 frames per
second and fails in  only 1 video due to a long-lasting  total
occlusion.  The quality measurements  related to the model‘s
number  of updates  and  average time decreased because the
FFT  model  used  by  the  failure  detector  was  also  being
updated. The precision measurements TDM and TR increased
nearly 10% (TR=98% and TDM=84%). The average tracking
time decreased 5 ms because the ensemble eliminates several
candidate regions proposed by the initial weak classifiers.  

VII. CONCLUSION

The EWRN tracker proposed in this paper is able to track
maritime  vessels  with  different  shapes,  appearances  and
maneuverabilities  in  dynamic  environments.  It  is  robust  to
partial  occlusions  with  water,  other  maritime  vessels  and
objects present on the ocean’s surface. The tracker reaches a
speed of 17 frames per second. EWRN does not fail in 19 of
20  dataset  videos  and  all  of  its  precision  quality
measurements indicate that it is superior to other trackers.

A long-lasting total occlusion made the EWRN tracker fail
(OD < 0.5) because the vessel was occluded in approximately
30 frames and reappeared outside the ROI. In this case, it was
necessary to develop an initial  detector (Fig.  1) to assist the
tracker  that  did not require any previous information  about
the environment. The frame image processing applied by the
EWRN tracker is simple. The RGB color space is converted
to greyscale, bicubic interpolation is applied to the pixels to
diminish the influence of noise and the pixels are quantized
to create bit vectors used to train and test the WiSARD weak
classifiers. The EWRN tracker outperforms 4 state of the art
trackers.  The main  reason for this  is  that  the video dataset
chosen was very challenging.

In  future  work,  total  long-lasting  occlusions  must  be

RAMFrame(t)

Pixel 1

Pixel 2
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handled. It is not a trivial task to differentiate the changes in
the  vessel’s  state  and  occlusions,  thus,  further  research  is
required.  Additional  RAM memory sizes  and  quantities  of
generalized bits can be tested. It is impractical to test all the
possible WiSARD configurations if we also consider  all  the
possible  features  that  can  be  extracted  using  color
components,  quantization  algorithms  and  supplementary
variables. Faster programming languages such as C/C++ and
the use of a computer with superior processing capability as
the GPU are required to analyze the improvements that  can
be found by extracting  and  applying more than  one feature
type  per  frame.  Adjusting  the  size  of the  bounding  box is
difficult because the maritime environment is dynamic. Early
occlusion  detection  of maritime  vessels  with  similar  colors
can be implemented with multiple object tracking techniques.
The WiSARD neural  network is not  widely used and  is an
additional tool that can be used to develop new trackers. 
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