
1

The A-Maze-D Advanced Maze Development
System for Fast Game Design and Implementation

Shruti Daggumati, Peter Z. Revesz, and Corey Svehla
Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

sdagguma@cse.unl.edu, revesz@cse.unl.edu, csvehla@cse.unl.edu

Abstract—The medium of computer and video games are
being studied profusely in a wide array of research. Constraint
databases and video games have been around for a long
time, but they have never been combined together before. In
this paper, we describe the A-Maze-D system, which shows
that constraint databases can be applied conveniently and
efficiently to the design of maze games. A-Maze-D provides
a versatile set of features by the combination of MATLAB
scripts and the MLPQ constraint database system. A-Maze-D
enables an efficient implementation of many complex features
existing in games such as collision and hindering vision.
A-Maze-D is the first system that uses constraint databases
to build maze games and opens new ideas in video game
development.

Index terms— animation, constraint database, maze,
MLPQ, moving objects, video game.

I. INTRODUCTION

Video games have become ubiquitous on our com-
puters, consoles and phones. The rapidly growing video
game industry has a revenue of approximately twelve
billion U.S. dollars per year in the United States
alone according to Statista, the statistics Internet por-
tal (http://www.statista.com/statistics/201093/revenue-of-the-
us-video-game-industry/). The expanding video game industry
demands the efficient development of new video game prod-
ucts.

A large set of video games require the representation of a
map, usually some kind of maze, and other spatial objects. In
addition, video games also routinely require the representation
of moving objects. Hence video games have a strong connec-
tion with geographic, spatial and moving object (also called
spatio-temporal) databases. Since these types of databases can
be viewed as special cases of constraint databases (Kanellakis
et al. [10], Revesz [18]), we propose A-Maze-D, an Advanced
Maze Development system with a novel design based on the
MLPQ system [21].

Our proposed A-Maze-D system provides a large set of
useful features that enable game development where the main
objective is to find the way out of a maze with limited
viewing distance from an overhead view. We describe in detail
the features that are the most important in developing maze
games. We envision that with a growing set of features, the
development can be extended from maze games to a plethora
of different types of video games.

This paper is organized as follows. Section II describes
some related work on mazes and constraint databases. The
next three sections present various aspects of the A-Maze-
D (Advanced Maze Development) system. In particular, Sec-
tion III shows how A-Maze-D can specify stationary objects
such as mazes with either straight or curved walls. Sec-
tion IV describes the specification of moving objects such as
persons, exploding objects and shields. Section V describes
the interaction of various objects such as shield type objects
blocking bullets or explosions and elastic objects colliding
with each other and then bouncing back from each other.
Finally, Section VI provides some conclusions and possibilities
for future work.

II. RELATED WORK

A maze is a complex passage with multiple branches where
the user needs to find the best route (Matthews [14]). The
subject of mazes occurs in many places in biology, psychology
and video games. Section II-A gives a brief history of mazes
and video games development focused on games that involve
mazes. Section II-B reviews constraint databases that are used
by the A-Maze-D system.

A. Mazes and Maze Games

In most mazes, the walls are fixed and do not change as
the user progresses through the maze. Maze solving computer
algorithms that try to find the best path to an exit or the fastest
way to attain a prize have been implemented many times.
However, the typical solutions do not take into account a user’s
limited vision and inability to mark the walls as hindrances
for solving the mazes. In Section 3, we specifically allow the
option of representing the limited vision of a user.

In games like Super Mario World, there are levels where the
user needs to solve a maze and has limitations as to what they
can see. This type of maze occurs in many different games
including some Legend of Zelda games. In addition, in video
games such as Super Mario World if the user has failed a
level numerous times, then the system offers the ability for
the system to show the proper way to finish the level where
obstacles of all kinds are taken into account and the shortest
path is used.

In well-known games such as Pac-Man, the objective is to
collect all the pellets and to live as long as the ghosts do not eat
the user. In other games, the goal is to rescue a princess or to
find the treasure and the end of the journey. In the implemented

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 195



2

Fig. 1: Examples of mazes with straight walls. The one on the left has an entrance at the bottom and an exit on the top. The
one on the right has an entrance on the bottom and the goal is to reach the large central square.

examples in this paper, we favor the idea of there being some
form of treasure at the end of the levels.

Mazes form also an important element in biology in the
study of learning. Rodents were first used in mazes by
Willard Small [25]. Using rodent burrows as a design a maze
was created to test the cognitive abilities of rodents. Soon
after these early experiments, different animals were used by
James Watson for testing purposes ranging from monkeys to
birds [26]. Watson also sent rodents through a maze with some
sensory deprivations. A few years later, Fleming Perrin tested
humans where he blindfolded each person and let them solve
a dodecagonal maze [17]. Many of these types of experiments
can be modeled using maze choice games.

Some current tools used by game developers to make
games is described in [12]. Herwig and Paar [8] describes an
approach of using game engines for landscape visualization
and planning.

Eberly [7] and Millington [15] review the physical aspects
of games, such as the physics behind collisions and explosions.
Kriegel et al. [11] describe a multi-layer games management
system where players can explore large maps. Rogers [24]
describes an alternative approach to level design in multi-layer
games.

B. Constraint Databases
Constraint databases were introduced by Kanellakis et

al. [10]. Constraint databases provide an extension of re-
lational databases where the input data may be an infinite
size relations that are finitely represented by mathematical
constraints [18]. This finite representation is achieved by
making each constraint relation a set of constraint tuples. In
constraint tuples, the attributes are referred to by variables and
the possible values of the attribute variables are restricted by
constraints. Constraint databases developed in many directions
with a diversity of applications. Revesz [18] is an introductory
database textbook that covers constraint databases and their
applications.

The MLPQ system, developed at the University of
Nebraska-Lincoln, is one of the systems that implements and
visualizes constraint databases. Constraint databases have been
used already in many spatial and moving object database ap-
plications, including monitoring the spread of epidemics [23],
congestion forecasting by MaxCount, an operator that esti-
mates the maximum number of moving objects that could in an
area [1], spatio-temporal interpolation [13], spatial and tem-
poral data mining [22] including predicting pancreatic cancer
based on cancer-related genes and their temporal patterns of
gene expressions in the cells of pancreatic cancer patients [20].

III. IMPLEMENTATION OF STATIONARY OBJECTS

The A-Maze-D, short for Advanced Maze Developer, sys-
tem is a versatile system that enables efficient development
of complex maze games. The A-Maze-D system consists of
a MATLAB library that allows the easy translation of input
data into MLPQ system input files. Once all stationary and
moving objects are translated into MLPQ input files, the input
files can be opened and animated in the MLPQ system. The
animation lasts until some choice point is reached. The choice
point requires that the user enter some input parameters, such
as whether to turn left or right at the current location in
the maze, to fire some bullets, to start a conversation or
some other action. Once the input parameters are entered the
corresponding animation can continue until the next choice
point.

The main stationary object in a maze game is the maze
itself. Mazes can be divided into two different types. The
first type of mazes have only straight walls, while the second
more complex type of mazes have also curved walls. The
implementation of mazes, especially with curved walls, can be
a tedious software engineering task. However, we show below
that using the A-Maze-D system mazes can be developed
efficiently whether the mazes have straight or curved walls.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 196



3

A. Mazes with Straight Walls

Figure 1 shows two mazes with walls that are composed of
straight lines. Suppose that we would like to implement the
maze shown on the left side of Figure 1. At first, we record
the corner points for each wall as shown with highlights in
Figure 2.

Fig. 2: Examples points on a maze. The colors of the points
are used to show which points are connected with each other

to form a single wall.

Each wall needs to have a different id. In the case of the
maze in Figure 2 we need six walls with the (x, y) corner
points shown in Table I. Each wall has a separate id number,
which appears in the first column of Table I. The id numbers
in Table I describe a way of drawing the maze in Figure 2
by using only six walls, but other ways of drawing the same
maze are possible.

TABLE I: The (x, y) coordinates of the corner points on the
maze. This data is used as input to the A-Maze-D system to

develop the maze. Each wall has a separate id number.

id X Y
1 100 0
1 0 0
1 0 88
1 80 88
2 120 0
2 200 0
2 200 88
2 100 88
3 0 44
3 88 44
4 22 22
4 176 22
4 176 66
5 110 22
5 110 44
5 154 44
5 154 88
6 22 66
6 154 66

A-Maze-D has a library of MATLAB scripts that contains
a function called buildWalls that takes as input the set of
points and turns them into an MLPQ input file that represents

the walls. The basic idea behind the buildWalls function is
illustrated in Figure 3, which shows on the left a simple table
with two points and on the right their implied meaning. The
buildWalls function also needs a parameter that specifies the
width for the wall. In this case for simplicity we chose a width
of one. As can be seen, the (a, c) and (b, d) points define a
parallelogram with width one and whose lower boundary line
is the line segment from (a, c) to (b, d).

The buildWalls function transforms the points described in
Table I into the following MLPQ input file:

begin %MLPQ%
R(id,x,y) :- id=1, x>=0, x<=100, y=0.
R(id,x,y) :- id=1, x=0, y>=0, y<=88.
R(id,x,y) :- id=1, x>=0, x<=80, y=88.
R(id,x,y) :- id=2, x>=120, x<=200, y=0.
R(id,x,y) :- id=2, x=200, y>=0, y<=88.
R(id,x,y) :- id=2, x>=100, x<=200, y=88.
R(id,x,y) :- id=3, x>=0, x<=88, y=44.
R(id,x,y) :- id=4, x>=22, x<=176, y=22.
R(id,x,y) :- id=4, x=176, y>=22, y<=66.
R(id,x,y) :- id=5, x=110, y>=22, y<=44.
R(id,x,y) :- id=5, x>=110, x<=154, y=44.
R(id,x,y) :- id=5, x=154, y>=44, y<=88.
R(id,x,y) :- id=6, x>=22, x<=154, y=66.
end %MLPQ%

B. Mazes with Curved Walls

Figure 4 illustrates a maze with curved walls. The A-Maze-
D system uses multiple MATLAB scripts in order to attain the
smoothest-looking curved walls. For example, Figure 4 shows
a maze where all walls are curved except for six straight walls
that are all horizontal and are used to block further passage in
maze at dead ends.

Let us illustrate the A-Maze-D functions using the bottom
curved wall, which is a segment of the parabola y = (x/4)2.
An approximation of the parabola can be specified by eleven
distinct points as shown in Figure 4. Our MATLAB script
takes the x coordinates and the parabolic function y = (x/4)2

to generate Table II. The script can take any other polynomial
function. In case the boundary of the wall cannot be described
by the user as a polynomial function, the A-Maze-D system
also provides an alternative MATLAB script that makes a
cubic spline interpolation for the given sample points of the
wall.

The more points we choose for the approximation, the
smoother-looking parabolic curved wall we obtain. However,
the smoother representation generates a larger MLPQ input
file, which means generally a slower visualization and ani-
mations of the maze game. Given the above input data, the
A-Mazed-D system already generates a large MLPQ output
file, which can be seen in Figure 5. We have also included
our MATLAB implementation that was created specifically to
build curved walls and then to output the proper format of
each curved wall into a MLPQ format. The code can be seen
in Figure 6. This MATLAB script uses a the built-in function

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 197



4

Fig. 3: The points from the table are represented visually on the right.

Fig. 4: Example of a maze with curved walls and selected
sample points on the bottom curved wall.

TABLE II: Example corner points on a maze.

id X Y
1 -5 1.5625
1 -4 1
1 -3 0.5625
1 -2 0.25
1 -1 0.0625
1 0 0
1 1 0.0625
1 2 0.25
1 3 0.5625
1 4 1
1 5 1.5625

spline, which computes for a set of points the piecewise
cubic polynomial interpolation for a set of points [2], [19].
Although MATLAB does not explicitly return the piecewise
cubic polynomial, the MATLAB script takes a set of sample
values from the interpolation. When the number of sample
values is large enough, then the piecewise linear interpolation

among those points will generate a smooth-looking curve.

C. Color Change

We call color animation when stationary or moving objects
change color over time. Color animation can provide important
visual cues to the users. For example, in our maze we could
make the walls change color that would show some type of
time limit where the walls will start to change to a specific
color when the user is running out of time. MLPQ handles
color animation by allowing the user to choose two different
colors for each relation.

When an MLPQ input file is loaded into the MLPQ system,
then next to each spatial or moving object relation there
are two colored boxes as shown in Figure 7. The first box
represents the starting color, and the second box the ending
color for the displayed relation during the animation. The
MLPQ system provides a random pair of colors for each
relation after a new file is uploaded. To change the colors to
the desired values, we can double click on one of the boxes.
Then a color scheme window will pop up as shown in Figure 8.
This window allows the user to create the specific color of their
choice for the selected box. For example, Figure 9 shows two
snapshots of the color animation of a maze, which changes
from green to orange.

IV. IMPLEMENTATION OF MOVING OBJECTS

A. Player Movement

Movement of the player is guided by choices that the
player can select in MLPQ. When the player chooses a
movement option in the maze, the A-Maze-D system animates
the player moving through the maze until the player reaches
the next choice point where another decision is required. At
any moment in time, each player is assumed to occupy a 4 by
4 square area. The movement of the square is represented by
the attributes x, y and t, which denoted time. For a moving

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 198



5

begin %MLPQ%
R(id,x,y) :- id=1, x>=-4.000000, x<=-3.920000, -0.640043x - y=1.560172.
R(id,x,y) :- id=1, x>=-3.920000, x<=-3.840000, -0.588340x - y=1.357495.
R(id,x,y) :- id=1, x>=-3.840000, x<=-3.760000, -0.541344x - y=1.177033.
R(id,x,y) :- id=1, x>=-3.760000, x<=-3.680000, -0.499057x - y=1.018034.
R(id,x,y) :- id=1, x>=-3.680000, x<=-3.600000, -0.461478x - y=0.879744.
R(id,x,y) :- id=1, x>=-3.600000, x<=-3.520000, -0.428608x - y=0.761409.
R(id,x,y) :- id=1, x>=-3.520000, x<=-3.440000, -0.400445x - y=0.662276.
R(id,x,y) :- id=1, x>=-3.440000, x<=-3.360000, -0.376990x - y=0.581592.
R(id,x,y) :- id=1, x>=-3.360000, x<=-3.280000, -0.358244x - y=0.518604.
R(id,x,y) :- id=1, x>=-3.280000, x<=-3.200000, -0.344206x - y=0.472559.
R(id,x,y) :- id=1, x>=-3.200000, x<=-3.120000, -0.334876x - y=0.442702.
R(id,x,y) :- id=1, x>=-3.120000, x<=-3.040000, -0.330254x - y=0.428282.
R(id,x,y) :- id=1, x>=-3.040000, x<=-2.960000, -0.330215x - y=0.428165.
R(id,x,y) :- id=1, x>=-2.960000, x<=-2.880000, -0.331900x - y=0.433151.
R(id,x,y) :- id=1, x>=-2.880000, x<=-2.800000, -0.332445x - y=0.434722.
R(id,x,y) :- id=1, x>=-2.800000, x<=-2.720000, -0.331727x - y=0.432712.
R(id,x,y) :- id=1, x>=-2.720000, x<=-2.640000, -0.329746x - y=0.427324.
R(id,x,y) :- id=1, x>=-2.640000, x<=-2.560000, -0.326502x - y=0.418760.
R(id,x,y) :- id=1, x>=-2.560000, x<=-2.480000, -0.321995x - y=0.407221.
R(id,x,y) :- id=1, x>=-2.480000, x<=-2.400000, -0.316225x - y=0.392911.
...
end %MLPQ%

Fig. 5: Defining a curved maze as an MLPQ input file.

Fig. 6: Code for creating and displaying the curved walls.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 199



6

Fig. 7: An example of specifying color change where during
animation the beginning color is on the left and the ending

color is on the right.

object, x and y are functions of time represented by linear
constraints in the MLPQ system input files. The A-Maze-D
system uses another MATLAB script to generate the MLPQ
file.

The MATLAB script will automatically compile this and
return the movements for your player to take. Once the
constraints are created from the script you then have to put
them in your MLPQ maze file with the proper relations. The
code below is one example that shows how the constraints are
stored inside the MLPQ file.

For example, Figure 10 shows the movement of the player
from location (110, 110 to location (99, 55). Besides these
beginning and ending points, we also record some of the other
points that are on the way with the restriction that all turning
points need to be included in the list. In this case, the selected
points can be represented as shown in Table III. The A-Maze-
D system generates the following MLPQ file for the input
shown in Table III.

begin %MLPQ%
player(id,x,y,t) :- id=1,

x + t >= 119,
x + t <= 121,
y > 10, y <= 11,
t >= 10, t <= 109.

player(id,x,y,t) :- id=1,
x >= 10, x <= 12,
y - t > -99,
y - t <= -98,
t >= 109, t <= 131.

player(id,x,y,t) :- id=1,
x - t >= -121,
x - t <= -119,
y > 32, y <= 33,
t >= 131, t <= 219.

player(id,x,y,t) :- id=1,
x >= 98, x <= 100,
y - t > -187,
y - t <= -186,
t >= 219, t <= 241.

end %MLPQ%

Usign the above input file, the A-Maze-D system generates
an animation using MLPQ as a basis.

TABLE III: The center points for a moving object in the
maze.

id X Y
1 110 11
1 11 11
1 11 33
1 99 33
1 99 55

B. Searchlight

The A-Maze-D system also allows a limited field of view
for the game player by adding a larger square relation around
the moving player. The complement of that larger square will
be displayed in dark blue over the actual maze. For example,
Figure 11 shows the limited field of view provided by a search
light. This figure also shows how the searchlight follows the
player as he or she moves in the maze. Then at the end of the
maze the player has reached the treasure, and therefore has
successfully completed the first level of the maze.

C. Explosions

The A-Maze-D system can represent explosions and other
expanding objects. For example, fireworks can be represented
as an object that expands until it ceases to exist. The A-Maze-
D system provides a function that gives as input the beginning
and the ending shapes of the exploding object and gives as
output a parametric rectangles representation of the expanding
object that is an accepted MLPQ input file.

Color animation can be applied to moving objects too
similarly as it is applied to stationary objects. For example,
the firework could be black at the beginning and gradually
lighted up and become completely red in the end.

V. INTERACTIONS OF OBJECTS

The A-Maze-D system allows stationary and moving objects
to interact with each other in many different ways. We describe
some of the possible interactions.

A. Explosions and Shields

The A-Maze-D system allows a shield type object to prevent
the further expansion of an exploding object. For example,
Figure 13 (a) shows a room with surrounding walls (green),
a column (blue horizontal rectangle) and a grenade (small
black square). The walls and the column are stationary objects,
while the grenade is an exploding object. Figure 13 (b) and
(c) show two snapshots of the A-Maze-D system animation
of the exploding grenade. The animation shows the grenade
explosion slowly expanding and turning red and being blocked
by the wall and the column. Explosions and shields in the
A-Maze-D system are implemented using the MLPQ block
operator.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 200



7

Fig. 8: The color scheme window that enables the users to choose the beginning and the ending colors for the animation.

Fig. 9: Maze color changes from green (on the left) to orange (on the right).

Fig. 10: A moving object within a maze.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 201



8

Fig. 11: An example of the use of a searchlight for games. The searchlight allows the players to see only a small area of the
entire maze, making exploration of the maze much harder.

(a) (b) (c)

Fig. 12: An exploding grenade with the explosion slowly turning from black to red and being blocked from expanding
further by a green wall and a blue column. Above are only three snapshots (a)-(c) from an animation of the explosion.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 202



9

(a) (b) (c)

Fig. 13: Three snapshots of an animation of two objects colliding and bouncing back from each other.

B. Collision of Objects

Another interesting function is called collide where one has
to specify an attribute called mass that when the two objects
come in contact with each other will apply a collision that will
cause the elastic objects to bounce back from each other. This
operator works well for car crashes, for example. Collision
is different from the block operator. The block operator only
stops the object from moving past the other object, but with
the collision function the bouncing back from each other can
be also represented and animated, enabling the design of more
interesting games.

VI. CONCLUSION AND FUTURE WORK

Constraint databases and video games have been around
for a long time, but they have never been combined together
before. The A-Maze-D system shows that constraint databases
can be applied conveniently and efficient to design of maze
games. A-Maze-D provides a versatile set of features by a
combination of a MATLAB library and the MLPQ constraint
database system. This is the first time that maze games have
been created using constraint databases.

In the future we would like to try implement different
game types in constraint databases and see how well they can
be converted over from the normal game development into
constraint databases. We believe the best way to do this is
testing out different types of games and see how well they
perform. A few examples to name would be to test games
that are more like Tetris where one needs a faster reaction or
one’s actions are limited by the time allotted.

In addition to interactive games, the A-Maze-D system
could be also used for the simulation of interactive control pro-
cesses, such as the simulation of the control processes in coal
mining [16]. The simulation of coal mining is an interesting
application because it requires 3-D spatial representation and
animation, which can be also provided in constraint database
systems like MLPQ and added to the A-Maze-D system [21].

Examining new possible features that constraint databases
can provide for game development is another area we would
like to research more and test out. Constraint databases have
been used before in the animation of human faces. Hence an

intriguing possibility is to allow players to speak to each other.
Whenever a player wants to say something a pop-up window
would open and show an animation of the player’s face as he
or she speaks.

REFERENCES

[1] A. Anderson, P. Z. Revesz, Efficient MaxCount and threshold operators
of moving objects, Geoinformatica, 13 (4), 2009, pp. 355–396.

[2] R. L. Burden, J. D. Faires, Numerical Analysis, 9th edition, Springer,
New York, USA, 2014.

[3] J. Chai, Exploiting Spatial-Temporal Constraints for Interactive Anima-
tion Control, Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh,
2006.

[4] J. Chomicki, P. Z. Revesz, Constraint-based interoperability of spatiotem-
poral databases, Geoinformatica, 3 (3), 1999, pp. 211–243.

[5] K. Claypool, M. Claypool, Teaching software engineering through game
design, ACM SIGCSE Bulletin, 37 (3), 2005.

[6] N. Cressie, C. K. Wikle, Statistics for spatio-temporal data. John Wiley
& Sons, 2011.

[7] D. H. Eberly, Game physics. Taylor and Francis, 2010.
[8] A. Herwig, P. Paar. Game engines: Tools for landscape visualization and

planning. In: Trends in GIS and Virtualization in Environmental Planning
and Design, E. Buhmann, editor, Wichmann Publishing, 2002, pp. 161-
172.

[9] J. Komarkova, et al., Methods of usability evaluation of Web-based
geographic information systems. International Journal of Systems Ap-
plications, Engineering & Development 5 (1), 2011, pp. 33-41.

[10] P. C. Kanellakis, G. M. Kuper and P. Z. Revesz, Constraint query
languages, Journal of Computer and System Sciences, 51 (1), pp. 26-52,
1995.

[11] H.-P. Kriegel, M. Schubert, A. Zfle, Managing and mining multiplayer
online games, Proc. of the 12th International Conference on Advances in
Spatial and Temporal Databases, Springer Berlin, 2011, pp. 441-444.

[12] M. Lewis, J. Jacobson, Game engines, Communications of the ACM,
45 (1), 2002, pp. 27.

[13] L. Li, and P. Z. Revesz, Interpolation methods for spatio-temporal
geographic data, Computers, Environment and Urban Systems, 28 (3),
2004, pp. 201–227.

[14] W. H. Matthews, Mazes and labyrinths: their history and development,
Courier Corporation, 1970.

[15] I. Millington, Game physics engine development, Amsterdam: Morgan
Kaufmann Publishers, 2007.

[16] V. Okolnishnikov, S. Rudometov, S. Zhuravlev, Simulation environment
for development of automated process control system in coal mining,
Proc. International Conference on Systems, Control, Signal Processing
and Informatics, 2013.

[17] F. A. C. Perrin, An experimental and introspective study of the human
learning process in the maze, Psychological Monographs: General and
Applied, 16 (4), 1914, pp. 1-97.

[18] P. Z. Revesz, Introduction to Databases: From Biological to Spatio-
Temporal, New York, USA: Springer, 2010.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 203



10

[19] P. Z. Revesz, A recurrence equation-based solution for the cubic spline
interpolation problem, International Journal of Mathematical Models and
Methods in Applied Sciences, 9, 2015, pp. 446 - 452.

[20] P. Z. Revesz, C. Assi, Data mining the functional characterizations
of proteins to predict their cancer-relatedness, International Journal of
Biology and Biomedical Engineering, 7 (1), 2013, pp. 7–14.

[21] P. Z. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu and Y. Wang,
The MLPQ/GIS constraint database system, ACM SIGMOD International
Conference on Management of Data, ACM Press, 2000.

[22] P. Z. Revesz, T. Triplet, Classification integration and reclassification
using constraint databases, Artificial Intelligence in Medicine, 49 (2),
2010, pp. 79–91.

[23] P. Z. Revesz, S. Wu, Spatiotemporal reasoning about epidemiological
data, Artificial Intelligence in Medicine, 38 (2), 2006, pp. 157-170.

[24] S. Rogers, Level Up! The guide to great video game design, John Wiley
& Sons, 2014.

[25] W. S. Small, Experimental study of the mental processes of the rat. II
The American Journal of Psychology, 1901.

[26] J. B. Watson, Kinaesthetic and organic sensations: Their role in the
reactions of the white rat to the maze. The Psychological Review:
Monograph Supplements, 8 (2), 1907.

Shruti Daggumati got her M.S. in Computer
Science from the University of Nebraska-Lincoln
in May 2015. Her primary research area is data
visualization and animation with a focus on data
mining and visual analytics of large temporal
data sets and finding correlations among inde-
pendent attributes.

Peter Z. Revesz holds a Ph.D. degree in Computer
Science from Brown University. He was a post-
doctoral fellow at the University of Toronto be-
fore joining the University of Nebraska-Lincoln,
where he is a professor in the Department of
Computer Science and Engineering. Dr. Revesz
is an expert in databases, data mining, big data
analytics and bioinformatics. He is the author
of Introduction to Databases: From Biological to
Spatio-Temporal (Springer, 2010) and Introduc-
tion to Constraint Databases (Springer, 2002). Dr.

Revesz held visiting appointments at the IBM T. J. Watson Research
Center, INRIA, the Max Planck Institute for Computer Science, the
University of Athens, the University of Hasselt, the U.S. Air Force Office
of Scientific Research and the U.S. Department of State. He is a recipient
of an AAAS Science and Technology Policy Fellowship, a J. William
Fulbright Scholarship, an Alexander von Humboldt Research Fellowship,
a Jefferson Science Fellowship, a National Science Foundation CAREER
award, and a Faculty International Scholar of the Year award by Phi
Beta Delta, the Honor Society for International Scholars.

Corey Svehla is currently pursuing his masters
degree in Computer Science at the University of
Nebraska- Lincoln. He particularly enjoys finding
new ways to integrate technology with agriculture
to make farmer’s lifestyle easier.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 204




