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Abstract—Fixed-block railway signaling systems are both 

regarded as Discrete Event System (DES) due to having DES-like 

features in their structure and safety-critical due to the fact that the 

occurrence of a fault may result with a huge loss of life and property. 

Therefore, DES-based modeling and fault diagnosis methods which 

are also recommended in the railway related safety standards are 

applicable to fixed-block signaling systems. On the other hand, the 

design steps of software for safety-critical systems are guided by 

software lifecycles. Among different lifecycle models proposed in the 

literature, the V-model is one of the most well-known software 

development lifecycle model. In this study, a modification for the V-

model is proposed by adding a DES-based fault diagnosis step to the 

V-model. The proposed method is also explained with a case study 

on the German Ks signaling system. 
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I. INTRODUCTION 

IKE in all other safety-critical system applications, 

software development process for railway signaling 

systems are also guided by software lifecycle models. For 

railway signaling systems, in addition to the recommendations 

of the EN 50126, EN 50128 and EN 50129 standards, 

recommendations of the IEC 61508 standard should be taken 

into consideration. These standards recommends to use the V-

model for software development processes (the V-model 

lifecycle). Definition of the scope of the software, hazard and 

risk analysis, definition of the software requirements, 

determination of the safety requirements, software design, 

software integration, software tests, installation, 

commissioning, validation, operation, maintenance, repair and 

decommissioning are dealt with in this lifecycle Moreover, the 

IEC 61508-7 [1] describes fault diagnosis as the process of 

determining if a system is in a faulty state or not whereas, 
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DES-based fault diagnosis and the diagnosability is described 

by Sampath et al. [2] as the detection with a finite delay 

occurrence of failures of any type using the record of 

observable events. The diagnoser is obtained by using the 

system model itself and it observes online the behavior of the 

system [3]. In particular, the EN 50128 standard, Table A.3 

(Software Architecture) highly recommends to use fault 

detection and diagnosis for SIL3 (Safety Integrity Level) 

systems [4]. 

In this study, the DES-based fault diagnosis method is 

added as an intermediate step into the V-model software 

development lifecycle. The proposed modification provides 

advantages in three ways: 1. checks if the constructed software 

model covers all software requirements related with the faults, 

2. decrease the costs by early detecting the modeling 

deficiencies before passing to the coding and test phases in the 

V-model, 3. enables designers more plain and simple coding. 

The paper is organized as follows: a brief description of the 

DES-based fault diagnosis concept is given with an example in 

section II, the V-model lifecycle and the proposed 

modification is given in section III, the German Ks signaling 

system with a case study is explained in section IV and finally, 

the paper ends with a conclusion in section V.  

II. DISCRETE EVENT SYSTEMS BASED FAULT DIAGNOSIS AND 

A RAILWAY POINT STUDY 

An event is defined by [5] as an encountered specific action, 

unplanned incident caused by nature or a result of numerous 

condition which are suddenly all met. A DES is a discrete-

state, event-driven system in which the state evolution of the 

system depends entirely on the occurrence of discrete event 

over time. 

Representation of such a system with a model is necessary 

as in the conventional control theory. Events in DESs can be 

classified as observable and unobservable events. A system (or 

a software module) is said to be diagnosable if it is possible to 

detect, with a finite delay, occurrences of certain unobservable 

events which are referred to failure events [2]. In other words, 

a system is said to be diagnosable if the type of the fault is 

always detected within a uniformly bounded number of firings 

of transitions after the occurrence of the fault [6]. The 

diagnoser is built from the system model itself and performs 

diagnostics when it observes online the behavior of the system. 
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States of the diagnoser carry failure information, and 

occurrences of failures can be detected with a finite delay by 

inspecting these states [3]. 

Since, Finite state Machines (FSM) and Petri nets (PNs) are 

regarded as DES based modeling methods and particularly, 

these methods are also highly recommended by the railway 

related functional safety standards [4], it is possible to use 

these methods to apply DES-based fault diagnosis. Due to the 

page restriction, the concept of DES, PNs and the rules for the 

diagnoser construction and checking the diagnosability of a 

system are not given here. The reader is referred to [2], [3], 

[5]-[8] for detailed explanation. 

Railway points are used to provide track changes. Railway 

points have two position indication, namely, Normal (Nr) and 

Reverse (Rev). Additionally, three main faults may occur in a 

point. These faults are identified in the software requirements 

specification phase of the V-model, as follows: 

 F1: Point may not reach to desired position in a predefined 
time while moving from Nr to Rev, 

 F2: Point may not reach to desired position in a predefined 
time while moving from Rev to Nr, 

 F3: Both position indications may receive at the same time. 

According to these definitions, an example of diagnosable 

and not diagnosable PN models of a railway point are given in 

Fig. 1 and Fig. 2, respectively. The meanings of the places and 

the transitions of the models given in Fig. 1 and Fig. 2 are 

given in Table 1 and Table 2, respectively. It should be noted 

that, the striped places and transitions represents the 

unobservable places (Puo) and transitions (Tuo) whereas the 

other places (Po) and transitions (To) are observable. The 

labels (rectangles) given in Fig. 1 and Fig. 2 are used to reduce 

the complexity of the model and represents the related 

connected place. 

Representation of the PN models given in Fig. 1 is as 

follows: 
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Initially, the point is assumed to be in Nr position (place 

PPM_5 has a token). The initial position of the point in the 

diagnoser is illustrated by the initial state 

({0,0,0,0,1,0,0,0,0,0,1,0,N}). If all safety criteria are met, then 

the blades of the point moves to Rev position (token in place 

PPM_5 moves to place PPM_6) by an incoming request from the 

traffic control center. In this case, the state of the diagnoser 

will be ({0,1,0,0,1,0,0,0,0,0,1,0,N}) by observing the marking 

PM_1M̂  and the observable transition tPM_2. 

On the other hand, if both position indications are received 

at the same time when the point is in initial state, that is, the 

marking PM_10M̂  of the diagnoser is observed, the state of the 

diagnoser becomes ({0,0,0,0,0,0,0,0,0,0,1,0,F3}). Since the 

faults are regarded as unobservable events, the decision of any 

fault is realized by observing the related marking of the 

diagnoser, which is PM_10M̂ , in this case. 

In case of detection of any predefined fault, the interlocking 

system warns the traffic control center and moves the system 

to the predetermined safe state. For instance, if this condition 

occurs while executing a route reservation procedure, then the 

reservation will be rejected immediately. 
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Fig. 1 PN model and its diagnoser (diagnosable) given in (1) 
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TABLE I.  MEANINGS OF PLACES AND TRANSITIONS IN THE PN MODEL 

GIVEN IN FIG. 1. 

Place Meaning Transition Meaning 

PPM_1 
Nr position 

requested 
tPM_1 

Safety criteria are 

met, point Nr 

position request 

PPM_2 
Rev position 

requested 
tPM_2 

Safety criteria are 

met, point Rev 

position request 

PPM_3 
Point is moving 

to Nr position 

tPM_3 

(tPM_6) 
Request ignored 

PPM_4 
Point is moving 

to Rev position 
tPM_4 

Point left the Rev 

position 

PPM_5 
Point is in Nr 

position 
tPM_5 

Point left the Nr 

position 

PPM_6 
Point is in Rev 

position 

tPM_7 

(tPM_8) 
Point reached to 

Nr (Rev) position 

PPM_7 
Fault type F1 has 

occurred 

tPM_9 

(tPM_10) 
Predefined filter 

time has expired 

PPM_8 

(PPM_10) 

Point is faulty, 

F1 (F2) 

tPM_11 

(tPM_12) 
Nr (Rev) position 

request 

PPM_9 
Fault type F2 has 

occurred 

tPM_13 

(tPM_14) 

Point moved to Nr 

(Rev) position and 

the fault 

acknowledged 

PPM_11 
Unobservable 

fault restriction 
tPM_f1, tPM_f2 

Point indication 

fault 

PPM_12 
Point is faulty 

(F3) 
tPM_f3 

Point position 

fault 

 

Representation of the Petri net models given in Fig. 2 is as 

follows: 
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The diagnoser given in Fig. 2 is not diagnosable because it 

is not possible to distinguish the type of the fault after the 

observation of the marking PM_5M̂ . The software model given 

in Fig. 2 seems to contain all of the software requirements 

related with the faults but the developed software model is not 

diagnosable which means only one of the faults F1 or F2 will 

be warned by the PN model. Therefore, the designers should 

revise their PN model before passing to the coding phase. 

Otherwise, this deficiency will result an unsuccessful test case 

in the module testing phase of the V-model. 

In general, these kind of design faults are detected in the 

testing phase but by adding the diagnosability checking, it 

become possible to detect the faults in the design phase just 

before passing to the testing phase. According to EN 50128, 

the software requirements should fully coincide with the 

software model, in order to pass the software tests. In other 

words, since there are three kinds of faults defined in the 

software requirements at the beginning of the software 

development phase, the developed software model should fully 

contain the software requirements. The V-model and 

advantages of adding the fault diagnosis step into the V-model 

will be explained in the next section. 

 

TABLE II.  MEANINGS OF PLACES AND TRANSITIONS IN THE PN MODEL 

GIVEN IN FIG. 2. 

Place Meaning 
Transitio

n 
Meaning 

PPM_1 
Point is moving to 

Nr position 

tPM_1 

(tPM_2) 

Movement request is 

received and safety 

criteria are met for Nr 

(Rev) position 

PPM_2 
Point is moving to 

Rev position 

tPM_3 

(tPM_4) 
Point reached to Nr 

(Rev) position 

PPM_3 
Point is in Nr 

position 

tPM_5 

(tPM_6) 
Point request to Nr 

(Rev) position 

PPM_4 
Point is in Rev 

position 

tPM_7 

(tPM_8) 

Point moved to Nr 

(Rev) position and the 

fault acknowledged 

PPM_5 
Fault type F1 or F2 

has occurred 
tPM_9 

Predefined filter time 

has expired 

PPM_6 Point is faulty (F3) 
tPM_f1 

(tPM_f2) 
Point indication fault 

PPM_7 

Point is moving 

from one position to 

another 

tPM_f3 Point position fault 
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Fig. 2 PN model and its diagnoser (not diagnosable) given in (2) 
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III. THE V-MODEL LIFECYCLE AND THE MODIFIED V-MODEL 

The V-model lifecycle is introduced by Paul Rook in 1986 

[9] to represent a guideline for software development 

processes. The main aim of the V-model is to improve the 

efficiency of the software development and the reliability of 

the software produced. The V-model offers a systematic way 

from project initiation to product phase out [9]. Instead of 

leaving the tests at the end of the project development, V-

model proposes the verification of each phase of the 

development process. The V-model, defined in IEC61508-3 

[10] is given in Fig. 3. 

Before initializing a software development process 

according to the V-model, a software planning phase have to 

be realized where software quality assurance plan, software 

verification and software validation plans and software 

maintenance plan are fully defined. Later, the software 

requirements should be determined in cooperation with the 

customer and the stakeholders. By using the selected software 

architectures including the modeling methods, the designers 

develop software modules (or components). Verification of 

each phase is also realized immediately when the phase is 

over. As a summary, the left-hand side of the V-model 

represents the decomposition of the problem from business 

world to technical world [11]. After the coding phase, the right 

side of the V-model [10] concerns the testing of the developed 

software. 

A. The Modified V-Model  

As mentioned in [9] and [12], the workforce needed and the 

cost of the software development process increases with 

respect to the early phases of the development lifecycle. The 

proposed modification of the V-model in this paper enables 

designers to check their software modules once again before 

passing to the coding phase. This additional workload is 

realized by checking the diagnosability of each module. As 

mentioned in the previous section, if a module is diagnosable, 

then it is assumed as the software module it fully meets the 

software requirements; especially, the requirements related 

with the failure modes. This intermediate step can be seen as 

time-consuming extra work. But, instead of turning back from 

module testing to the module design phase, the proposed phase 

provides a last inspection of the modules before passing to the 

coding phase and module tests. The modified V-model is 

given in Fig. 4. 

The proposed modification given in Fig. 4 has advantages in 

three ways: 

1. Checks if the constructed model covers all software 

requirements related with the faults, 

If the developed software model is not diagnosable, then it 

means that the software model does not contain all software 

requirements. 

2. Decrease the costs by early detecting the modeling 

deficiencies before passing to the coding and test phases 

in the V-model, 

It is obvious from the Fig. 4 that, after passing to the coding 

phase, the designer can only go back to module design phase 

at the end of the module tests. The cost of fixing an error at 

the design phase is 3-8 units whereas, the cost of fixing an 

error at the test phase becomes 21-78 units [13], [14]. 

3. Enables designers more plain and simple coding, 

An example programmable logic controller (PLC) code 

snippet for a two-aspect signal model with diagnoser and 

without diagnoser is given in Fig. 5. It is obvious from the Fig. 

5 (a) and Fig. 5 (b) that the model with diagnoser is simpler. 

The diagnoser compares the actual bit values of the states of 

the PN model with its faulty states. 

IV. THE KS SIGNALING SYSTEM AND A CASE STUDY 

A. Fixed-Block Signaling System Components 

In fixed-block railway systems, the railway lines are divided 

into fixed-length sections (railway tracks). Each railway track 

is equipped with an axle counter or a track circuit which can 

detect the train occupancy and, each railway track has an 

entrance signal and an exit signal to warn drivers about the 

railway track in front of them. Trains can pass from one track 

to another by the points placed at the necessary locations. 

Since the trains do not have any steering mechanism, they use 

railway points to pass from one track to another. In addition to 
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Fig. 3 The V-model, software safety integrity and development lifecycle  
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Fig. 4 The modified V-model 
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this, all railway traffic is provided by the cooperative work of 

the traffic control center and the interlocking system. Trains 

can move according to the route reservation procedure where a 

route can be assumed as cascade-connected railway tracks. 

Routes are defined at the beginning of the software 

development phase in the interlocking table. For detailed 

explanations and definitions on fixed-block signaling systems, 

the reader is referred to [15] [16]. 

B. The Ks System 

The Ks (Kombinationssignale) system was designed to 

ultimately replace the West German Hp system and the east 

German Hl System with a single new one, in connection with 

the installations of new electronic interlocking systems. The 

Ks signals like the Hl signals combine the function of distant 

and main signals in one single head, that is they indicate the 

speed after this signal, as well as the speed the next signal will 

induce. Note that the Ks system has three lights; green, yellow 

and red (see Fig. 6). It uses one colored light which basically 

shows the number of open blocks, whereas red means no block 

is open, yellow one and green two. A green light can also 

mean that information is only available for one block. At 

distant signals, the track section following the signal is treated 

like a block which will always be open, therefore never 

allowing a red light. For each block a speed and direction 

information can be given. Alphanumerical indicators are used 

to display that information. There are also additional 

indicators, post plates, subsidiary signals (Zs), protection 

signals (Sh) and etc. [17]. 

 

C. Case Study: Constructing the PN model and diagnoser 

of a Ks signal 

In this section, the PN model of signal A (see Fig. 7) and 

its diagnoser will be obtained. There are two possible routes 

from signal A (Ks signal) where the route 1 allows 160 km/h 

speed. Route 2 allows only 100 km/h speed and there are 

three other sub routes available. Signal B (Hp signal) has 

direction indicator which will show 'R' for the routes 2.1 and 

2.2, and 'W' for the route 2.3. Additionally, the route 2.1 

allows reduced speed. 

The signal A and the signal B will have the following main 

aspects: 

Signal A: 

 H0: Stop, 
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Fig. 5 Two-aspect signal PN model with diagnoser (a) and conventional 

programming (b) 
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Fig. 6 Example aspects of the Ks system 
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Fig. 7 Case study track layout 
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 H160: Route 1 is set and there is no speed restriction, 

 H100: Route 2 is set and there is 100 km/h speed limit. 

Signal B: 

 H0: Stop, 

 H40R: Route 2.1 is set and there is 40 km/h speed limit, 

 H160R: Route 2.2 is set and there is no speed restriction, 

 H160W: Route 2.3 is set and there is no speed restriction. 

On the other hand, if the route 2 is set, then the main signals 

(Hauptsignal - H) of the signal B becomes distant signal 

(Vorsignal - V) for the signal A. Therefore, the signal A shows 

the following aspects (see Fig. 8): 

 H0: Stop, 

 H160: Route 1 is set and there is no speed restriction, 

 H100+V0: Route 2 is set and there is 100 km/h speed 

limit. 

 H100+V40R: Route 2 + Route 2.1 are set, there is 100 

km/h speed limit and expect 40 km/h speed limit, 

 H100+V160R: Route 2 + Route 2.2 are set, there is 100 

km/h speed limit and expect no speed limit, 

 H100+V160W: Route 2 + Route 2.3 are set, there is 100 

km/h speed limit and expect no speed limit. 

Moreover, seven faults may occur in the signal faults are 

identified in the software requirements specification phase of 

the V-model, as follows: 

 F1: Signal red color request is received but the signal is not 

lit, 

 F2: Signal yellow color request is received but the signal is 

not lit, 

 F3: Signal green color request is received but the signal is 

not lit, 

 F4: Red and yellow are lit at the same time, 

 F5: Red and green are lit at the same time, 

 F6: Yellow and green are lit at the same time, 

 F7: Red, yellow and green are lit at the same time. 

According to the definitions given above, the PN model and 

the diagnoser of the signal A is given in Fig. 9. The meanings 

of the places and the transitions of the PN model given in Fig. 

9 is given in Table 3. 
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TABLE III.  MEANINGS OF PLACES AND TRANSITIONS IN THE PN MODEL 

GIVEN IN FIG. 9. 

Place Meaning Transition Meaning 

PA_1 Signal is red tA_1 - tA_3 
Turn signal to 

yellow 

PA_2 
Signal is 

green 
tA_4 - tA_6 Turn signal to green 

PA_3 
Signal is 

yellow 
tA_7 - tA_9 Turn signal to red 

PA_4 

Red signal 

request is 

received 

tA_10 Signal is red 

PA_5 

Yellow signal 

request is 

received 

tA_11 Signal is yellow 

PA_6 

Green signal 

request is 

received 

tA_12 Signal is green 

PPM_7 

(PPM_8 or 

PPM_9) 

Fault type F1 

(F2 or F3) has 

occurred 

tA_13 - tA_15 
Predefined filter 

time has expired 

PPM_10 - PPM_13 

Color fault 

restriction of 

the signal  

tA_16 - tA_23 
Fault 

acknowledgment 

PA_F1 - PA_F7 
Signal color 

fault 
tA_f1 - tA_f7 

Related fault has 

occurred 
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Fig. 8 Aspects of Signal A 
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Fig. 9 PN model of the signal A (3) and its diagnoser 

V. CONCLUSION 

Since systems (or its subsystems) where occurrence of a 

fault may cause severe harm or a great number of death to 

human beings are considered as safety-critical systems (e.g. 

railway systems, an aircraft or nuclear power station control 

system), the development steps of such safety-critical software 

must be carried out very carefully. The recommendations of 

the international safety standards and the national rules have to 

be considered by the designers, developers and engineers to 

satisfy the required safety level and fulfill the software 

requirements. 

By adding the DES-based diagnoser design and the 

diagnosability check in to the V-model enables the designers 

to verify their models before passing to the testing phase and 

additionally, it become possible to detect the model 

deficiencies in the design phase. 

Modification of the V-model by adding the application of 

the DES-based fault diagnosis can be seen as a time-

consuming and extra workload to the project work group but 

provides a cross check between the obtained models and the 

software requirements, decrement in the cost of fixing the 

faults in the software development process and an increment in 

the readability of the code. 
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