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Abstract—This paper proposes a trajectory tracking 
controller for a two degree of freedom (2-DOF) overhead crane. 
First, a dynamic model of the crane suitable for feedback control 
is developed using robotic methodology. A desired trajectory for 
the trolley motion is generated using a reference differential 
equation. The proposed control law is based on collocated partial 
feedback linearization combined with trajectory tracking and 
linear feedback control which achieves local asymptotic stability 
of the closed-loop system. Simulation results illustrate the 
effectiveness of the proposed controller.  
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I.  INTRODUCTION 
In the last decades, the overhead cranes have been widely 

used for transportation in many industrial applications and 
become an interesting issue from automatic control point of 
view. The goal is to transport the payload quickly and in the 
same time to reduce the rope swing angle. Recently, different 
techniques been proposed for the design of Linear Quadratic 
[1, 2], adaptive [3], nonlinear coupling control [4] controllers 
for overhead cranes. The overhead cranes belong to the class 
of underactuated mechanical systems, which have fewer 
control inputs than degrees of freedom. One of the 
complexities of these systems is that they are not feedback 
linearizable. Due to the positive definiteness of the inertia 
matrix of this class of systems, the so-called collocated partial 
feedback linearization property [5] holds, which refers to the 
control that linearizes the equations associated with the 
actuated degrees of freedom of the system. Available control 
design methods mainly include approximate linearization [6] 
and saturation control [7].  

In this paper, we propose a simplified control strategy 
based on collocated partial feedback linearization of the 
dynamic model combined with trajectory tracking and linear 
feedback control law, which achieves local asymptotic stability 
of the closed loop system. The organization of the paper is as 
follows: In Section II, a dynamic model of the crane suitable 
for feedback control applications is derived. The Problem 
formulation is given in Section III.  In Section IV, a control law 
is designed. Section V contains simulation results. Conclusions 
are presented in Section VI.   

II. DYNAMIC MODEL 
A schematic view of an overhead crane is shown in Fig. 1. 

In order to derive a dynamic model suitable for control 
applications, we make the following assumptions: the payload 
mass is considered as a point-mass, and the mass and stiffness 
of the hoisting rope are neglected. The system has two degree-
of-freedom and the associate generalized coordinates are  

 
                                                              (1) [ ] 2ℜ∈= Tdq θ
 
where d is the displacement of the trolley and θ is the swing 

angle of the load, (Fig. 1). 
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Fig. 1. Schematic of the overhead crane 
 
We use the Denavit-Hartenberg convention [8] for the 

description of the crane kinematics. An inertial coordinate 
system O0x0y0z0 is assigned in the work space where the z0 
axis is in direction of the trolley displacement.  The z1 axis of 
a moving together with the trolley coordinate frame O1x1y1z1 is 
the axis of revolution of the rope. The z2 axis of the coordinate 
frame O2x2y2z2 which is attached to the payload is parallel to 
z1.  The link parameters are given in Table I, 
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TABLE I 
PARAMETERS FOR A 2-DOFS OVERHEAD CRANE 

Parameters Link 1 Link 2 
        ai [m]     0     l 
        di [m]  d=var    0 

        αi [rad]     π/2    0 
        θi [rad]      0 θ = var 

 
where the four quantities ai, di, αi, and θi are parameters of 

link i and joint i, (i = 1,2). 
The corresponding transformation matrices which define 

the relative position and orientation between the adjacent 
coordinate systems are 
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Using the transformation matrices (2), the coordinates of 

point O2 ( [ ) with respect to O0x0y0z0 
are obtained as follows 
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where [ are the coordinates of O2 with respect 

to O2x2y2z2. From (3), it follows that  
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Differentiating (4) with respect to time, for the projections 

of the velocity (with respect to O0x0y0z0) of O2 it follows  
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  The dynamic equations of motion of the crane are derived 

using Lagrange formalism 
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where the Lagrangian L represents the difference between 

the kinetic and potential energy of the system (L = T – U),  Qi 
are the generalized forces associated with the generalized 

coordinates, and the generalized coordinates of the system q 
are given by (1). 

 The kinetic energy of the system is a sum of the kinetic 
energies of the trolley (T1) and payload (T2) and is determined 
as follows 
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where M and m are the mass of the trolley and the load, 

respectively, l is the length of the rope, and and are 
given by (5).  

2Ox&
2Oz&

The potential energy of the system is given as  
 
                                  θcosmglU −= .                            (8) 
 
Using  Eqs. (5), (6), (7) and (8), the dynamic equation of 

motion of the overhead crane are obtained in the form 
 
                                  QGqCqD =++ &&&                          (9) 
 
where 
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where F is the control force acting on the trolley. 
Remark 1: It should be noted that the matrix D is positive 

definite and the matrix   is skew-symmetric.    □ CD −&2/1

III. PROBLEM STATEMENT 
In this paper, we consider the problem of position control   

of the overhead crane. The goal is to transport the payload 
quickly with high precision, and in the same time to reduce the 
swing angle which does not exceed 50 through the entire 
trajectory of the trolley. The desired trajectory for the trolley 
motion is proposed in the integral form 

 
                       ( )[ ]tdd etztz ρρ −+−= 11)( 0                     (11) 
 
where  is the desired distance which has to be traveled 

by the trolley, and ρ is a double root of a desired linear  
differential equation describing the trolley motion, ( a larger  ρ  
leads to a faster motion of the trolley and as a consequence, a 
bigger swing of the payload). 

dz0

We make the following change of coordinate  
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                                    .                                 (12) d

e zdz −=
 
and input 
                                                                      (13) dzuw &&−=
 
where, due to the collocated partial feedback linearization 

property, u is obtained in the form 
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Finally, using (12)-(14), after some work, the dynamic 

equations (9) for the crane can be written in error coordinate   
form as  
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We assume that  are measurable. 

Given the crane dynamics in error coordinates described by 
(15), the control objective is to asymptotically regulate ze(t) to 
zero (transportation of the payload) and minimize the swing 
angle θ(t) of the payload.   

[ ] 4ℜ∈=
T

ee zze θθ &&

IV. FEEDBACK CONTROL DESIGN 
The overhead crane is an underactuated single-input (w) 

two-output (ze, θ) system.  The control problem consists in 
finding a feedback control law for the system (13) such that  
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Consider the linear control 
 
                                     (17) θθ && lklkzkzkw ee 4321 ++−−=
 
where ki, (i = 1,2,3,4) are positive gains. 
The resulting closed-loop system becomes 
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Denoting  and , for small swing angles, the 

tangent linearization of Eqs. (18) about θ = 0 can be  written 
in state-space form as  

zee vz =& ωθ =&

 
                                                          (19) ),()( xtgxfx +=&
 

where 
 
                             [ ]Tzee vzx ωθ=                         (20) 
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The system (19) can be viewed as a perturbation of the 

nominal system )(xfx =& , which has exponentially stable 
equilibrium point at the origin x = 0, and is a uniformly 

bounded disturbance that satisfies 
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Furthermore,  as 0)( →tdz&& ∞→t . Using Lemma 4.9, [9, p. 
208], for the perturbed system (17), it can be shown that 

 as 0)( →tx ∞→t . Based on Lyapunov’s linearization 
(indirect) method [9], one can be concluded that the 
corresponding nonlinear system is locally asymptotically 
stable.  

V. SIMULATION RESULTS 
Several simulations using MATLAB were carried out in 

order to illustrate the performance of the proposed controller. 
The desired trajectory of the trolley is given by (9) where the 
desired distance to travel is = 7m and ρ = 0.5. The overhead 
crane is tested with a mass of 200kg and 300kg for the trolley 
and the payload, respectively. The length of the rope was 
chosen to be l = 5m.  

dz0

In the first simulation, from Fig. 2, we can see the evolution 
in time of the swing angle θ during the displacement of the 
trolley.  
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Fig. 2. Time history of the swing angle of the payload 

 
Fig. 3, presents the evolution in time of the movement of 

the trolley d according to desired trajectory zd(t). The results of 
the simulations confirm the validity of the proposed controller. 
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Fig. 3. Time history of the trolley displacement (blue solid line), 

desired trajectory (green dashed line), and tracking error (red dotted 
line) 

 
From Fig. 3, that trajectory of the trolley displacement is 

close to the reference trajectory, and converges asymptotically 
to the desired position, in accordance with the theoretical 
result obtained in Section IV.  

VI. CONCLUSION 
In this paper, a trajectory tracking controller for a 2-DOF 

overhead crane has been proposed. A dynamic model of the   
crane was developed using robotic methodology. A desired 
trajectory for the trolley motion was generated using a 
reference differential equation. The proposed control law was 
based on collocated partial feedback linearization combined 
with trajectory tracking and linear feedback control and 
achieved local asymptotic stability of the closed-loop system. 

Simulation results were carried out and confirmed the 
effectiveness of the proposed controller. 
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