
The decision algorithm selection for ensuring the
quality assurance of the components of the multi-

version execution environment

Igor Kovalev, Vasiliy Losev, Mikhail Saramud, Mariam Petrosyan

Abstract: the article suggests a selection technique for optimal
voting algorithm for the decision block of the multi-version
execution environment. It allows you to choose an algorithm that
guarantees the quality characteristics of the developed component.
Different decision-making algorithms have their own strengths and
weaknesses: some are more resistant to related faults, but they do not
work adequately with a large percentage of "inaccuracies," while
others, on the contrary, are resistant to both "inaccuracies" and
relatively unreliable versions, but they are mistaken for each related
error, etc. Therefore it is necessary to check all of the algorithms in
an environment simulating the characteristics of the system under
development. Thus, we get the characteristics of the quality of the
algorithm in conditions exactly the same, that it will work in our
system. The existent algorithms of a decision making in multi-version
execution environments are described in the article. In addition, the
own modifications of existing voting algorithms and t / (n-1)
algorithm are suggest by authors. The software implementation of
the simulation environment that implements simulations of versions
with specified characteristics and proposed modified algorithms is
considered. Given the characteristics of the system, the environment
makes it possible to obtain the quality characteristics of all
implemented decision algorithms. If, by results of modeling, there
exists an unambiguously superior algorithm, the system specifies it
explicitly, if there is no such algorithm, then, the developer is
provided with numerical and graphical simulation results for self-
selection. The results of the simulation are considered; moreover, the
dependence of the reliability indicators of the system on its input
parameters is shown. The comparative analysis of various decision
algorithms is made basing on simulation results.

Key words: NVP; NVS; fault tolerance; quality assurance; life
cycle; reliability; voting algorithms; simulation modeling; NVX.

I. INTRODUCTION
In modern time, the task of creating fault tolerance control

systems is actual, both for dangerous and complex production
processes, and for autonomous unmanned objects. While
optimizing the manufactures the management of the
complicated continuous processes is transferred to modern
industrial controllers and computer systems. The field of
unmanned autonomous objects is also actively developing,
beginning with the “copter”, multi-rotor systems which find
more applications in everyday tasks from photo-video
shooting from the air to the delivery of goods from online
stores, ending with unmanned cars, the commercial models of
which has already begun to appear on public roads [1].

The authors are with the Reshetnev Siberian State University of Science and
Technology, Russian, Krasnoyarsk, Russia

For all these tasks there is a need for a reliable software as
a whole as a control system and for specific processes that are
particularly critical to reliability. The most effective method of
increasing the reliability of a software to date is the approach
with the introduction of software redundancy to the multi-
version programming [2].

However, in the software systems it is impossible to
duplicate versions as it is done in a hardware. Thus, we will
duplicate all errors, both algorithmic and coding errors, and
we will not achieve an increase in the reliability of the
redundant system [3]. The composition of the multi-version
system is to consist of functionally equivalent but
algorithmically different versions, ideally all versions must be
done by different developers, in different programming
languages, in different development environments, using
different libraries, if necessary[4].

This approach permits to minimize the most "dangerous"
type of faults, multi-version or related faults [5], these are
incorrect but coincident outputs of the versions. This type of
faults is the most dangerous because it is the most difficult to
detect, since in a situation where, for example, 3 out of 5
versions gave different erroneous outputs, it is possible to
determine the correct output for the system by eliminating
three faults. In the case where the erroneous outputs are equal,
it is extremely difficult to decide correctly.

To guarantee the quality of a complex system as a whole,
we need to ensure the quality of its constituent components. In
the case of fault-tolerant software based on software
redundancy, we need to guarantee not so much the quality of
versions as the decision block that will choose the correct
output from the version of the response collection, and it is the
quality of its work that is most critical for the fault-tolerance
of the system that being developed. Therefore, the main task
of system developers is to guarantee the quality of the decision
block. At the same time, the quality assurance of the versions
will for the most part be the task of third-party developers,
since the creation of a version for ensuring diversification is
transferred to various developers.

Considering the stage of the life cycle of the design of
fault-tolerant on-board software, we need to determine the
algorithms underlying the decision block. At the current time,
there are many algorithms used to determine the correct exit
from the set of response versions. Most often - these are
different voting algorithms, we will consider the most

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 243

common: voting by an absolute majority, voting by an agreed
majority, fuzzy voting by an agreed majority, a median vote.
Also we will consider the t / (n-1) decision-making algorithm
and suggest modifications to existing voting algorithms and t /
(n-1) decision algorithms.

Figure 1. Stages of the life cycle

If you develop a system without evaluating the quality of
the system in the early stages of the software life cycle (Figure
1), then assessing the quality at the testing stage of the
resulting system, you can find that its quality indicators do not
reach the required values, because the algorithms embedded in
it do not allow it with any software implementation. This is a
very dangerous situation, because it leads to the abandonment
of the already developed product and return to the stage of
system analysis to replace the algorithms with those that will
allow the system to reach the required quality indicators. As
can be seen in figure 1, this will actually lead to a repetition of
all the work done. Therefore, it is most reasonable to evaluate
the characteristics of the system from the very earliest stages
of the life cycle, so that solutions that knowingly fulfill the
qualitative requirements to the system are always transferred
to the next stage. Thus, we will get rid of the risk of
abandoning the developed system because of the error in
choosing the algorithm in the early stages of the life cycle.
This will not only ensure the quality of the system being
developed, but also reduce the risks of material and time
losses during its implementation.

We offer a quality assurance methodology for
guaranteeing the quality of the component of the fault-tolerant
software - the decision-making unit in the multi-version
execution environment at the design stage by choosing a
algorithm that is known to be optimal under known system
characteristics. Different decision-making algorithms have
their own strengths and weaknesses: some are more resistant
to related faults, but they do not work adequately with a large
percentage of "inaccuracies," while others, on the contrary, are
resistant to both "inaccuracies" and relatively unreliable
versions, but they are mistaken for each interverted error [6],
etc. Therefore it is necessary to check all of the algorithms in
an environment simulating the characteristics of the system
under development. Thus, we get the performance
characteristics of the algorithm exactly in the conditions in
which it will work in our system.

In the case of development for embedded systems and
controllers, all software devices, from the operating system to
the application software, is actually one executable file, and if
an incorrect algorithm choice is detected at the operational
stage, replacing even a small software component is a
problem, since it leads to the need to recompile the entire

project and replace the firmware on the device, which is not
always possible, either because of the hardware features of the
device, or its inaccessibility, in the case when it o has already
been put into operation.

For making a decision what output from multiple versions
should be recognized as a true one and sent to the output are
applied various algorithms [7], the most common voting
algorithms are:

1. The voting algorithm by an absolute majority. It is
necessary that one variant is voted by an absolute majority of
versions, i.e. (N + 1) / 2, where N - number of versions. For
example with five versions it is necessary that one variant is
voted at least by three versions, otherwise it is considered that
the correct answer cannot be selected.

2. The voting algorithm by an agreed majority. It is
necessary that in one version more versions are voted. It is not
necessary that the number of votes is more than half of the
number of versions. For making a decision, it is enough that
more versions are voted for a certain variant than for the
others. In the event that the same number of versions voted for
in several variants, any one of them is chosen, since it is
considered that they are equally "correct".

3. The fuzzy voting algorithm by an agreed majority. This
algorithm is similar to the past algorithm by the mechanism of
voting. However, the elements from the theory of fuzzy sets
are added here, each version can vote for several close
answers, but with different degrees of membership to a
number from 0 to 1. A number from 0 to 1, which determines
the "closeness" to a given value, where 1 is equal to the value,
0 is farther from the compared value than the tolerance E, and
in the interval is not equal to the value, but is no more than the
tolerance E from it. As a result of this voting, the versions
receive a different and no longer an integer number of votes,
the version with the largest number of votes is recognized as
correct or correct (in case of a coincidence of the number of
votes).

4. Median voting. In this version, it assumes that the
outputs of all versions are erroneous and as the output is taken
the average value of all outputs. This approach is often used in
cases where it is impossible to compare directly the outputs of
versions. For example, when the outputs are the direction of
motion, vector, etc. There are weighted modifications of the
median voting, when the contribution of each version in
response is different. There are various implementations of the
median vote, in our case, all answers are sorted and the middle
answer is taken.

II. MODIFICATIONS OF EXISTING ALGORITHMS
As noted earlier, the most dangerous faults are related. For

increasing the resistance to these faults, we propose
modifications of the basic voting algorithms by an agreed
majority and fuzzy voting by an agreed majority. The
modifications consist of introducing a dynamic evaluation of
the reliability of each version or its "weight", which also has
an element of forgetting. The weight is considered as the total
of the results of voting, divided by their number. Technically,
we implement it in the following way: for each software

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 244

version, the system creates a boolean stack of a given length,
to which 0 is added. If the voting block decides that, the
version gave the wrong answer and 1 if it is a true one. In case
of a fuzzy vote, if the value of the version's output belongs to
the winning class> 0, that is, all versions that added weight to
the class that won the voting will be marked as true, regardless
of the indicator of belonging.

Since the stack length is fixed within the simulation (it is
set on the form), the new data will replace the oldest ones, that
is, the stack works according to the FIFO (First In, First Out)
principle. This allows us to enter the forgetting element to the
depth of the stack. If, for example, the depth of the stack is
100, then the results of the version work will be older than 100
votes and will not be taken into account. The element of
forgetting is necessary to ensure the operative response of the
system to changes in the behavior of versions. In the case
where versions can significantly change their reliability when
changing the input data stream, it is necessary to promptly
change their rating for the most correct weighted voting [8].

The rating is determined by the summation of all the
elements of the stack, for example, if a stack of 1000 elements
has 993 values of "1" and 7 values of "0", the weight of this
version will be 0.993.

With software implementation, one restriction is made: the
weight of the version cannot be equal to one, which can
happen in practice, sufficiently reliable versions give the
correct answer 100, 1000, 10000, etc. times and without
restraint, versions would get the whole stack of units (or
TRUE), which would give them a rating of 1. Such situations
should not be allowed, since if this version is not answered
correctly, it will receive a weight of 1, while the correct
answer with the remaining N-1 versions by weight will only
approach 1 and lose the vote. Besides, analytically, the
reliability rating of the version equal to 1 does not make sense,
because if we have an absolutely reliable software module, the
sense of the system is lost. Thus, there is a limitation in
calculating the rating of the version with each vote.

III. T/(N-1) ALGORITHM
In addition, the decision making algorithm in multi-version

systems proposed by Jie Xu from the University of Newcastle
upon Tyne, based on t / (n-1) diagnosability, is of interest [9].
For simplicity, we call it the t / (n-1) decision making
algorithm. The essence of the algorithm is not in the voting of
all outputs of versions, but only in comparison of some of
them, sufficient for making a decision. Let us consider the
example of a system with the number of versions N = 5 and
the maximum number of faults t = 2, that is, let us consider the
2 / (5-1) version. If the number of faults does not exceed t, the
algorithm guarantees that the correct version of the N output
versions is selected. However, if the number of incorrect
version outputs is exceeded, the system does not necessarily
choose the wrong one, but the correct output is determined
with certain probability, but this is no longer guaranteed [10].
Let us consider the algorithm in more detail on the given
example. The outputs of four versions are compared in pairs -
1 with 2, 2 with 3, 3 with 4, we get three results of
comparisons ω12, ω23, ω34, equal to 0, if the outputs are the

same and 1 if different. On the basis of only these three
comparison results the algorithm makes the decision to switch
the output between outputs 1, 4 and 5 versions, that is,
versions 2 and 3 are used only for comparison. The values of
their outputs are never used as an output of the system. More
clearly, the scheme of work can be studied in Figure 1.

Fig. 2. The architecture of the t / (n-1) algorithm for n = 5 and t = 2.

The figure 1 shows the decision making scheme in the t /
(n-1) algorithm is relatively simple. In the case of five multi-
version s, only the results of three pair comparisons of the
outputs of the four versions are necessary for making a
decision (correct control of the output switch). The output
value of the fifth version for making a decision is not used.
With the logic for controlling the output switch based on the
comparison results for n = 5, you can see Table 1.

TABLE 1. POSSIBLE CHOICES BASED ON COMPARATOR OUTPUTS FOR N = 5;

ω12 ω23 ω34 Supposedly correct versions
0 0 0 1, 2, 3, 4
0 0 1 1, 2, 3
0 1 0 5
0 1 1 1, 2
1 0 0 2, 3, 4
1 0 1 5
1 1 0 3, 4
1 1 1 5

Having studied Figure 1 and Table 1, one can conclude
that with relatively reliable versions in most cases the
comparators will return (0; 0; 0) and an output will supply
with the value of the execution of the first version. We can
also conclude that there is no need to execute the fifth version
every time, but only in case of the corresponding values of the
results of the comparisons, when it is necessary to submit
exactly the result of the fifth version ((0; 1; 0), (1; 0; 1) , (1, 1,
1)). This fact reduces the average load required by the multi-
version software execution environment (in most cases, 4 out
of 5 versions will be calculated). The decision-making
algorithm itself is also significantly less resource-intensive
than voting. Especially with its weighted modifications, where
every version runs all versions, creates classes and calculates
weights for each of them. For t / (n-1) while n = 5, only three
simple comparison operations with binary output are needed.
Next, an unambiguous, a priori defined output choice is made
for one of the eight possible combinations of comparator
output values (Table 1).

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 245

IV. THE SOFTWARE IMPLEMENTATION OF THE
SIMULATION ENVIRONMENT

The program implements version simulations that work
according to the parameters specified on the form to the
number of versions from 3 to 9. Probability of correct
operation with three consecutive data streams for each version,
the length of the data sets (respectively, the total number of
iterations is equal to three lengths), the probability of
occurrence of an related fault, the probability of inaccuracy
and the tolerance of E. With each vote, the function returns N
responses, with probabilities corresponding to each version
and current set of input data. The change of reliability working
version during the simulation for three sets of input data was
introduced in order to investigate the response of the system to
a sudden change in the reliability of the versions. For
example, if version number 3 had reliability 0.97 in the first
set, in the second, reliability dropped to 0.58, and in the third
again rose to 0.95.

There are four decision making algorithms implemented in
the environment. They are weighed voting by an agreed
majority with forgetting, its fuzzy version, t / (n-1) algorithm
and its fuzzy modification with modified comparators. Let us
consider this process in more detail. When voted by an agreed
majority, the voting block receives the responses of the
version simulations. If the output value does not coincide with
the value obtained before, a new class is created. If the value
coincides with the existing class, then the weight of this class
will be recalculated as the

Ptotal= Pclass + (1- Pclass) * Pversion. (1)

After all versions gave the answer, there is a comparison of
the weights of the resulting classes, the class with the highest
weight wins, as it is clear - this is not always the class for
which the largest number of versions voted. Value has the
weight of each version, the reliability of each individual
version is taken into account. After determining the correct
output, the versions that voted for it get a "1" weight on the
stack, and the versions that voted differently get "0".

There is no restriction on the response time of versions in
this model, since simulations work by one algorithm and there
is no sense in comparing their resource intensity. However,
when considering real versions, known hardware limitations
and requirements to the system reaction time, it makes sense to
introduce such a restriction in order to take into account the
likelihood that resource-intensive versions may not be able to
answer at the time of voting and will not be taken into account.
These data can be very important in the case of building
systems that operate in real time[11].

In case of a fuzzy voting by an agreed majority after the
creation and evaluation of all classes based on the outputs of
the versions, the program produces one more pass. In the
process of which, the versions whose output value did not
coincide with the value of the class, but differ from it no more
than the tolerance E, and hence the membership of the class
is> 0 also adds weight to the class and weights are recalculated
one more time:

Ptotal = Pclass + (1- P-class) * Pversion * Kmembership (2)

 where K membership = 1- (|X-class-Hversions| / E), X-
values of the class and version giving a non-matching answer,
but falling within the tolerance E.

In the system under consideration, version simulations give
3 types of errors: a random error simulating a malfunction in
the module, an related error and an inaccuracy - a response
close to the correct one, a distanced from it no more than
tolerance, but not equal to it. This type of error simulates
"inaccuracy" - rounding errors when there is a shortage of
digits, inaccurate digitization of analog sensor outputs, etc.,
that is the situation, when the version worked out
algorithmically correct, but gave an inaccurate response due to
rounding errors, digitization, shortage of capacity, a large
difference in the order of magnitude in floating-point
operations. The error occurs with the probability given for each
version and each data set, in the case of an error, the following
checks occur: if this is not the first error in the current poll,
then an related error is generated with a given probability - that
is, a value that matches the value of the past error is returned,
this error simulates a related error-an admitted algorithmic
miscalculation, the same in several versions, which will give
the same error with the same input. Then, with a given
probability, an "inaccuracy" is generated - the output returns, it
is not equal to the correct one, but the distant from it for no
more than a predetermined deviation E. If the previous
probabilities do not work, then a random error is returned,
simulating a malfunction in the current version of the module.
From the results of the program it is clear that in the absence of
"inaccuracies" the difference in the work of clear and fuzzy
options for voting methods is absent, a random error is always
too "far" from the correct answer to change the weight of
classes. From this it can be concluded, that if there are no
possible places for the occurrence of "inaccuracies" in the
system - the digitization of analog signals, the lack of capacity
for mathematical operations, etc., then using a more resource-
intensive fuzzy voting algorithm will not give advantages,
however, if such "inaccuracies" are possible, then a fuzzy
algorithm will increase the reliability of the system. The only
drawback will be the same evaluation for the versions that gave
the ideally correct output, and the versions algorithmically
correct, but having "inaccuracies".

Fig. 3. Interface of the simulation environment (graphics t/(n-1) are disabled)

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 246

Fig. 4. Interface of the simulation environment (all graphs are displayed)

For convenience, the form displays information about the
last recorded error at the output of the voting block - the
iteration number, the output value, and the weight of this class.
The system allows you to plot the weights of each version and
the winning classes, along the axes of the iteration number and
weight, it is possible to change the scale for clarity, for
example, when examining the weights of the winning classes,
their values do not fall below 0.9 and on a scale from zero to
one represent of itself a practically flat line in the region of
unity, for a better perception in this mode, the scale changes to
a range from 0.9 to 1 along the weight axis.

In order to be able to compare by the sums of weights t / (n-
1) algorithm with weighted voting algorithms, we introduced
weight estimates for the t / (n-1) algorithm based on the output
of the comparators, since these are not real weights, but only an
estimate that takes only one of 4 preset variants (0.999, 0.99,
0.95, 0.9), the graphs are not informative and greatly
complicate the perception of graphs of scales of voting
algorithms. Therefore, the graphs of t / (n-1) algorithms are
made with the capability to turn-off on the form, for more
convenient study of the voting algorithms, however, disabling
the graphs does not disable counting the sum of weights (or
their estimates) during simulation. You can compare the
appearance of the graphs in Figures 2 and 3.

Based on the simulation results, the sum of errors for all
iterations for each algorithm, the number of "inaccuracies"
admitted for fuzzy algorithms, and the sum of the resulting
related errors are displayed. If based on the simulation results
exists algorithm that is uniquely superior to other algorithms,
the system displays a message about the selected optimal
algorithm (Figure 5).

Figure 5. System message about the selected optimal algorithm.

V. SIMULATION RESULTS
Let us consider the results of a program with different input

parameters.

First, let's study the graphs of the version weights presented
in Figures 6-9. There are graphs for a stack of 100 deep and
three consecutive flows of data for 100 votes for each. In
Figure 6, we can observe the operation of the system for all
reliable versions (version reliability in all data streams from 0.9
to 0.99), as you can see - the versions weights also change in
the minimum limits, without falling below the values of 0.9.

Figure 6. Results of the simulation model implementation of the voting
algorithm by an agreed majority (high reliability of all versions 0.9-0.99).

In Figure 7, we can observe the operation of the system
with the average reliability of versions (reliability of versions
in all data streams from 0.7 to 0.93), as can be seen - the
versions weights change already in large limits, but do not drop
much below 0.7.

Figure 7. Results of the simulation model implementation of the voting
algorithm by an agreed majority (average reliability of all versions 0.7-0.93).

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 247

Figure 8. Results of the simulation model implementation of the voting
algorithm by the agreed majority (the first version of the first and second data
sets failed in the first version of the second data set with a 50% probability).

Fig. 9. The results of the simulation model of the implementation of the voting
algorithm by an agreed majority (the first version of the first data set has
failed and in the second version of the second data set with a 50%
probability).

The graphs (Figures 8-9) shows the system's response to
the behavior change of versions, when a reliable version starts
to give errors or vice versa, the low-weight version ceases to
be wrong (at the beginning of the experiment, all weights of
the versions are relatively high). In Figure 8, the first version
make mistakes with a 50% probability on the first and second
data stream, the third version stop making mistakes. In Figure
9, the first version is mistaken with a 50% probability on the
first data stream, ceases to make mistakes on the second and
third streams, and the second version starts to make errors on
the second data stream and stops at the third one. It can be
concluded that the system reacts fairly quickly to changes in
the behavior of versions and, through the number of votes
equal to the depth of the version stack, receive estimated
weights that are fairly accurate in their probability of a correct
answer.

TABLE 2. THE RESULTS OF THE SYSTEM EXECUTION AT DIFFERENT NUMBERS
OF MULTI-VERSION S FOR UNRELIABLE VERSIONS WITH P=0.7.

N
3 4 5 6 7 8 9

Clear Number
of
errors

49 22 16 7 5 3 0

Sum of
weights 269,43 286,53 291,89 296,05 298,16 298,67 299,21

Unclear Number
of
errors

88 45 28 13 11 4 2

Sum of
weights 279,45 289,04 295,54 297,70 298,70 299,46 299,70

Related error
22 42 48 84 89 123

Table 2 summarizes the simulation results for a different
number of multi-version s - from 3 to 9, with the probability of
all versions in all data sets equal to P = 0.7, the depth of stack
100, the tolerance E = 0.1, the probability of inaccuracy P =
20%, the probability of related error P = 10 %. Such a low
reliability index of all versions is taken as 0.7 for the sake of
clarity of the simulation results, because with quite reliable
versions (P> 0.95) even with the number of multi-version s N
= 3, both voting algorithms give no errors for 300 votes [12].
From the data we see how the reliability of the system as a
whole is increased, despite the use of extremely unreliable
software modules, despite the fact that each module emits an
error in 30% of cases, it can be observed that in a system with
9 versions all 300 answers are correct, the algorithm of clear
voting by the agreed majority always chooses the right answer
from the proposed ones. The fuzzy algorithm shows more
errors, because sometimes a class with a value close to the
correct one (no further than E from the correct one), but not
equal to it, wins in voting. The system makes such a response
erroneous, but the versions that add weight to the winning
class still get in stack 1, increasing its own weights, therefore,
despite the greater number of errors, the sum of weights in the
fuzzy algorithm is higher. In the model, the t / (n-1) algorithm
is implemented only for N = 5, therefore, only voting
algorithms are presented in this table, because they are able to
work with any number of versions N≥3.

Let us compare the reliability indexes of the t/(n-1)
algorithm in comparison with the weighted modifications of
the voting algorithm by the agreed majority that we proposed,
its clear and not clear version. To do this, we simulate in the
simulated imitation environment with the following model
parameters: the number of iterations = 300, the same
reliability of all five versions in all 300 runs, the stack depth =
100 (for weighted algorithms), the tolerance E = 0.1 (for fuzzy
modification), the probability of inaccuracy P = 20%,
probability of related error P = 10%. Let's change the version
reliability from the relatively reliable value 0.95 to 0.65 in
steps of 0.05 and get the number of errors for 300 iterations
for each algorithm. The simulation results are presented in
table 3.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 248

TABLE 3. THE RESULTS OF MODELING WITH DIFFERENT VERSION RELIABILITY.

Given version
reliability. 0,65 0,7 0,75 0,8 0,85 0,9 0,95

Clear
voting by
an agreed
majority

Number
of
errors

22 12 9 1 1 0 0

Sum of
weights 287,99 294,05 296,36 298,33 299,75 299,96 299,99

Unclear
voting by
an agreed
majority

Number
of
errors

24 14 7 3 1 0 0

Of these,
failures 14 10 3 2 1 0 0

inaccuraci
es 10 4 4 1 0 0 0

Sum of
weights 293,75 295,86 298,43 299,43 299,74 299,97 299,99

t/(n-1)
algorithm

Number
of
errors

39 24 17 10 3 1 0

Sum of
weights 285,07 287,06 290,65 291,74 293,06 295,8 297,87

Fuzzy
modificatio
n of t/(n-1)
algorithm

Number
of
errors

44 35 34 21 16 4 3

Of these,
failures 19 14 14 2 2 0 0

Inaccurac
ies 25 21 20 19 14 4 3

Sum of
weights 290,44 291,85 291,68 296,61 294,68 296,98 298,39

Median
voting

Number
of
errors

73 45 29 16 8 2 0

Related errors
134 94 66 41 26 10 1

It can be seen from the simulation results that with
relatively reliable versions all algorithms provide error-free
operation for 300 iterations, although each of the 5 versions
gives an average of 15 erroneous outputs during this time
(with a reliability of 0.95, the simulation version will give an
average of 5 errors per 100 iterations). The exception is a
fuzzy t / (n-1) algorithm, the simulation results show that the
fuzzy modification is very unstable to the occurrence of
inaccuracies. It has not missed a single failure, but when the
inaccuracies are returned by the first or fourth version, fuzzy
comparators return a match with the neighboring versions that
gave perfectly correct answer and the system sends the output
with an inaccurate result. With decreasing version reliability,
algorithms start to make mistakes, but in different numbers.
The algorithm of coordinated voting, more precisely, its
weighted modification with forgetting turned out to be the
most reliable. The greater number of mistakes in the fuzzy
algorithm is due to cases where the answer of "inaccuracy" is
chosen; the answer is remote from the correct one by no more
than the E tolerance, but not equal to it. Such responses are
also counted by the system as erroneous. t/(n-1) algorithm
begins to yield significantly in reliability to the weighted
voting algorithm by an agreed majority with relatively

unreliable versions, since more often happen situations in
which more than t = 2 versions give the wrong answer, and in
such cases the correct operation of the algorithm is not
guaranteed. The results also show that the fuzzy version of the
t/(n-1) algorithm gives more errors in general, but most of the
errors are past inaccuracies, the number of failures is even less
than the base algorithm has.

From the presented above, we can conclude that the use of
t/(n-1) algorithm is possible with relatively reliable versions,
when there will not be situations of simultaneous failure of
more than t versions. Its application will be justified in
situations where it is necessary to reduce the computational
load on the system, especially in cases where the comparators
are simple to implement, but to create multiple classes each
time and calculate their weights is too labor-intensive
(depends on the architecture of the system). However, in cases
of using relatively unreliable versions, or high probability of
related error (when several versions will give the same failure
simultaneously), its application is not desirable, since in such
situations it shows less reliability in comparison with multi-
version voting algorithms. Concerning the fuzzy
modification, its application is justified in systems with the
probability of inaccuracies, the passage of which is not critical
for the system, since the algorithm often allows them to pass,
but it cuts off failures well enough.

Let us explore the behavior of the system with different
probabilities of the occurrence of inaccuracies, the results are
presented in table 4.

TABLE 4. THE RESULTS OF THE SIMULATION FOR DIFFERENT PROBABILITY OF
INACCURACY AND P = 0.8 FOR ALL VERSIONS.

Probability of inaccuracy
5% 10% 20% 50% 100%

Clear voting by
an agreed
majority

Number of
errors 2 2 3 2 3

Sum of
weights 298.55 298.87 298.84 298.46 298.34

Unclear voting
by an agreed
majority

Number of
errors 2 3 7 8 5

Of these,
failures 1 3 2 3 0

Inaccuracies
1 0 5 5 5

Sum of
weights 299.09 299.09 299.52 299.74 299.98

t/(n-1) algorithm Number of
errors 8 10 13 11 11

Sum of
weights 291.72 292.16 291.81 291.83 292.71

Fuzzy
modification of
t/(n-1) algorithm

Number of
errors 10 12 25 30 69

Of these,
failures 5 5 8 2 0

inaccuracies
5 7 17 28 69

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 249

Sum of
weights 292.91 293.27 292.94 295.95 299.65

Median voting Number of
errors 14 14 15 17 18

Related fault
48 41 44 43 50

From the results, it can be seen that when the probability
of inaccuracy increases, fuzzy modifications of decision-
making algorithms allow the passage of inaccuracies, but
remain resistant to failures [13], and in order to choose the
most suitable algorithm it is necessary to understand how
critical the system is for passing exactly the inaccuracies. For
example - for many course maintenance systems with
permanent correction of inaccuracy with a slight deviation
from the correct value will not have a negative effect on the
system work, in contrast to failures - when the system
significantly changes direction, which can lead to catastrophic
consequences. In the case of systems that are unstable to
inaccuracies, it is better to use classical variants of algorithms,
since they better screen out the inaccuracies, considering them
incorrect, regardless of their proximity to the correct answer,
unlike fuzzy variations.

Let us explore the behavior of the system with different
probability of occurrence of an related error, which is of the
greatest interest, since it will show the stability of all the
studied algorithms to the most dangerous type of errors, the
results are presented in table 5.

TABLE 5. THE RESULTS OF THE SIMULATION FOR DIFFERENT PROBABILITY OF
OCCURRENCE OF AN RELATED ERROR AND P = 0.8 FOR ALL VERSIONS.

The probability of occurrence
of an related error. 5% 10% 20% 50% 100%

100%
(P=0,95)

Clear voting by
an agreed
majority

Number of
errors 2 3 4 5 13

0

Unclear voting
by an agreed
majority

Number of
errors 2 3 6 13 15

0

Of these,
failures 1 2 2 10 11

0

Inaccuracies
1 1 4 3 4

0

t/(n-1)
algorithm

Number of
errors 4 7 10 16 21

1

Fuzzy
modification of
t/(n-1)
algorithm

Number of
errors 10 17 19 23 22

7

Of these,
failures 3 4 6 12 13

2

inaccuracies
7 13 13 11 9

5

Median voting Number of
errors 14 15 19 16 17

0

Related errors
26 41 66 204 392

31

The simulation results show a much greater stability of the
voting algorithms to related errors, compared with the t/(n-1)
algorithm. An additional column is also added to the table to
show that with quite reliable versions in the whole (P = 0.95
for all) even 100% of related errors do not affect the reliability
of the system with the proposed modified voting algorithms,
which can not be said for t/(n-1) algorithm that tolerates
failures even with reliable versions. It is interesting to note
that the related errors do not affect the operation of the median
voting algorithm, because it does not compare version
responses for changing the weights of classes, and the
collection of answers is simply sorted by the value of the
values. For a median vote, there is no difference, the matching
errors give out versions or not. Let's consider an example - if 5
versions gave answers (3, 3, 6, 19, 19) and answers "3" and
"19" are related errors, it will still choose the answer "6", as
average. This same property of its work makes it resistant to
emissions, unlike the implementation of voting algorithms
with averaging of outputs, if one or several versions give an
answer differing by several orders in any direction, this will
not affect the operation of the algorithm.

The results obtained with the help of the developed
simulation imitation environment show the effectiveness of
the proposed modifications of the voting algorithms, and also
prove the possibility of creating a reliable system from
unreliable software modules [14]. As for the t/(n-1) algorithm,
which is of interest as an alternative to voting algorithms, its
use is justified only in systems with significant limitations on
computational resources and the use of sufficiently reliable
versions, since the algorithm shows a worse resistance to
unreliable versions and different types errors.

CONCLUSION
the developed system ensures the quality of the

component, since it allows to obtain its qualitative
characteristics in the conditions in which it will work in a real
system. this result is very important for software development,
especially for complex fault-tolerant systems, since it allows
to get an estimate of the quality characteristics of a component
at an early stage of development. this allows you to select
deliberately appropriate decision algorithms. the choice of the
decision algorithm with guaranteed quality characteristics that
meets the requirements excludes the case of re-development of
the system due to the fact that only during the testing phase it
turns out that the chosen algorithm is unable to meet the
established requirements. this not only guarantees the quality
of the software product being developed, but also makes the
implementation time more predictable.

ACKNOWLEDGMENT
This work was supported by Ministry of Education and

Science of Russian Federation within limits of state contract
№ 2.2867.2017/4.6.

REFERENCES
[1] Engel E.A., Kovalev I.V., Engel N.E., Brezitskaya V.V., Prohorovich

G.A., «Intelligent control system of autonomous objects», IOP Conf.
Series: Materials Science and Engineering 173 (2017) 012024.
doi:10.1088/1757-899X/173/1/012024.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 250

[2] Eckhardt, D.E., and Lee, L.D., "A Theoretical Basis for the Analysis of
Multi-version Software Subject to Coincident Errors," IEEE
Transactions on Software Engineering, vol. SE-11, no. 12, 1985, pp.
1511-1517.

[3] Laprie, J.-C., Arlat, J., Beounes, C., and Kanoun, K., "Definition and
Analysis of Hardware- and Software-Fault-Tolerant Architectures,"
IEEE Computer, vol. 23, no. 7, July 1990, pp. 39-51. Reprinted in Fault-
Tolerant Software Systems: Techniques and Applications, Hoang Pham
(ed.), IEEE Computer Society Press, 1992, pp. 5-17.

[4] L. Chen, A. Avizienis, "N-Version Programming: A Fault-Tolerant
Approach to Reliability of Software Operation", Proc. Int. Symp. Fault-
Tolerant Computing FTCS-8, pp. 3-9, 1978.

[5] Knight, J.C., and Leveson, N.G., "An Experimental Evaluation of the
Assumption of Independence in Multi-version Programming," IEEE
Transactions on Software Engineering, vol. SE-12, no. 1, 1986, pp. 96-
109

[6] Kovalev, I., Losev, V., Saramud, M.Email Author, Petrosyan, M., «
Model implementation of the simulation environment of voting
algorithms, as a dynamic system for increasing the reliability of the
control complex of autonomous unmanned objects», MATEC Web of
Conferences Volume 132, 31 October 2017, № 04011.

[7] G. Latif-Shabgahi; S. Bennett Adaptive majority voter: a novel voting
algorithm for real-time fault-tolerant control systems Proceedings 25th
EUROMICRO Conference. Informatics: Theory and Practice for the
New Millennium, 1999, pp.113 - 120 vol.2

[8] Kovalev I.V., Zelenkov P.V., Losev V.V., Kovalev D.I., Ivleva N.V.,
Saramud M.V. Multi-version environment creation for control

algorithm implementation by autonomous unpiloted objects [Electronic
resource] // IOP Conf. Series: Materials Science and Engineering 173
(2017) 012025.

[9] J. Xu, “The t(n-1)-diagnosability and its applications to fault tolerance”,
Digest of Papers. Fault-Tolerant Computing: The Twenty-First
International Symposium, 1991, pp. 496 – 503.

[10] Jie Xu; B. Randell, “Software fault tolerance: t/(n-1)-variant
programming”, Software fault tolerance: t/(n-1)-variant programming
IEEE Transactions on Reliability, 1997, Volume: 46, Issue: 1, pp. 60 –
68.

[11] Lee, I., Tang, D., lyer, R.K., and Hsueh, M.C., "Measurement-Based
Evaluation of Operating System Fault Tolerance," IEEE Transactions on
Reliabil ity, vol. 42, no. 2, June 1993, pp. 238-249.

[12] Brilliant, S.S., Knight, J.C., and Leveson, N.G., "Analysis of Faults in an
N-Version Software Experiment," IEEE Transactions on Software
Engineering, vol.16,no.2, 1990, pp.238-247.

[13] McAllister, D.F., Sun, C.E., and Vouk, M.A., "Reliability of Voting in
Fault –Tolerant Software Systems for Small Output Spaces," IEEE
Transactions on Reliability, vol. 39, no. 5,1990, pp. 524-534.

[14] Avizienis, A., "The N-Version Approach to Fault -Tolerant Software,"
IEEE Transactions on Software Engineering, vol. SE-11, no. 12,
December 1985, pp.1491-1501.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 11, 2017

ISSN: 2074-1308 251

	Introduction
	Modifications of existing algorithms
	t/(n-1) algorithm
	The software implementation of the simulation environment
	Simulation results
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

