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Abstract—Approximation models are used to replace simulators 

to reduce computation time for engineering system design. These 

approximation models are called metamodels or surrogate models. 

For design spaces with wide and complex variation, partitioning the 

whole design space into multi subregions (pieces), then constructing 

a metamodel for each piece reduces complexity of variation and 

enhances accuracy of the resulting piecewise metamodel. In this 

paper a piecewise-Kriging metamodel methodology is proposed, 

whereby partitioning of the design variables space is based on using 

data displays called ordinal plots.  These plots are constructed from 

the same validation samples that are used to test the accuracy of an 

initial and other intermediate global-Kriging metamodels, thus 

requiring no additional simulation runs.  Comparisons with global-

Kriging metamodels having equivalent accuracy show that the 

piecewise-Kriging metamodels are generated at lower computational 

costs in terms of the simulation runs used. 

 

     Keywords—Kriging, Metamodeling, Metamodel validation, 

Piecewise metamodels, Simulation, Space partitioning.  

I. INTRODUCTION 

IMULATORS are used in engineering system design to 

predict the response of multidimensional systems. These 

simulators are used to perform the analysis and to predict 

system response to satisfy certain specifications for the design 

problem.  In the design of multivariable systems each 

simulation run requires excessive computational times; in 

some cases up to a few hours or even longer based on the 

variation and complexity of the design problem. 

  Approximation models (called metamodels or surrogate 

models) are used to replace simulators to overcome such 

drawbacks. A metamodel is constructed using a set of sample 

data to build an approximate model of the function (simulator) 

which is used to evaluate responses at the sample data points. 

The metamodel may then be used as a surrogate for the 

original function; this enables design processes to be carried 

out more easily, faster, and cheaper.  

  There are a wide variety of metamodeling techniques such as 

Kriging (KG) [1-4], Response Surface Models (RSM) [3,4], 

Radial Basis Functions (RBF) [2,4], Multivariate Adaptive  

Regression Splines (MARS) [1], Piecewise (PW) metamodels 

[5-7], and Artificial Neural Networks (ANN) [3,8]. Which 

metamodel type to use is dependent on its ability to  model the 

 
 

functionality of  the response in an accurate and efficient 

manner.  

For problems with complex variation over the whole 

design space a global metamodel may be accurate in regions 

and not accurate for others. Thus,  piecewise metamodeling 

can be  used to divide the whole design space to subregions  

(pieces), and construct the most suitable metamodel for each  

piece.  This enhances the accuracy of the metamodel  over  the 

entire design space.  The  main challenge in partitioning  the 

design space is related to the number and location of the pieces 

in the design variables space. 

Piecewise RSMs are constructed in [6] using data displays 

called acceptance score distribution (ASD) plots to delineate 

the design variables space into appropriate subregions.  In [5], 

ordinal plots are used in partitioning the space to construct 

piecewise RSMs.  In this paper a piecewise-Kriging 

metamodeling methodology is introduced based on ordinal 

plots [5,9] as the data displays to guide space-partitioning.  

Ordinal plots are constructed based on whatever validation 

samples that are used to test the accuracy of global-Kriging 

metamodels; no extra simulation runs are required.  An 

extensive discussion about validation samples and their sizes is 

presented in [6].   

The proposed methodology is tested on two problems and 

the resulting piecewise metamodels are validated based on 

multiple statistical validation criteria.  More problems are 

presented in [10]. Comparisons between global-Kriging and 

piecewise-Kriging metamodels show that more accurate 

metamodels can be achieved using piecewise metamodels. The 

computational cost of building the piecewise-Kriging 

metamodel is reduced by comparison to a global-Kriging 

metamodel with equivalent accuracy, provided that the space 

is partitioned correctly, as will be demonstrated.   

This paper is organized as follows. In section 2, we start 

by illustrating metamodeling concepts in engineering system 

design, including experimental design and Kriging 

metamodeling concepts.  Ordinal plots and their use in space 

partitioning are also presented in section 2. In section 3 the 

proposed methodology is outlined and applied to an analytic 

problem to demonstrate the validity of the proposed method, 

an electronic circuit design problem is also given in section 3. 

Finally, the paper is concluded in section 4. 
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II. METAMODELING IN ENGINEERING  SYSTEM DESIGN  

       The goal for engineering system design is to determine 

design variables to meet certain specifications. For example in 

electronic circuits design variables include component values 

such as transistor widths, resistors, capacitors, etc. These 

component values represent the design variables for the circuit 

which influence design specifications like the gain and the 

bandwidth of an amplifier. 

          Engineers often rely on models to facilitate system 

design.  The most widely used modeling technique in 

engineering system design is via simulators. Many simulation 

runs are needed to optimize the system to meet the required 

design specification.  However, a simulation run can take 

several hours depending on the problem complexity; so 

metamodels are used to replace simulators in engineering 

system design to increase the computation efficiency. 

         Metamodels are constructed using data samples based on 

design variables locations and the corresponding system 

responses given by the simulator.  Experimental design 

methods are used to sample the design variables space.  

Sampling methods include classical techniques used for RSM 

such as central composite designs [11] and minimum bias 

designs [12].  More recent techniques that are primarily used 

for computer experiments include space-filling designs [13] 

such as the Latin hypercube sampling (LHS) methods [3].   

 

III. KRIGING METAMODELS 

       After selecting an appropriate experimental design, the 

next step is to choose an approximation model type (such as 

KG, RSM, RBF, MARS, etc., as mentioned earlier).  

 Kriging metamodels are used extensively to build 

metamodels in engineering system design.   The basic idea in 

Kriging metamodeling is that the predictions are weighted 

averages of the simulated responses, where the weights depend 

on the distances between the design variables points location 

to be predicted and the locations already observed in the 

experimental design. The weights are chosen so as to minimize 

the prediction variance and should provide a best linear 

unbiased estimator of the response. 

The Kriging metamodel ŷ  postulates a combination of a 

polynomial model and departures from it for k-design 

variables 1x x ,  2x , …, kx as given in Equation (1): 
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where
j  are the coefficients of linear regression functions 

( )jf x . ( )Z x is assumed to be a realization of a stochastic 

process with zero mean and a spatial correlation function given 

by: 
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 where 

        

    
2  is the process variance.  

       R is the correlation Matrix. 

 

( , )i jr x x  is the correlation function between 
ix  and 

jx  . 

In our work a constant linear regression function is used. Also, 

we utilize the Gaussian correlation function of the form given 

in Equation (3). 
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     where 

n  are the unknown correlation parameters used to fit the    

model. i

n
x  and  j

n
x  are the  n

th
 component of sample points 

ix  and jx for k variables. 

       Kriging method is extremely flexible in capturing 

nonlinear behavior because the correlation functions can be 

tuned by the sample data. See [1] for recent discussion of 

Kriging metamodeling and [13] for more details about 

correlation functions that can be used.   

 

IV. ORDINAL PLOTS 

    In this paper ordinal plots [5,9] play an important role to 

divide the design space into several pieces for piecewise 

metamodels. Ordinal plots are  data displays that can be used 

to show the relationship between the response iy  and  the 

metamodel iŷ  for all sample points over the entire design 

space .  In ordinal plots, the ratio 

i

i

y

ŷ
 for data points 

Ni ,,2,1  are plotted (points with simulation results iy  

equal to zero are simply removed from the validation sample.  

This should have no effect on the plots credentials; see [5,9]). 

Two lines that represent acceptable prediction accuracy limits 

as ratios are also plotted. Thus, an ordinal plot shows 

graphically regions in the design space of acceptable accuracy 

for the metamodel relative to the response. 

In general, if the design space is k -dimensional, then k 

ordinal plots are generated.   Data is ordered along each of the 

k dimensions in turn and the corresponding ordinal plot for the 

current dimension is generated.  Therefore, to generate an 

ordinal plot for the first dimension 1x , the N  data points are 

first ordered in ascending order of 1x .  The resulting ( ix ,1 , 

ii /yŷ ) points are then plotted for Ni ,,2,1  .  This 

procedure is repeated for each of the k  dimensions in turn, 

thus generating k  ordinal plots.  Points in ordinal plots with 

y -coordinates closer to 1 indicate a better match between the 

metamodel and the simulation response. See [5,9] for more 

details on ordinal plots construction and uses.  
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V. METAMODEL VALIDATION 

     Validation is a critical step in metamodeling which 

determines the accuracy of the metamodel to ascertain if the 

estimated metamodel adequately fits the simulation data. The 

purpose of metamodel validation is thus to investigate whether 

the metamodel adequately approximates the simulator. 

      In this paper statistical validation is used to determine the 

accuracy of the constructed metamodels, whereby multiple 

measures are used. These validation statistics are presented in 

this section. In the following discussion metamodel results are 

denoted by iŷ  in a test sample with N points, and compared to 

evaluations of the original response iy  for all N points in a k-

dimensional space. 

 The validation statistics used in this work are the Root-

Mean-Square Error (RMSE), the coefficient of determination 

( 2R ), and the  adjusted 2R  ( 2R ). These are defined in 

Equations (4) - (7): 
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       These error measures are useful in determining the 

accuracy of a given metamodel, but they all require additional 

simulation evaluations using the simulator if a validation 

sample is used.  As stated earlier, the methodology presented 

in this paper makes further use of the available validation 

samples by generating ordinal plots using these samples. 

VI. PICEWISE KRIGING METAMODELING 

    It is difficult to construct a metamodel to predict the desired 

output accurately over the entire design space for complex 

variations over wide design spaces,. In this paper, the 

procedure presented in Figure 1 uses ordinal plots to divide the 

whole design space into several pieces. This reduces the 

complexity of response variation per piece and produces more 

accurate piecewise metamodels, as will be demonstrated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Piecewise-Kriging Metamodeling Methodology 

The proposed methodology is illustrated using a one-

dimensional analytic problem, then applied to a two-

dimensional problem using an active-load inverting amplifier 

circuit.   

 
VII. A ONE-DIMENSIONAL ANALYTIC PROBLEM 

     

The proposed methodology is demonstrated by a one-

dimensional analytic example in this subsection.  The 

function is given in Equation (8). 
9
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   Where;        905,995x                                                    

and,  

1 659.23a   , 2 190.22a  , 3 17.802a   , 

4 0.82691a  , 5 0.021885a   , 6 0.0003463a  , 
6

7 3.2446 10a    ,
8

8 1.6606 10a   , 
11

9 3.5757 10a    . 

  

    Matlab commands [15] and DACE toolbox [16] are used to 

construct the Kriging metamodels.  Initially, a Latin 

Hypercube Sample (LHS) is used for model construction; we 

call this the model sample.  After constructing a metamodel 

another set of points is generated and called the validation 

sample. This sample is used to assess the accuracy of the 

Draw Ordinal Plots  

(One for Each Design Variable) 

Construct a Global-Kriging Metamodel 

Partition the Design Space Based on 

Visual Inspection of Ordinal Plots   

Construct a New Kriging Metamodel for 

Each Subregion with Unacceptable 

Accuracy 

Draw Ordinal Plots for the Resulting 

Piecewise-Kriging Metamodel 

 

Stop 

Based on Validation Tests, is 

Further Partitioning Needed?    

No 

Yes 
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metamodel for response prediction over the entire design 

space. For a k-variables design space the model sample size is 

chosen between 5 k and 10 k depending on the size of error as 

displayed by ordinal plots ( in [17], a sample size of 10k is 

recommended) . The size of validation samples is arbitrarily 

chosen to be 20k (The size of the validation sample in ordinal 

plots has minimal effects as demonstrated in [5]). For this 

problem we have one design variable, we use 10-points for 

model construction and 20-points for validation. 

   After constructing and validating the global metamodel, an 

ordinal plot is used to display the variation of metamodel  

accuracy over the entire design space (see Figure 2).   

 

 

 

 

 

 

 

 

 

Figure 2: Ordinal Plot for Global-Kriging metamodel and     

space partitioning. 

   

   Visual inspection of the figure reveals that accuracy is 

acceptable over some regions (with dots inside the two lines at 

( 2.01/ˆ yy )), while other regions have unacceptable 

performance (with dots outside the two lines).   Various 

partitioning schemes are possible; an example is shown in 

Figure 2, where the space is divided into two pieces P1 and P2 

as shown.  A new Kriging  metamodel is constructed for each 

piece using 5- points for P1 metamodel and 10 points for P2 

metamodel. These sizes are chosen depending on the 

complexity of error variation and/or the range of the design 

variable over each piece. Then the overall new piecewise 

metamodel is validated over the same validation sample that is 

used to validate the global metamodel. A comparison between 

both metamodels is given in Table 1. Beta and Theta 

coefficients of the Kriging metamodels are listed in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Validation Statistics for Piecewise- and Global-

Kriging (KG) Metamodels. 

 

Metamodel Method RMSE  2R  
2R  

Global-KG 16.39 0.8307 0.8213 

Piecewise-KG 2.394 0.9952 0.9946 

 

 

Table 2: Beta and Theta coefficients for Piecewise- and   

Global-Kriging (KG) Metamodels. 

 

 

 

 

 

 

 

 

 

 

   From Table 1, it is clear that the piecewise-Kriging 

metamodel is more accurate than the global-Kriging 

metamodel with lower values of RMSE and higher values of  
2

R  and  
2

R . 

    Note that 15 points are used  to construct the piecewise-

Kriging metamodel.  In order to demonstrate the ability of the 

proposed piecewise methodology in producing more accurate 

metamodels by comparison to a methodology whereby the 

accuracy of the initial metamodel is improved at the global 

level, a global-Kriging metamodel is constructed using 15 

points. A comparison with the piecewise-Kriging metamodel is 

presented in Tables 3-4. 

 

Table 3: Validation Statistics for Piecewise- and Global- 

Kriging (KG) Metamodels Using N = 15. 

 

Metamodel Method  RMSE  2R  
2R  

Global-KG  12.85 0.8959 0.8901 

Piecewise-KG  2.394 0.9952 0.9947 

 0    

Global KG 0.023785037 20.0000000 

     1P  
Metamodel 

-2.3688601 0.12599210 

     2P  

Metamodel 
0.49517744 2.50000000 
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Table 4: Beta and Theta coefficients for Piecewise- and 

Global-Kriging (KG) Metamodels. 

 

 

VIII. AN ELECTRONIC CIRCUIT DESIGN PROBLEM  

   The two-dimensional design problem considered in this 

section is the active-load inverting amplifier circuit shown in 

Figure 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Active-Load Inverting Amplifier Circuit Diagram. 

     

   The Hspice simulator [18] is used to obtain the small-signal 

gain defined by: 

out

in

V
gain

V


       

                                            (9) 

    Where Vout and Vin are the output and input signal 

strengths, respectively. The small-signal gain is a function of  

1W  and 2W , the widths of transistors M1 and M2, 

respectively (see Figure 3). We choose to sweep  1W  and   

2W  over the range from 2µm to 200µm.  Hspice simulator is 

used to obtain the small-signal values for model and validation 

samples then a global-Kriging metamodel is constructed using 

20- points and validated using 40- points. These points are 

generated using the LHS sampling method. Using ordinal plots 

for both design variables in Figure 4 and Figure 5, one 

possible scheme is to divide the design space into three pieces 

as shown in Figure 6: 

1. P1 for  W1ϵ[2µm, 55µm] . 

2. P2 for  W1ϵ[55uµ, 123µm] . 

3. P3 for  W1ϵ[123µm, 200µm] . 

 

 

 

 

 

 

 

 

Figure 4: Ordinal Plot Over  1W  for gain  Global-Kriging 

Metamodel. 

 

 

 

 

 

 

 

 

 

Figure 5: Ordinal Plot Over 2W  for gain  Global-Kriging 

Metamodel. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Ordinal Plot for Piecewise
 
Partitioning along 1W  . 

 

A new Kriging metamodel is constructed for P1 and 

another for P2 because the ratio between ŷ  and y is far from 

the acceptable limits (see Figure 6). For P3 the ratio between 

ŷ  and y is within the acceptable limits; so we keep the 

global-Kriging metamodel for P3. A model sample size N = 20 

is used to construct a new Kriging  metamodel each for P1 and 

P2. After constructing the piecewise-Kriging metamodel, 

ordinal plots over the design variables in Figures 7-8 show the 

need for yet another partitioning to enhance the accuracy of 

constructed metamodel. The design space is divided into two 

pieces P1 and P2 as shown in Figure 9, and a new Kriging 

metamodel is constructed for P1 using 20-points. The gain 

metamodel for the first piecewise-Kriging metamodel is kept 

for P2.  

 

 

 

 

 

 

 

 

 0    

Global-KG   

Using N=15 
-0.060406472 10.68179281 

1P  Metamodel  

Using N = 5 
-2.3688601 0.12599210 

2P  Metamodel  

Using N = 10 
0.49517744 2.50000000 
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Figure 7: Ordinal Plot over  1W  for gain  Piecewise-Kriging 

Metamodel. 

 

 

 

 

 

 

 

 

 

Figure 8: Ordinal Plot over  2W   for gain  Piecewise-Kriging 

Metamodel. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Ordinal Plot for Piecewise
 
Partitioning along 1W   

 

   

 A comparison between the global-Kriging, the first piecewise-

Kriging and the second piecewise-Kriging metamodels is listed 

in Table 5; the coefficients for each metamodel are listed in 

Table 6.  

 

Table 5: Validation Statistics for Piecewise- and Global-

Kriging (KG) Metamodels. 

 

Metamodel Method RMSE  2R  
2R  

Global-KG 0.6807 0.8062 0.7957 

First PW 

Metamodel 
0.6338 0.8319 0.8229 

Second PW 

Metamodel 
0.3365 0.9527 0.9501 

 

 

 

Table 6: Summary of Beta and Theta coefficients for 

Piecewise- and Global-Kriging (KG) Metamodels. 

 

 

   This example demonstrates that repeated partitioning for the 

design space using the proposed piecewise-Kriging 

methodology produces more accurate metamodels.  

 

IX. CONCLUSION 

    This paper introduced a methodology that has a 

multidisciplinary application in engineering system design 

problems, specially for problems with complex response 

variations over wide design spaces. In the proposed 

methodology, partitioning the design space into several pieces 

enhances the accuracy of constructed piecewise-Kriging  

metamodel by reducing the complexity of variation over the 

entire design space.  Ordinal plots are important tools in 

guiding space partitioning procedure to locate the subregions 

requiring remodeling.  The resulting piecewise metamodel is 

accurate on a piece-by-piece basis, not just on average as in 

global metamodels. 
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