
Persistent and reliable FLASH-based data container
for embedded systems

Michal Bližňák, Tomáš Dulík, Tomáš Juřena and Peter Janků

Abstracts— NOR-FLASH memories often available as an integral
part of modern MCUs and SoC microprocessors can be used as an ideal
storage container for persistent application data in embedded systems
design. Unfortunately, a technological background of these memory
chips avoids users from simple and efficient multiple writes into iden-
tical memory locations which is very common use case scenario when,
for example, the application’s configuration is updated. This paper in-
troduces simple and elegant solution including its reference software im-
plementation which allow users to write configuration data structures
into the FLASH RAM in highly efficient and reliable way. Discussed
approach minimizes number of needed write and erase cycles and max-
imizes reliability of the overall write process.

Keywords—FLASH, RAM, write, erase, persistent, data, efficiency,
MCU, embedded

I. INTRODUCTION

MODERN microcontrollers used for embedded system design
are often equipped with built-in FLASH RAM which can

be used as a persistent storage container for various run-time or
configuration data. The motivation for implementation of any
type of persistent data storage can vary from need of simple sav-
ing of small amount of runtime data to storing complex data
structures used for description of highly modular and config-
urable embedded system [1] or embedded databases with real-
time access as introduced in [9]. For example, STM32F4 family
of 32-bit microcontroller integrated circuits by STMicroelectron-
ics based on ARM Cortex-M4 technology uses up to 2 MB of
integrated FLASH memory used for both program instructions
and data [7]. However, the nature of FLASH RAM avoids users
from simple and efficient multiple writes to identical memory lo-
cations so a periodic update of specific data structure cells could
be difficult to implement. This paper introduces new methods
and software implementations which allow users to write various
data structures into the FLASH RAM in highly efficient and safe
way and minimizes number of needed write and erase cycles and
maximizes reliability of the overall write process. The new soft-

The work was performed with the financial support of the research project
NPU I No. MSMT-7778/2014 by the Ministry of Education of the Czech Re-
public and also by the European Regional Development Fund under the project
CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.

Michal Bližňák is with the Tomas Bata University, Faculty of Applied In-
formatics, Department of Informatics and Artificial Intelligence, Nad Stranemi
4511, 76005 Zlin, Czech Republic (corresponding author to provide phone:
00420-576035187; e-mail: bliznak@fai.utb.cz).

Tomáš Dulík, Tomáš Juřena and Peter Janků are with the Tomas Bata
University, Faculty of Applied InformaticsDefault form of internal data struc-
ture, Department of Informatics and Artificial Intelligence, Nad Stranemi 4511,
76005 Zlin, Czech Republic (e-mails: dulik@fai.utb.cz, jurena@fai.utb.cz and
janku@fai.utb.cz).

Fig. 1 Wiring of NOR flash memory [6]

ware library can be used as lightweight and elegant alternative to
existing similar solutions like presented in [2].

Before discussing the proposed methods let us to examine ba-
sic FLASH memory characteristics first.

II. FLASH MEMORIES BASICS

FLASH memory (also called FLASH RAM) is a type of non-
volatile memory device where stored data exists even when mem-
ory device is not electrically powered. It is an improved version
of electrically erasable programmable read-only memory called
EEPROM. The differences between FLASH memory and EEP-
ROM are, EEPROM erases and rewrites its content one byte at
a time, i.e at byte level. On the other hand, FLASH memory
erases or writes its data in entire blocks, which makes it a very
fast memory compared to EEPROM [5].

Basically, there are two main types of FLASH memory:
NAND and NOR types. NAND type flash memory may be writ-
ten and read in blocks which are generally much smaller than the
entire device. NOR type flash allows a single machine word to
be written to an erased location or read independently. Another
differences between NAND and NOR FLASH memories are the
following:

NOR-flash NOR-flash is slower in erase-operation and write-
operation compared to NAND-flash. That means the NAND-
flash has faster erase and write times. More over NAND has
smaller erase units. So fewer erases are needed. NOR-flash can
read data slightly faster than NAND.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 211

Fig. 2 Wiring of NAND flash memory [6]

NOR offers complete address and data buses to randomly ac-
cess any of its memory location (addressable to every byte). This
makes it a suitable replacement for older ROM BIOS/firmware
chips, which rarely needs to be updated. Its endurance is 10,000
to 1,000,000 erase cycles. NOR is highly suitable for storing
code in embedded systems thus most of the today’s microcon-
trollers comes with built in flash memory [4].

In NOR gate flash, each cell has one end connected directly to
ground, and the other end connected directly to a bit line. This
arrangement is called "NOR flash" because it acts like a NOR
gate: when one of the word lines (connected to the cell’s CG) is
brought high, the corresponding storage transistor acts to pull the
output bit line low. NOR flash continues to be the technology
of choice for embedded applications requiring a discrete non-
volatile memory device. The low read latencies characteristic
of NOR devices allow for both direct code execution and data
storage in a single memory product [?].

A single-level NOR flash cell in its default state is logi-
cally equivalent to a binary "1" value, because current will flow
through the channel under application of an appropriate voltage
to the control gate, so that the bit line voltage is pulled down. A
NOR flash cell can be programmed or set to a binary "0" value
by several possibles techniques [6].

NAND-flash NAND-flash occupies smaller chip area per cell.
This maker NAND available in greater storage densities and at
lower costs per bit than NOR-flash. It also has up to ten times
the endurance of NOR-flash. NAND is more fit as storage media
for large files including video and audio. The USB thumb drives,
SD cards and MMC cards are of NAND type.

NAND-flash does not provide a random-access external ad-
dress bus so the data must be read on a block-wise basis (also
known as page access), where each block holds hundreds to thou-
sands of bits, resembling to a kind of sequential data access. This
is one of the main reasons why the NAND-flash is unsuitable to
replace the ROM, because most of the microprocessors and mi-
crocontrollers require byte-level random access [5].

III. MAIN LIMITATIONS OF FLASH MEMORY

One limitation of FLASH memory is that, although it can be
read or programmed a byte or a word at a time in a random access
fashion, it can only be erased a "block" at a time. This generally
sets all bits in the block to 1. Starting with a freshly erased block,
any location within that block can be programmed. However,
once a bit has been set to 0, only by erasing the entire block can
it be changed back to 1. In other words, flash memory (specif-
ically NOR flash) offers random-access read and programming
operations, but does not offer arbitrary random-access rewrite or
erase operations. A location can, however, be rewritten as long
as the new value’s 0 bits are a superset of the over-written values.
For example, a nibble value may be erased to 1111, then written
as 1110. Successive writes to that nibble can change it to 1010,
then 0010, and finally 0000. Essentially, erasure sets all bits to 1,
and programming can only clear bits to 0 [6].

Another limitation is that flash memory has a finite number
of program-erase cycles (typically written as P/E cycles). Most
commercially available flash products are guaranteed to with-
stand around 100,000 P/E cycles before the wear begins to de-
teriorate the integrity of the storage [3]. Micron Technology and
Sun Microsystems announced an SLC NAND flash memory chip
rated for 1,000,000 P/E cycles in 2008.

IV. EFFICIENT AND SAFE FLASH MEMORY I/O ACCESS

To eliminate the limitations mentioned in chapter III. a new
software library aimed to STM32 microcontrollers called Persis-
tentData was developed at Tomas Bata University. The library
uses new approaches for accessing data written to FLASH mem-
ory integrated on the MCU’s chip.

The main idea covered by the library is to store the data in in-
ternal structure similar to linked list where just real differences
between old and modified data are written to the FLASH mem-
ory. Also, the library checks bit states of word to be written to
determine whether the new data can be re-programmed at the
current memory address location (thanks to the technology back-
ground explained in chapters II. and III.) or whether it should be
stored to new empty (erased) location.

Now, let us to discuss the new write methods in more details.

A. Internal Data Structure
Main block of integrated FLASH memory available on

STM32F2 and F4 families is organized into several (typically 12)
sectors with variable sizes as shown in Table 1 [8].

The PersistentData library uses two sectors with identical sizes
to store managed data structures. The reason why two dedicated
FLASH sectors are used at the same time is due to mirroring of
stored data which allows the library to minimize possibility of
data loss when the MCU is powered down during a data write
process accidentally as discussed later in this article.

Maximum size of data stored in the FLASH by using the li-
brary is calculated in 1.

maxSize =
sectorSize− 8

2
(1)

The additional memory overhead is caused by a way how the
library tries to keep managed data in valid state. The validity of
the data is verified by a CRC checksum placed behind the data

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 212

Table 1: STM32’s FLASH module organization

Name Block base addresses Size

Sector 0 0x0800 0000 - 0x0800 3FFF 16 Kbyte

Sector 1 0x0800 4000 - 0x0800 7FFF 16 Kbyte

Sector 2 0x0800 8000 - 0x0800 BFFF 16 Kbyte

Sector 3 0x0800 C000 - 0x0800 FFFF 16 Kbyte

Sector 4 0x0801 0000 - 0x0801 FFFF 64 Kbyte

Sector 5 0x0802 0000 - 0x0803 FFFF 128 Kbyte

...

Sector 11 0x080E 0000 - 0x080F FFFF 128 Kbyte

section and by validity words following raw data chunks as can
be seen in Figure 3.

Config size

4B
Default data CRC

4B

ValidData ValidData ValidData ValidData

Size of data times 2

4B

Fig. 3 default form of internal data structure

The raw data stored in the FLASH memory by using the li-
brary is divided into 16-bit words (data chunks) organized in the
following way.

The overall length of internal data structure written as 32-bit
double word is located at the beginning of the FLASH sector.
The raw data interlaced by validity words follows. Size of the
data section is doubled size of stored raw data because each data
chunk is followed by its validity word with the same size (16
bits). At the end of the internal structure 16-bit CRC checksum
of the data section followed by its validity word is placed.

The validity word’s value is 0x7fff by default which means
the data chunk placed before is valid. Different validity value
means relative offset in the FLASH memory where changed data
chunk is stored.

B. Writing of Data

When the raw data structure is modified and the library is
asked to write the modifications to FLASH memory, differences
in the raw data are found. Then, the modified raw data chunks
(i.e. modified 16-bits words) are written to empty (erased)
FLASH memory locations after the last known (and valid) CRC
checksum and the validity words associated with their previous
values are updated so they point to new memory locations occu-
pied by the new data chunks. The new data chunks are interlaced
with default validity words like in the previous state. Finally, new
CRC checksum is calculated and placed after the last used mem-
ory location (followed by its own validity word). Obviously, the
validity word of previous CRC checksum is updated similarly to
data chunk’s validity word.

For minimizing of data writes into new memory locations, the
library checks bit states of modified raw data chunk and writes
the new value to the new memory location only when the old
value cannot be re-written at the place. As mentioned in the chap-

ter III., a content of FLASH memory can be re-written at identi-
cal memory location when bit states of the new value change just
from "1" to "0". In this case, the validity word associated with the
in-place modified data chunk remains unchanged (i.e. in default
state) and just CRC checksum is modified (in the similar way).

Modified data structure written in FLASH memory is illus-
trated in Figure 4.

Data size Default data CRC
ValidData ValidData ValidData ValidData

ValidData ValidData ValidCRC ValidData ValidCRC

Fig. 4 modified internal data structure

Remember that the write changes are mirrored in both
used FLASH memory sectors so the written data can be read
successfully even when one of the dedicated sectors is cor-
rupted. All tasks done during writing of the data by using
PersistentData_Set() API function declared in the li-
brary are shown in Figure 5.

Fig. 5 activity diagram of PersistentData_Set() function

C. Reading of Data
When reading the stored raw data, the internal data structure

written in FLASH memory is scanned by using content of the va-
lidity words and the data is reconstructed by joining the raw data
chunks. During the scanning, the library reads values from valid-
ity words appended to data chunks and when found non-default

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 213

value which means that the data chunk is outdated (as mentioned
above, the default value is 0x7fff), the library jumps to new
memory location calculated as current address of examined data
chunk plus offset read from its validity word. Prior to that, a
validity of whole (currently active) FLASH sector is checked by
reading of the last know CRC checksum. When the CRC check-
sum mismatches or it cannot be read, the active FLASH sector
is switched to the backup one and the data reading process is
repeated. If the data cannot be read successfully even from the
backup sector, the reading process fails and is aborted.

Tasks performed by the library during the data reading process
are illustrated in Figure 6.

Fig. 6 activity diagram of PersistentData_Get() function

D. Validation of Stored Data

The validity of stored data is ensured by using CRC checksum
which is calculated from raw data stored in the FLASH memory
and it is compared with CRC value appended to the data section
during the writing process as shown in Figure 3. Memory address
of the first available CRC checksum can be calculated as in 2.

crcAddress = (2× dataSize) + 4 (2)

The CRC checksum is regarded as valid itself when its as-
signed validity word contains the default value (0x7fff). If
not, the up to date CRC checksum is searched in the same way
like reading of data chunks described in chapter C.. During the

scanning of CRCs validity words the calculated absolute mem-
ory addresses are checked to unveil possible data corruption in
the following way: when the address exceeds bounds of active
FLASH memory sector or when new calculated address is lower
or equal to the current one, then the CRC is declared as invalid,
otherwise the CRC value is regarded as valid. By the way, an in-
tegrity of validity words appended to the data chunks is ensured
in the same way.

V. SOLVING OF POSSIBLE ERROR STATES

Unfortunately, a data loss may occur when MCU’s electric
power supply gets down during the writing process so both data
and its validation components could remain incomplete. Due to
this, the CRC checksums are calculated to ensure correct writing
process and to detect random errors caused by the data loss. Let
us to examine several critical scenarios which may occur and let
us to see how they are handled by the PersistenData library.

A. Accidental Power-down During the Write Process
In case of MCU’s electric power supply malfunction a data be-

ing written to FLASH memory could be damaged. If happened,
the CRC checksum calculated from this data mismatches CRC
value stored on this affected sector. Obviously, the writing pro-
cess can be aborted in any phase so the errors can involve various
data structure’s parts. Here are four possible critical scenarios
which may occur:

• The CRC checksum is not written after the last valid data
chunks followed by its validity word

Data size Default data CRC
ValidData ValidData ValidData ValidData

ValidData ValidData ValidCRC ValidData

Fig. 7 CRC is not written after valid data

• Updated data chunk is not written after the update of validity
word assigned to the outdated data chunk.

Data size Default data CRC
ValidData ValidData ValidData ValidData

ValidData ValidData ValidCRC

Fig. 8 new data are not written after validity word update

• Not all data chunks are written, but all the written are asso-
ciated with correct validity words.

Data size Default data CRC
ValidData ValidData ValidData ValidData

ValidData ValidData ValidCRC ValidData

Fig. 9 data are written partially

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 214

• Not all data chunks are written; some of the written are with-
out assigned validity word.

Data size Default data CRC
ValidData ValidData ValidData ValidData

ValidData ValidData ValidCRC Data

Fig. 10 data written partially, validity word is missing

All these scenarios are detected by the library and can by
solved by common way: After the detection the library tries to
recover the data from the backup FLASH memory sector. Of
course, it is possible only when the backup sector contains valid,
undamaged data.

B. Reading of Corrupted Data
During the reading, the CRC checksum could be missing or

couldn’t be found. Also, the calculated CRC value can mismatch
the stored one. The first case occurs when the CRC’s validation
word is corrupted or it is missing. When both calculated and
stored CRC checksums are present but they don’t match then the
data is corrupted or the CRC checksum hasn’t been updated cor-
rectly. In this case the library tries to read requested data from
the backup FLASH sector.

VI. PERSISTENDATA LIBRARY’S API

Based on methods described in the previous chapters, a soft-
ware library called PersistentData was developed at Tomas Bata
University in Zlin. The library is written in ANSI C program-
ming language and has been successfully deployed and tested on
STM32F2 ad F4 chip families in conjunction with low level pe-
ripheral drives for on-chip FLASH memory provided by STMi-
croelectronics.

The library defines set of API functions aimed to save/load
user-defined data structures to/from FLASH memory easily with-
out need of any programming overhead. The API functions avail-
able in the library can be divided into two groups: the public ones
defining API function intended to be used directly by the library’s
user and the private ones used by the library internally. During
the reading or the writing of given data all the methods discussed
in this article are used.

A. Public API
The public API defines following functions:

• ERROR_T PersistentData_Get(uint16_t *data,
uint16_t size);
The function reads data from FLASH memory to buffer
specified by the user. Function’s argument data points to
the beginning of the buffer and size argument specifies
its size. The function returns ERR_OK value on success,
ERR_FAIL when it fails and ERR_PD_CRC_MISSMATCH
when the CRC checkums don’t match.

• ERROR_T PersistentData_Set(const void *data,
uint16_t size);
The function updates/writes user-defined data in/to FLASH

memory. The def_data argument points to the beginning
of user’s data buffer, size argument specifies length of
the data and start_sector argument determines target
FLASH memory sector used as the primary one (the second
one is regarded as the backup sector). The function returns
ERR_OK value on success and ERR_FAIL when it fails.

• ERROR_T PersistentData_Default(const void
*def_data, uint16_t size, PD_SECTORS_T
start_sector);
The function writes default user-defined data to the FLASH
memory (i.e. initializes the memory with default data).
The first function’s argument def_data is pointer to the
default, user-defined data bufer, the second argument size
specifies size of the data and the last function argument
called start_sector determines FLASH sector where
the data will be stored to. Return values are ERR_OK on
success and ERR_FAIL when the function fails.

• bool PersistentData_Empty(void);
The last public function takes no argument and returns log-
ical flag telling whether the FLASH memory contains any
useful data written by the library.

B. Sample Souce Code
The following source code shows typical usage of the li-

brary. Assume there exists user-defined data structure called
CONFIGURATION_T containing specific application’s config-
uration data. Also assume two global instances of the struc-
ture defined in the user’s source code called config_global
containing current configuration data and config_defaults
containing constant default data.

The first sample shown in Listing 1 soure code shows how a
function suitable for reset of the application’s configuration could
look like.

Listing 1: Reset of an application’s configuration data
1 /∗ !
2 ∗ \ b r i e f R e s e t t h e g l o b a l a p p l i c a t i o n c o n f i g u r a t i o n t o

i t s f a c t o r y s t a t e .
3 ∗ /
4 void C o n f i g _ R e s e t (void)
5 {
6 / / copy d e f a u l t da ta t o t h e c u r r e n t c o n f i g u r a t i o n

i n s t a n c e
7 memcpy (&c o n f i g _ g l o b a l , &c o n f i g _ d e f a u l t s , s i z e o f (

CONFIGURATION_T)) ;
8 / / w r i t e t h e d e f a u l t da ta t o FLASH memory i n t o f i r s t

da ta s e c t o r (s p e c i f i e d by
9 / / t h e u s e r i n t h e l i b r a r y ’ s header f i l e) .

10 P e r s i s t e n t D a t a _ D e f a u l t (&c o n f i g _ g l o b a l , s i z e o f (
CONFIGURATION_T) , PD_SECTOR_1) ;

11 }

The second sample illustrates how read data stored in FLASH
memory. In the code dedicated FLASH memory sectors are ex-
amined first to determine whether they contain useful data pre-
viously written be the library. Next, the data are read by us-
ing PersistentData_Get() function. Also, the config-
uration’s version number is checked to determine whether the
data read from FLASH memory matches expected structure of
CONFIGURATION_T data type.

Listing 2: Load application’s configuration data from FLASH
memory
1 /∗ !

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 215

2 ∗ \ b r i e f I n i t i a l i z e g l o b a l c o n f i g u r a t i o n s t r u c t u r e w i t h
v a l u e s s t o r e d i n t h e FLASH memory .

3 ∗ \ r e t v a l ERROR_OK C o n f i g u r a t i o n has been s u c c e s s f u l l y
l o ad ed from FLASH memory

4 ∗ \ r e t v a l ERROR_FAIL No v a l i d c o n f i g u r a t i o n has been
found i n FLASH memory

5 ∗ /
6 ERROR_T Config_Load ()
7 {
8 / / check whe ther t h e FLASH memory c o n t a i n s u s e f u l da ta
9 i f (! P e r s i s t e n t D a t a _ E m p t y ()) {

10 / / t r y t o load t h e da ta from FLASH memory
11 i f (P e r s i s t e n t D a t a _ G e t ((u i n t 1 6 _ t ∗)&c o n f i g _ g l o b a l ,

s i z e o f (CONFIGURATION_T)) == ERR_OK) {
12 / / v e r i f y c o n f i g u r a t i o n v e r s i o n number
13 i f (Conf ig_Ver i fyVers ionNumber ()) {
14 re turn ERR_OK;
15 }
16 }
17 }
18
19 re turn ERR_FAIL ;
20 }

The last example shows how to save modified configuration
data. Assume that the CONFIGURATION_T structure contains
also counter indicating number of made changes which could be
used by the user later.

Listing 3: Save application’s configuration data to FLASH mem-
ory
1 /∗ !
2 ∗ \ b r i e f S t o r e c u r r e n t v a l u e s from g l o b a l c o n f i g u r a t i o n

s t r u c t u r e t o t h e FLASH memory .
3 ∗ \ param c o n f i g P o i n t e r t o s o u r c e c o n f i g u r a t i o n s t r u c t u r e

.
4 ∗ \ r e t v a l ERROR_OK C o n f i g u r a t i o n has been saved t o FLASH

memory s u c c e s s f u l l y
5 ∗ \ r e t v a l ERROR_FAIL C o n f i g u r a t i o n co u l dn ’ t be saved t o

FLASH memory
6 ∗ /
7 ERROR_T Conf ig_Save ()
8 {
9 / / i n c r e m e n t c o n f i g u r a t i o n ’ s m o d i f i c a t i o n c o u n t e r

10 c o n f i g _ g l o b a l . c f g _ m o d i f i c a t i o n _ n u m b e r ++;
11 / / w r i t e t h e c o n f i g u r a t i o n t o FLASH memory
12 re turn P e r s i s t e n t D a t a _ S e t (&c o n f i g _ g l o b a l , s i z e o f (

CONFIGURATION_T)) ;
13 }

VII. CONCLUSION

All the principles discussed in this article lead to efficient
and safe implementation of persistent data storage based on
FLASH memory suitable for embedded systems. Based on the
discussed principles, new software library called PersistentData
has been developed and tested on STMicroelectronic’s STM32F2
and STM32F4 MCU’s families. Set of unit tests covering all crit-
ical functionality of the library have been created and used for
testing. Also, the library has been successfully used in two com-
mercial projects developed at the Tomas Bata University which
proved its maturity.

REFERENCES

[1] M. Otesteanu, "Embedded systems with adaptive architec-
ture ", WSEAS Transactions on Electronics , vol. 2, issue 3,
July 2005, pp. 100-107

[2] M. Short, M. Schwarz, J. Boercsoek, "Efficient implemen-
tation of fault-tolerant data structures in embedded control
software", WSEAS Transactions on Electronics , vol. 5, is-
sue 1, January 2008, pp. 12-24

[3] J. Thatcher, T. Coughlin, J. Handy and N. Ekker.
(2009). NAND Flash Solid State Storage for the
Enterprise. SNIA, Solid State Storage Initiative [On-
line]. Available: http://www.snia.org/sites/default/
files/SSSI_NAND_Reliability_White_Paper_0.pdf

[4] C. Zitlaw. (2011). The Future of NOR
flash memory. EETimes [Online]. Available:
http://www.eetimes.com/document.asp?doc_id=1278751
&page_number=1

[5] Electronics Design Magazine. (2006). Flash memory ba-
sics and its interface to a processor. EE Herald [On-
line]. Available: http://www.eeherald.com/section/design-
guide/esmod16.html

[6] Wikipedia. (2015). Flash memory. [Online]. Available:
http://en.wikipedia.org/wiki/Flash_memory

[7] STM32F4 Series, STMicroelectronics Website. (2015).
[Online]. Available: http://www.st.com/web/en/catalog/
mmc/FM141/SC1169/SS1577

[8] STM32F2 Flash Programming Manual, STMicro-
electronics Website. (2015). [Online]. Available:
http://www.st.com/web/en/resource/ technical/docu-
ment/programming_manual/CD00233952.pdf

[9] W. Hu, T. Chen, Q. Shi, N. Jiang, "A data centered approach
for cache partitioning in embedded real-time database sys-
tem", WSEAS Transactions on Computers , vol. 7, issue 3,
March 2008, pp. 140-146

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 216

