
Compressively Sensed Hybrid PET/MR Imaging    
with Enhanced Spatial Resolution 

 

Krzysztof Malczewski 
Poznan University of Technology 

Polanka 3 60965 Poznan 
Poland 

kmal@et.put.poznan.pl 

 
 
 

 
 

Abstract— Considering the success of PET/CT modalities, 
public expectations for any new combination, such as MR/PET 
are pretty high. Since MRI does not utilize any ionizing radiation 
its use is recommended in preference to CT when either modality 
could yield the same information. Thus, it turns into a perfect 
anatomical complement to PET. The principal idea behind 
merging PET and MRI is to combine the functional / metabolic 
information provided by PET with the high soft-tissue contrast 
and the functional information offered by MRI. This article 
presents the new compression sensing based super-resolution 
algorithm for improving the image resolution in clinical MR-PET 
hybrid scanners. Despite MR and PET each provide unique and 
independent information they share the same underlying 
anatomical features. Hence, rather than treating the data from 
PET and MR singly, we are able to incorporate both data sets in 
a simultaneous reconstruction algorithm. A joint sparsity based 
reconstruction method for multiple sensors, allows these 
anatomical similarities to improve the two unique and 
independent data sets. It is shown that the presented approach 
improves MR-PET spatial resolution in cases when Compressed 
Sensing (CS) sequences are used. Compressed sensing (CS) aims 
at signal and images reconstructing from significantly fewer 
measurements than were traditionally thought necessary. The 
application of CS in medical modalities has the potential for 
significant scan time reductions, with visible benefits for patients 
and health care economics. These methods emphasize on 
maximizing image sparsity on known sparse transform domain 
and minimizing fidelity. 
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I.  INTRODUCTION  
The PET/MRI scanners have been available on market for a 

couple of years. It has been confirmed that they provide a clear 
benefit. It is shown that these devices are useful for particular 
applications demanding multiparametric imaging capabilities, 
high soft tissue contrast and/or lower radiation dose. However, 
the demand for a better resolution in all medical imaging 
applications still remains a serious research challenge. Most 
imaging applications highly depend on high-resolution 
imagery. Enhancing image resolution by improving detector 
array resolution is not always a possible solution to increasing 
resolution. It is evident that each imaging device has its own 
inherent resolution, which is determined based on the physical 
constraints of the system detectors that are in turn tuned to 
signal-to-noise and timing considerations. A common goal 

across SRR systems is to enhance image resolution, and as 
much as possible. SR technology has been proved to be useful 
in medical imaging modalities including Magnetic Resonance 
Imaging (MRI) [1], functional Magnetic Resonance Imaging 
(fMRI), Computed Tomography (CT) and Positron Emission 
Tomography (PET) [1]. PET/CT and other combined scanners 
have in the last years quickly emerged as important research 
tools and are proving to be invaluable for improved diagnostics 
in routine nuclear medicine. The design of hybrid PET/MR 
scanners revealed a serious technical challenge, and only 
recently were these instruments introduced to the market. 
Preliminary performance expectations have been high, notably 
because of the potential for superior MRI tissue contrast, as 
well as the potential for PET functional imaging. Positron 
emission tomography (PET) is a major in vivo biomedical 
imaging modality that provides spatial information on the 
biochemical, functional, and molecular processes taking place 
in the living body. PET has unique roles during the evaluation 
of many diseases and is a key research tool during studies on 
experimental animals [2]. 

In this paper, the author proposes a novel PET/MRI related 
technique, which combines super-resolution, motion correction 
procedures and compressed sampling. The results argued its 
compellingly in experimental studies. Comparison between the 
SR image and low-resolution images exhibits batter resolution 
and higher number of details. The presented SR algorithm may 
replace the present approach in current hybrid scanners without 
any hardware modifications. A key advantage of the method is 
that it doesn’t neglect the motion correction issue. Moreover, it 
leads to higher spatial resolution keeping reasonable scanning 
times.  

II. HYBRID MR-PET 
In recent years, development of hybrid-imaging 

instrumentation has been indicated as one of the innovations 
with the strongest impact on diagnostic imaging in clinical 
routine. The main reason behind these developments is the 
significant extent to which several different imaging modalities 
reveal complementary rather than redundant features. 

Therefore, it is reasonable to employ the particular 
strengths of different modalities, and to compensate particular 
disadvantages of one modality with capabilities of another by 
combination of the different modalities into one “hybrid” 
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device. First hybrid PET/CT scanners have been introduced to 
the market in around 2000 [3] and gained their importance, 
thereby quickly obviating the demand for PET-only scanners. 
This accomplishment has been strongly motivated by 
oncological applications, combining the high sensitivity of PET 
with the anatomical accurateness of CT.  

The fusing of 18F-FDG, a tracer for metabolic activity with 
CT, has especially proved highly valuable [4]. The FDG-PET 
leads to the sensitive detection of tumor cells and the 
estimation of their viability (e.g. for therapy control). The CT 
[5] shows the exact anatomic localization of suspect lesions 
and has a very high sensitivity for small lesions that are missed 
by PET because of the limited resolution or movement artifacts 
(e.g. caused by respiratory motion). However, CT has some 
particular restrictions, the most apparent being the relatively 
low soft-tissue contrast. This characterizes a disadvantage 
principally for diagnostic issues directed to body regions that 
are defined by a complicated regional arrangement of different 
adjacent soft tissue structures. This scenario may happen to the 
brain region as well as to the head-and-neck area or the pelvis. 
In turn, MR-imaging is popular for the ability to deliver 
excellent soft-tissue contrast. This is the key argument why 
corresponding diagnostic problems are typically addressed to 
MRI as the first-line imaging procedure of choice rather than to 
CT. This involves questions concerning e.g. neurological 
disorders, brain tumors, conditions in the head and neck region, 
abdominal/hepatic and pelvic masses and musculoskeletal 
disorders. PET has proved its value as a complementary test in 
itself, while frequently being conducted in addition to required 
MRI-routines.  

Hence, the usefulness of a combining of PET with MRI 
seems undisputed [6]. Though, the development of this hybrid 
MR/PET scanner has been postponed for a long time primarily 
by technical obstacles which have been harder to overcome 
compared to the combination of PET and CT. While these 
techniques represent modalities dealing with radiation 
(although in different wavelengths) and can thus be merged 
more easily. PET and MRI have different image acquisition 
principles. The strong magnetic field needed for successful 
MR-image acquisition is severely affecting the acquisition of 
the PET-signal. Especially, the regular photomultiplier method 
widely used for obtaining the PET signal does not work 
properly in a magnetic field. To avoid this limitation, 
modalities have been developed in which spatially separate 
MR- and PET-scanners are connected by means of a moving 
table. The patient is located on this table and experiences first 
PET and then MR imaging, without having to get up from the 
table between the scans. Nevertheless, this model does not 
allow simultaneous image acquisition and this is of course 
associated with lengthy examination protocols and with the risk 
of patient movement. 

While Positron Emission Tomography (PET) has great 
functional and quantitative capabilities, it does not provide by 
itself high-resolution images. This limitation could be 
overcome by integrating PET with other imaging modalities 
such as CT or MRI.   

III. MR-PET JOINT SPARSITY 
The expansion of MR-PET scanners allowed for 

simultaneous acquisitions of PET and MR data [7]. Though, 
the images are being reconstructed separately and often 
projected onto each other. True joint-reconstruction of both 
MR-PET could improve the resolution and image quality of 
both data sets. While MR and PET each provide unique and 
independent information, they share the same underlying 
anatomical features.  This feature  may be used in 
combination with other extracted structures to minimize 
motion artifacts. Hence, rather than considering the data from 
PET and MR separately, we can associate the two data sets in a 
synchronized reconstruction process. A combined sparsity 
based reconstruction method for multiple sensors supporting 
the super-resolution allows these anatomical similarities to 
enhance the image resolution, remove the motion artifacts and 
improve the two unique and independent data sets. 

The suggested method reconstructs multi-dimensional data 
by treating the two imaging modalities as additional 
dimensions of a single dataset, solving the following 
optimization problem: 

 
Figure 1 . The algorithm incorporates the two modalities joint 

sparsity. The super-resolution algorithm has been neglected for its 
simplicity. 

In this equation xMR and xPET promote their data sets 
sparsity by using the Compressed Sensing framework. 
Moreover, they represent the 3D image data sets corresponding 
to the MR k-space and PET sinogram. The algorithm considers 
multiplication by coil sensitivities, maps data between MR 
images and k space. The joint sparsity issue is the most 
important subject of cooperating of anatomical information 
between PET and MR datasets, and it could be expressed as 
follows: 

Ψ xMRI
i( )

Ψ xPET
i( )

2

= Ψ xMRI
i( )( )

2
+ Ψ xPET

i( )( )
2

 

Moreover, “an individual” sparsity term is associated with 
the MR dataset in order to remove undersampling artifacts and 
decrease the acquisition time. 

The numerous authors [7] recognized a spatially dependent 
regularization considered as the difference of the signal 
intensities in each voxel i :                                 

                      di = ψ xMR
i( ) − ψ xPET

i( )  

  
The regularization parameters ensure that joint information 

is shared only between the two modalities in areas where the 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 62



projected data sets are coherent, see figure above. The 
algorithm presented in this paper utilizes “double” sparsity, i.e. 
in MRI and PET domains. For these reasons, the author gives a 
sense of both aspects.  

IV. MRI DATA ACQUISITION ISSUES  
Some previous studies have struggled with acceleration 

issues. In this way, numerous sampling patterns such as spiral, 
radial, balanced steady-state free precession [1], view sharing 
[8], PROPELLER and other parallel imaging approaches have 
been tested. Among these acceleration methods, the most 
widely used method for MRI is parallel imaging [9]. Most MR 
devices loaded with coil arrays are able to modify sampling 
scheme including PROPELLER, generalized autocalibrating 
partially parallel acquisitions (GRAPPA) [10] or sensitivity 
encoding (SENSE) [11]. It usually leads to acceleration rates of 
2–3. In turn, Compressed sensing (CS) procedures, relatively 
recently introduced may lead to further acceleration of MRI 
procedures. MRI seems to be a perfect candidate for applying 
CS, because of its steady state of magnetization. Moreover, the 
temporal variation in signal is limited to blood vessel regions, 
and the resulting image data are sparse after applying an 
appropriate orthogonal transform. The authors in [11-15] have 
proposed temporal principal component analysis (PCA) as the 
sparsifying transform. However, scan time reduction in 
magnetic resonance imaging (MRI) remains an important issue, 
especially when considering acquisition of medical images in a 
clinical setting. Shortening of acquisition times offers reduction 
of costs and it also increases a patient throughput and comfort. 
Recently presented a combination of compressed sensing and 
parallel imaging, i.e. k-t SPARSE-SENSE [16,17] argued 
compellingly for using this technique for accelerating perfusion 
studies.  Unfortunately, this approach is highly sensitive to 
various type of motion, such as respiration related movement 
which decreases its temporal sparsity and implies temporal 
blurring in the reconstructed images. The sparsity in Magnetic 
Resonance Imaging (MRI) is applied to significantly 
undersample k-space. Compressed sensing MRI may become 
an essential medical imaging tool with an inherently slow data 
acquisition process. Combining CS and MRI offers potentially 
significant scan time reductions, with benefits for patients and 
health care economical factors [18]. Technically, MRI requests 
two major aspects for successful application of CS [19]: a. 
medical imagery is physically compressible by sparse coding in 
an appropriate transform domain (e.g., by wavelet transform), 
and b. MRI scanners are able to acquire encoded samples. The 
compressed sensing theory is available even from the samples 
harvested at lower than the Nyquist rate as long as the 
unknown image is sparse or compressible. 

V. COMPRESSED SENSING IN MRI 
Planning a CS scheme for MRI it can now be expressed as 

selecting a subset of the frequency domain. It can be 
efficiently sampled and is incoherent with respect to the 
sparsifying transform. Before the notion of incoherence will 
be introduced we should note that narrow optimization of 
incoherence must not be pushed too far [19]. Some of the most 
impressive and powerful results about CS assume one samples 
a completely random subset of k-space, which indeed gives 

very low coherence [20]. Though random sampling is an 
inspiring and instructive idea, sampling a truly random subset 
of k-space is generally impractical. All the practical sampling 
trajectories must satisfy hardware and physiological 
constraints. Hence sampling trajectories must follow smooth 
lines and curves. Furthermore, a uniform random distribution 
of samples in spatial frequency does not take into account the 
energy distribution of MR images in k-space, which is far 
from uniform. Most energy in MRI is concentrated close to the 
center of k-space and rapidly decays towards outside of k-
space. Therefore, eligible patterns for CS in MRI should have 
variable density sampling with denser sampling near the 
center of k-space, matching the energy distribution in k-space.  

Latest advances in compressed sensing theory reveals that 
sensing matrices whose elements are drawn independently 
from certain probability distributions guarantee exact recovery 
of a sparse signal from “an incomplete” number of 
measurements with high probability. Due to practical reasons it 
cannot be formulated in this way. In turn it could take Toeplitz matrix 
form. This fact prompted the authors [20] to consider Toeplitz block 
matrices as the sensing matrices. Technically all the sampling 
scheme parts are compressed and they are sparse. Formally, 
semi-PROPELLER k-spaces have been acquiring by 
compressive-sensing native PROPELLER blades., see figure 
below. 

 
Figure 2. Semi-PROPELLER sampling pattern. 
A formal approach for reconstruction could be briefly 

described in the following way. Let’s represent the 
reconstructed image by a complex vector m. The denotes 
the linear operator that transforms from pixel representation 
into the chosen representation. Let  denote the 
undersampled Fourier transform, corresponding to one of the 
k-space undersampling schemes. The reconstructions are 
obtained by solving the following constrained optimization 
problem: 

minimize  

s.t.  

where y is the measured k-space data from the MRI scanner 
and controls the fidelity of the reconstruction to the 

ψ

Fs

ψm
1

Fsm− y 2
< ε

ε
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measured data. The threshold parameter  is roughly the 

expected noise level. The  norm means . 

Minimizing the  norm of promotes sparsity [19]. 

The constraint  enforces data consistency. 

Formally, among all the solutions that are consistent with the 
acquired data, we want to find a solution that is compressible 
by the transform . It is worth mentioning that when finite-
differencing is used as the sparsifying transform, the objective 
becomes the well-known total variation (TV) penalty [19]. 
In this paper the author tested the application of CS to brain 
imaging by acquiring a full Nyquist-sampled data set which 
has been retrospectively undersampled. For each slice a 
different random subset of 80 trajectories from 192 possible 
trajectories has been tested. It implied a speedup factor 2.4. It 
has been shown that undersampling each slice differently 
reduces coherence compared to sampling the same way in all 
slices [6]. 

VI. INTER MRI-PET SIMULTANEOUS REGISTRATION 
ALGORITHM 

Precisely, image registration represents a highly non-
convex optimization due to the coupling conditions that must 
be satisfied. Typically this problem is highly ill conditioned 
and tends to local minima. Recently some researchers have 
argued that this kind of disadvantages could be overcome using 
discrete optimization algorithms. In this paper the author 
employs the new method called “deeds” utilizing a discrete 
dense displacement sampling for the deformable registration of 
high-resolution [21] volumes. In this method the image is 
characterized as minimum spanning tree.  

 
Figure 3.  An example of minimum spanning tree (MST)  
 

These kinds of constraints formulate cost functions that are 
being globally optimized via dynamic programming. It 
enforces the smoothness of the deformations. The usage of this 
method provides to significantly lower registration errors than 
for other state-of-the-art registration techniques, especially in 
the presence of big deformations. 

Discrete optimization is usually performed as Markov 
Random Field  (MRF labelling. For the purposes of our non-
parametric image registration framework, a graph is defined, 
in which the  nodes  p ∈ P  correspond  to  voxels (or  group 
of voxels)  and  in  which,  for  each  node,  there  is a  set  of 
(hidden) labels  fp  , which correspond to discrete 

displacements. The energy function to be optimized consists 
of two terms:  the data  (also called unary) cost D  (which is 
independent for each node); and  the  pair-wise  regularization 
cost R fp, fq( )  for any  node q ,which is directly  connected  

∈ N( )  with p : 

 E f( ) = D fp( )
p∈P
∑ +α R fp, fq( )

p,q( )∈P
∑  

The cost function presented above measures tracks two 
images voxel similarity. Technically, this factor is independent 
of the displacements of its neighbors. 

The α  is a weighting parameter which specifies the 
influence of the regularization. 

In the method adopted above the global optimum is found 
for a complex 3D registration problem with a very large 
(dense) label space within minutes using a reduced 
neighborhood interaction based on a minimum spanning tree 
(MST). The MST refers to a spanning tree with minimum total 
edge costs. This method reflects the underlying anatomical 
connectivity in a MRI image (see figure above).  

It is clearly seen that the maximum width is approximately 
P / log P .  The Prim’s algorithm product is a sorted list of 

all the nodes and the index of each node’s parent respectively. 
The global optimum is being found in the following way. 
At each node p , the cost Cp  of the most appropriate 

displacement could be calculated, given the displacement fq  

of its parent q : 

  Cp fp( ) =min
fp

D fp( )+ R fp, fq( )+ Cc fp( )
c
∑

"

#
$

%

&
'  

where c  are the p   offspring.  

The most relevant displacement could be found by 
replacing min with argmin in the equation 2.  

For all the leaf nodes the above equation could be 
calculated directly.  Afterward, the tree is expressed from its 
leaves down to the root node.  

To avoid local minimum issues, the authors [deeds] suggested 
a multi-level scheme, in which they only employ the highest 
resolution image.  For a given level, the image is subdivided 
into non-overlapping cubic groups of voxels. The similarity 
cost is first calculated for each voxel separately using dense 
displacement sampling, and then aggregated for all voxels of 
the same group  (this forms an additional intrinsic 
regularization and reduces the number of nodes).  
Subsequently, the regularization term is calculated only for 
each group of voxels (see MST figure). Using this approach, 
both high spatial accuracy and low computational complexity 
are achieved. 

ε

l1 x
1
= xii∑

l1 ψm
1

Fsm− y 2
< ε

ψ

a group of voxels formulating a single node

dense displacement sampling grid

parent
current node
children

children

passing
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VII. MRI CS AND SR BLENDING 
Combining the IBP algorithm and the estimated motion 
parameters， the super-resolution image is iteratively 

reconstructed. Starting with an initial guess  [22] for the 
high resolution image, the imaging process is simulated to 

obtain a set of low resolution images  corresponding to 

the observed input images  If  were the correct high 

resolution image (1), then the simulated images  should 
be identical to the observed images.  

The difference images  are used to improve the 
initial guess by "back projecting" each value in difference 

images onto its coresponding field in , yielding an 

improved high-resolution image . This process is repeated 
iteratively to minimize the remaining error. This iterative 
update scheme can be expressed by:  

      (2)
 

Where  is the number of low-resolution images arrow an 
upsampling operator by a factor s and p is a back projection 
kernel determined by  and . Taking the average of all 
discrepancies has the effect of reducing noise. 

 
Figure 4 1 The proposed algorithm chart flow 

VIII. COMPRESSIVELY SENSED PET SIGNALS 
The common goal of the main algorithm is to compressively 

sense all the input signals as much as possible. In this chapter 
author claims that PET signals compressed sensing is feasible. 

Radioactive substances that emit positrons are frequently 
being multiplexed to reduce the number of readout channels. 

These multiple signals could be combined into super-
resolution PET image. This framework part aims at combining 
the super-resolution and compressed-sensing in MR-PET 
hybrid systems. Fortunately, the underlying   detector   signals 
have a sparse   representation. Thanks to this feature sparse-
sense may be applied for developing new multiplexing 
schemes. One of CS key aspect is formulating relevant sensing 
matrices. Random methods may be applied to create them in 
the way that they satisfy the restricted isometry property.  

The method of formulating sensing matrices is a maximum 
likelihood framework. It allows for developing a new method 
for constructing multiplexing (sensing) matrices that will be 
able to recover signals more accurately in a mean square error 
sense compared than any other sensing matrices constructed 
by random construction methods [22].  

The main features of the algorithm methodology adopted 
over here are spatial multiplexing methods that have the 
ability to resolve the position and energies of interactions that 
occur in multiple crystal elements with the constant time 
sampling interval. The detector signals are being discretized in 
both the spatial and time domain.  

Technically, a mathematical model describing readout 
spatial multiplexing for this type of PET detector can be 
expressed by an undetermined linear system of equations 
mapping the crystal elements to a set of readout channels at 
one time point.  

The detector readout can be characterized by following 
formula: 

y =C x + nx( )+ e  

Where the matrix C  defines  the multiplexing  network  that 
maps  the d detector  pixels into the m readout channels  where 
d >m and e  is an additional random measurement noise 
vector produced by the multiplexing electronics.  
Each readout is represented by a linearly weighted sum of the 
photodetector pixels with weights described by the matrix C.  
A p-subdictionary is a matrix formed by using p codes of the 
dictionary.  
This system model is commonly applied in medical imaging 
applications besides PET such as SPECT and X-ray CT.  
The further goal is to recover the original position and 
magnitudes of detected events on the image array x  by 
decoding  the multiplexed  readouts y  at each time point or 
sampling interval. 
Formally, mathematical model for describing spatial 
multiplexing readouts is expressed as a sparse signal recovery 
framework.  
The compressed sensing methods such as L0 -norm and L1-
norm minimization of random sensing matrices are not 
sufficiently noise robust for PET is the certainly, not without 
significance. This is the reason why a new method for 
improving the L0 -norm minimization decoder and for 
constructing sensing matrices with better SNR for PET 
detectors compared to other compressed sensing, Anger 

f0

gk
0( ){ }

gk{ } f0
gk{ }

gk − gk
n( )

f0
f1

f n+1( ) = f n( ) +
1
K

Tk
−1 gk − gk

n( )( )↑s( )* p( )
k=1

K

∑
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multiplexing, and cross-strip multiplexing have been 
developed. 
Moreover, a nonlinear reconstruction must be done to impose 
both sparsity of the image representation and consistency with 
the acquired data. Compressed sensing may be used to 
multiplex a large number of individual readout sensors to 
drastically reduce the number of readout channels in a large 
area PET block detector. The compressed sensing idea can be 
utilized to treat PET data acquisition as a sparse readout 
problem and achieve sub-Nyquist rate sampling, where the 
Nyquist rate is determined by the pixel pitch of the all 
individual SiPM sensors. In this way, the sensing matrix is 
prepared by using discrete elements or wires that uniquely 
connect pixels to readout channels [22]. Technically, by 
analyzing the recorded magnitude on several ADC channels, 
the original pixel values can be recovered even though they 
have been scrambled through a sensing matrix. In a PET block 
detector design comprising 128 SiPM pixels arranged in a 16 
× 8 array, compressed sensing can provide higher multiplexing 
ratios (128:16) than Anger logic (128:32) or Cross-strip 
readout (128:24) patterns while resolving multiple 
simultaneous hits. Unlike Anger and cross-strip multiplexing, 
compressed sensing may recover the positions and magnitudes 
of simultaneous, multiple pixel hits. Interpreting multiple pixel 
hits can be applied to improve the positioning of events in 
light-sharing designs, inter-crystal scatter events, or events 
that pile up in the detector. 

IX.  SUPER-RESOLUTION IN PET AND ITS 
REGULARIZATION ALGORITHM 

Basing on MR-PET joint sparsity and its common product 
features, the MR data sets based motion model parameters we 
can utilize them to promote the PET image enhancement. 
Formally, the same super-resolution algorithm is exploited, 
see figure below. 

 
Figure 5. The PET input sensing. 

X.  DISCUSSION AND EXPERIMENT 
In this paper, the practicability of implementing super 
resolution into PET scans has been exposed. 
The method has been applied using Biograph mMR scanner 
data sets and internal organ shifts as well as transaxial 
rotational displacement. In this way two different sets were 

acquired. The first one with all detectors operational (baseline) 
and once with 8 equidistant detector blocks turned off 
(partially sampled, 12% detectors have been turned off. The 
resulting partially sampled sinogram is after that split into two 
different components, each sparsely represented in a specific 
transform domain.  
An iterative numerical optimization algorithm was then used 
to recover the PS sinogram based on the solution of a 
combination of conjugate gradient, underdetermined system of 
equations and block-coordinated relaxations. In addition, the 
total variation has been minimized for the first component to 
direct it into much more convenient a piece-wise smooth 
model. Finally the two components were added together to 
achieve the sinogram, which was used to compare with the 
original PS sinogram. Compressed sensing seems to be the 
perfect choice for recovering PS PET data. This approach can 
potentially be used to generate PET images with accurate 
quantitation while reducing number of detectors/ring. 

XI.  CONCLUSION AND KEY BENEFITS 
PET/CT and other combined scanners have gained their 

importance over the last decade. Understanding the nature and 
purpose of these tools is thus the first step to becoming an 
important subject of research area. The proposed algorithm 
may reduce artifacts caused by undersampled data, even in the 
presence of motion. 

This report presents the successful use of a super-resolution 
algorithm to enhance the resolution of MR/PET images. With 
an increase in scan time for one FOV, a patient trial showed 
that the super-resolution technique in the axial direction is 
feasible in a clinical setting without increasing the radiation 
dose and with no changes in hardware. As expected, the 
proposed method improves the spatial resolution, but also 
enhances noise and artefacts. This effect becomes more visible 
as the number of super resolution image reconstruction 
algorithm iterations increases. Preliminary trial results show 
that the super-resolution approach can be applied to MR/PET 
imaging, noticeably improving the spatial resolution 
achievable. During an emission tomography study, induced 
motion due to patient breathing can lead to artifacts in the 
reconstructed image. This factor may produce less accurate 
diagnosis and more important, incorrect radiotherapy 
planning. The methodology to correct for respiratory motion 
in the super-resolution image reconstruction step has been 
developed. It resulted in motion artifacts free scan. The results 
without a doubt demonstrate an improvement in resolution and 
contrast ratio, see figure 3.  

The increase in anatomical detail in the functional PET 
image aids in the registration of the image with a 
corresponding anatomical image from another modality such 
as MRI. This would especially be of significance in scanners, 
which are dual-modality. The super-resolution technique 
presented here provides a method of approaching these 
resolution goals with available clinical MR/PET scanners. 

Higher resolution of PET images may have several 
implications in research and clinical practice. However, all the 
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studies are limited by the spatial resolution of the presently 
available instrumentation. Higher PET resolution would be 
especially helpful for improving sensitivity for detection of 
small tumors. Higher resolution PET images provided by a 
super-resolution algorithm may show a more differentiated 
anatomical structure, see Figure 3. The design of hybrid 
PET/MR is still an open issue and has been recognized as the 
grand challenge of the next years. Results presented above are 
preliminary and subject to completion. The expectations 
related to their performance are high, mostly because of the 
potential for superior tissue contrast inherent in the MR 
modality, as well as the potential for multiparametric 
functional imaging in conjunction with PET. This work 
struggles with combining PET/MR with compressed sensing 
and super-resolution. This modality faces the financial aspects 
and this issue needs to be considered. Therefore, whether the 
higher acquisition costs for PET/MR will be balanced in the 
long-term still needs to be confirmed. 
 

 
  

Figure 6. From the upper left to the lower right: the uncorrected 
image after motion consisting of a modeled shift occurring over the 
course of the entire acquisition time and reconstruction result and the 
reconstruction results of the Shepp-Logan phantom. The sampling 
rates are 25, 40, and 60 percent from left to right, respectively. 

 

 

 

Figure 7. The 4 quarters. From left to right. Upper row: 
downsampled and no motion correction applied, downsampled and 
motion correction applied. Lower row: motion corrected regular 
sampling scheme (with no downsampling applied), super-resolution 
CS with motion compensation (proposed algorithm). 

 

The experiment has been conducted for two different types of 
input data. All the initial experiments were conducted on a 
1.5T MR Signa Excite scanner sequences. All the CS 
reconstructions have been implemented in Matlab. 
Furthermore, two different linear schemes were applied for 
comparison; zero-filling with density compensation (ZF-w/dc) 
and reconstruction from a Nyquist sampled low-resolution 
(LR) acquisition. The LR acquisition has been obtained from 
centric-ordered data with the same number of data samples as 
other undersampled sets, see figure 2. The goal of simulation 
was to examine performance of the compressively sensed 
super-resolution image reconstruction compared to the LR and 
Zero Filling with density compensation methods. The further 
objective was to present superiority of variable density 
random undersampling over uniform one. Hence, sets of 
randomly undersampled data with uniform density as well as 
that with variable density have been constructed from “full” 
irregularly sampled k-space trajectories. In this test a T2-
weighted multislice k-space data of a brain has been analyzed. 
Figure 2 shows simulation results. While each CS exhibits a 
decrease in SNR because of the incoherent interference, the 
uniform density undersampling interference is much more 
visible and more “structured” than that for variable density. It 
is worth underlining that CS leads to acquisition acceleration 
when compared to the regular k-space sampling pattern.  This 
framework part aims at combining the super-resolution and 
compressed-sensing in MRI scanners. 
The second subsection goal is to illustrate inverse problems of 
compressed sensing for MRI on phantom data. In particular, 
the author shows reconstruction examples of the Shepp-Logan 
phantom from sparse projections, with 25 and 12 radial lines 
in FFT-domain as welll as reconstruction from limited-angle 
projections, with a reduced subset of 60 projections within a 
90 degrees aperture. Technically semi-PROPELLER k-spaces 
have been acquiring by compressive-sensing native 
PROPELLER blades. The low-resolution acquisition has been 
included in centric-ordered data with the same number of data 
samples as the undersampled sets, see figures 3 and 5. 
 

 
Figure 8. The Shepp-Logan phantom results comparison. From the 
left: the PROPELLER sampling matrix reconstruction output, the 
proposed algorithm result with enhanced resolution. The lower row 
exposes detailed images. 
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Figure 9. A patient case. From left to right: The axial slices reveal 
the PET (A) and MR (B). The images have been captured at each 
position of the resected brain strcutures. and the resulting MR/PET 
data set (the last two quarters) - no signs of motion artifacts. 
 
 

 
 
Figure 10. A: An example of 18F-FET PET scan. B: MR-image, the 
last two quarters represent: Fusion of PET and MR data sets. 
 

 
Figure 11. Giant Cell Arteritis Axial fused PET/CT image showing 
diffuse abnormal FDG uptake in the brachiocephalic and subclavan 
arteries. From left to right:  conventional PET with CS, the super-
resolution image with motion correction. 

 
 

Figure 12. Giant Cell Arteritis Axial fused PET/CT image showing 
diffuse abnormal FDG uptake in the brachiocephalic and subclavan 
arteries. From left to right:  conventional PET with CS, the super-

resolution image with motion correction. 
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