
 

 

  
Abstract—The helicopter was subjected to a few different 
optimization methods such as Root Locus, Ziegler-Nichols Tuning 
method, Systematic Trial Tuning method and Integral Absolute Error 
criteria. These are essential to find the “optimal’ gain(s) of a 
controller. This paper is focused on creating a system that can 
provide reliable pitch altitude control while being cost effective 
under outside disturbances.  
In order to have outstanding controller for our helicopter pitch 
control system, controller needs to have a stable response, low 
overshoot, together with a fast response, which means a quick 
settling time. We also kept in mind that we need to protect its 
mechanical components.    
 

Keywords—helicopter pitch control, Simulink, optimal 
parameters, IAE criteria. 

I. INTRODUCTION 
The purpose of this paper is to analyze helicopter pitch control 
system and to find the “ideal” parameters through P, I and D 
controller parameters. Helicopter requires a stable control 
system as defective controller can lead to accidents. In this 
project, we are focused on an Integral Absolute Error criteria 
(IAE) to reduce the error and try to get the best response. The 
response will need to have a low overshoot, peak time, rise 
time and a fast settling time. This paper will cover the 
procedures that we have done from researching a transfer 
function leading to achieving the desired response of the 
helicopter pitch control system.  

II. MATHEMATICAL MODEL 

A. Dynamical Model and Transfer Functions 
The helicopter has, same as all other flying objects, six 

degrees of freedom: heave, sway, surge, pitch, roll and yaw. In 
this paper, our focus is a pitch control dynamical behavior. 
The transfer function for our research is taken from the Black 
Hawk helicopter [17]. That transfer function is mathematical 
model description (model) of the helicopter movement 
(rotation around its y-axis). 
Two transfer functions: dynamical behaviour of the helicopter 
(1), as well as a transfer function of its sensor and actuator, 
combined (2), taken from [1], [2], [17]: 
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 Responses of those two transfer functions to the step input,  
 Fig. 1(a) and Fig. 1(b), respectively: 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Fig. 1(a) Dynamical response of the helicopter 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Fig. 1(b) Sensor and actuator response, combined 
 
 
Open loop response transfer function for the whole system 
(helicopter, sensor and actuator), (3) and its response to a unit 
step input, Fig. 2: 
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            Fig. 2 Open loop response  
 
As you can see from the dynamical response of the helicopter, 
as well as from the open loop response, system is unstable, due 
to integrator in the open loop system (“type-1”). In addition, 
one of four poles is unstable pole, (s=0.346). 
 

B. Closed Loop System  
 

Simulation model of the closed loop system in Fig. 3:  

Fig. 3 Simulation model for a closed loop system 
 
The closed loop system uses a feedback to stabilize the 

system. A correct selection of the KP (proportional gain 
constant) can produce a stable system, but not necessarily the 
best dynamical behavior of the entirely system (overshoot, 
steady-state error, rise, peak and settling times). 
Our first step is to find a range of stability and then to make an 
“optimal” response of the system. 
In this paper the Root Locus, graph-analytical method for 
defining a critical gain is used, Fig. 4(a) and Fig. (4b): 
 
 
 
 
 
 
 

 
 
 
 
 
           Fig. 4(a) Root Locus  

 
 
 
 
 
 
 
 
 
 
 
 
         Fig. 4(b) Root Locus (enlarged) 
 
From Fig. 4(b), with two dominant poles, is seen a point 

where locations of the poles, in s-plane, cutting imaginary axis.  
Which means that critical gain (ultimate gain) is: GU=0.0623. 
Note: it is not a typical case, because in this case a bigger gain 
gives us a stable system (usually, it is just an opposite: bigger 
gain leads to unstable system), [7], [12] and [14]. 

III. CONTROLLER DESIGN 

A. Ziegler-Nichols Second Tuning Method  
 

As mentioned earlier, our system is “type-1”, which means 
Ziegler-Nichols First tuning method (Open Loop tuning 
method, based on “S-shape” response of the system) is not 
possible to implement, because integrator will not produce “S-
shape” response, [14]. 
Ziegler-Nichols Second tuning method  is a closed loop 
method and it starts with a proportional controller (i.e. disable 
integral and derivative controller). Then, start up the 
process with the proportional gain, KP at “low level” and 
gradually increase gain until the system oscillate with ultimate 
period, PU, Fig. 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Fig. 5 Sustain oscillatios, PU=10.129 seconds 
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Ultimate gain which causing sustain oscillation is, GU=0.0678  
(slightly different than in using Root Locus method).  
 
Based on Pu and Gu, controller settings can be determined 
according to Table 1, [14]: 

 

      
     Table 1. 
 
where: KP -Proportional gain constant 
            KD -Derivative gain constant 
   KI  -Integral gain constant 
            TI  -Integral time constant 
            TD -Derivative time constant 
 
Note: Ziegler-Nichols Second tuning method is based on 
empirical formula and it is not so occurate. That means, 
calculating controller’s parameters does not lead us to an 
“optimal” system, and rather gives us a range of the 
controller’s parameters for a fine tuning. 
   Parameters for P, PI and PID controllers have been 
calculated from Table 1, and responses for those three cases 
are shown on Fig. 6(a), Fig. 6(b) and Fig. 6(c), respectively: 

 

 

 

 

 

 

 
 
              Fig. 6(a) System response with P controller 
                            KP=0.039 
 
    

 

 

 

 

 

 
             Fig. 6(b) System response with PI controller 
                           KP=0.0305, KI=3.61e-03 
 

 

 

 

 

 

 

    

                Fig. 6(c) System response with PID controller  
                             KP=0.044, KD=0.558, KI=8.7e-0.3  
 
 
Simulation model for those three responses is on Fig. 7: 
 

   Fig. 7 Simulation model for P, PI and PID controller 
              (Gain=KP , Gain1= KD and Gain2= KI ) 
 
As you can see from Fig. 6(a) (with P controller) and Fig. 6(b) 
(with PI controller), system responcnses are unstable. On the 
other hand, system response with PID controller is stable, but 
with not so satisfying dynamical characeristics (overshoot 
around 50%, and setlling time around 100 seconds). Only, 
steady state error is goo, ess=0 (due to “type-1” system). 
However, this is a good starting point for a fine tuning and 
getting better system parameters.  
 

B. Systematic Trial Tuning Method 
 
Systematic Trial tuning method is a Fine tuning method to get 
better (or even “optimal”) system performance.  
There are a few general “rules” how to improve sytem’s 
dynamics [9]: 
 

• Add a proportional control to improve the speed of the 
    system response (particularly a rise time). 
• Add a derivative control to improve the overshoot and 
    the transient response. 
• Add an integral control to eliminate the steady state 
    error. 
• Adjust each of those controller's parameters until 

            obtain a desired overral response. 
• And last, but not the least: make a controller as simple 
    as possible. 
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The most likely effect of each of the controller parameters: 
Kp, Ki and Kd (proportional, integral and derivative gain 
constants, respectively), on the closed loop system response, 
can be tabulated, as in Table 2, [9]: 

 

Table 2. 
 
Note: Those correlations may not be exactly accurate, because 
Kp, Ki and Kd are dependant on each other. In fact, changing 
one of those parameters can change the effect of the other two. 
For that reason, the table should be use as a reference or a 
guidance, only. [4], [5], [9]. 
 Multiple parameters were put in simulation model (Fig. 7) 
to try to decrease overshoot, peak, rise and settling times. 
On the folowing, randomly chosen,  two graphs are shown a 
few of “trial and error” attempts to achieve a better response, 
Fig. 8(a) and Fig. 8(b): 
 
 
 
 
 
 
 
 
 
 
 
             Fig. 8(a) System response with PID controller  
                             KP=0.044, KD=0.558, KI=3.5e-0.3  
 
 
 
 
 
 
 
 
 
 
 
 
            Fig. 8(b) System response with PID controller  
                            KP=0.0155, KD=0.145, KI=0.855e-0.3  
 
  
Overshoot is reduced, as well as rise, peak and settling times, 
comparing with the system response with “original” controller 
parameters by using Ziegler-Nichols Second tuning method.  
However, we still have a moderate settling time of 45 seconds, 
mainly because we used the Black Hawk model of the 
helicopter, which has inherited a moderate settling time. 

A further improvement will be done through the IAE (Integral 
Absolute Error criteria). 
 

C. Integral Absolute Error (IAE) Criteria 
 

The Cost Functions, (4) and (5) are  used in order to find the 
most efficient values for KP, KD and KI. Those criteria will not 
necessarily produce the “best” output response with the 
smallest overshoot nor the fastest system. They are simply 
used to determine gain values that will make the control cost 
more efficient. In the industry, those  criteria are used mostly 
to lower fuel consumption. The name: “Cost Function” is 
derived from the meaning of the least cost as possible. They 
are calculated by using following formulae for Integral 
Squared Error (ISE) and Integral Absolute Error (IAE), 
respectivelly, [4], [5], [12]: 

 
 

                         ISE= min)( 2

0
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                              (4) 

 

          IAE= ∫ →
t

dtte
0

min)(                              (5) 

 
In this paper we used IAE only. It tends to produce a slightly 

slower response than “optimal” system  using ISE criteria, but 
usually with less oscillations in the system response. 

 
Simulation model for the whole system is shown below: 
 
 

 
Fig. 9 Simulation model with PID controller (including IAE  
          criteria) 

 
 
The previous values of the PID controller, obtained from the 

Systematic Trial (and Error) method were used in the IAE 
procedure. The procedure for this is, as follow: one parameter 
of the controller will be changed, while another two will stay 
unchanged. That means: only one parameter will be changed at 
the time, to be able to see what influence that particular 
parameter has on the system response. All parameters will be 
changed in the range of the Systematic tuning method 
(KP=0.0155, KD=0.145, KI=0.855e-0.3). 
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 Values of Integral Absolute Error (IAE) will be recorded for 
each set of parameters and the smallest value (minimum value) 
will give us the “optimal” parameters of the controllers (i.e. the 
smallect “Cost Function”. 
Each of those three groups of changing parameters, results are 
tabulated in those three tables: Table 3(a), Table 3(b) and 
Table 3(c), by changing KD, KI and KP, respectively.  
 
 

Kp KI KD IAE 
0.0155 0.855e-03 0.01 1.16e08 

  0.03 5.158e04 

  0.07 2.256e01 

  0.1 9.797 
  0.145 1.007e01 

Table 3(a) Results when varying KD controller parameter 
 
 

Kp KI KD IAE 
0.0155 0.100e-0.3 0.145 9.305   *** 
 0.300e-0.3  1.073e01 
 0.500e-0.3  1.059e01 
 0.700e-0.3  1.029e01 
 0.855e-0.3  1.007e01 

Table 3(b) Results when varying KI controller parameter 
 
 

Kp KI KD IAE 
0.002 0.855e-03 0.145 9.467e01 
0.004   4.928e01 
0.006   2.997e01 
0.008   2.070e01 
0.0155   1.007e01 

Table 3(c) Results when varying KP controller parameter 
 
 
Note: Shaded numbers are “local” minimum for each of those   
particular groups. 
From those three tables, it is obvious that a minimum value for 
IAE criteria, for the whole range of the initial settings is 9.305 
(a “global” minimum, showing with three stars, ***).  
That means, using KP=0.0155, KI=0.100e-0.3 and KD=0.145, 
gives us the “optimal” unit step response, Fig. 10. 
 
 
 
 
 
 
 
 
 
 
 
 
             Fig. 10 “Optimal” system response  

In conclusion, response with the “optimal” parameters 
significantly improve overshoot (around 6%), as well as a 
settling time (around 30 seconds).  

IV. ADDING PROTECTION UNIT 
 

Adding Protection Limiter is essential in order to protect the 
system’s mechanical components (i.e. actuator- final control 
element) from being damage, especially when controller 
output produces a big value, mainly due to controller 
derivative part (so called a “derivative kick”), [4], [15]:  
Introducing protection limiter (usually Saturation block) will 
restrict extensive movement of the actuator. However, too 
much restriction tends to make system unstable (if not properly 
design). In addition, it causes that system becomes non-linear 
and then, a superposition and a linear theory do not work. 
Usually, a position of the protection limiter (Saturation block) 
is, as shown on Fig. 11: 
 

      Fig. 11 System with protection limiter (Saturation) 
 
 

Fortunately, in our case saturation block is not necessary to 
implement, because the output of PID controller is not so 
extensive (from -0.005 to 0.005), and cannot damage our 
mechanical components, as seen on Fig. 12: 
 
 
 
 
 
 
 
 
 
 
 
 
             Fig. 12 Output of PID controller  
 

V. DISTURBANCE 
 

Every control system is prone to outside interference or 
unwanted signals, referred as a disturbance. 
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Disturbance is represented by a Step1 input, set at 0.1, (see 
Fig. 13). Since the initial step value of the system is 1, the 
disturbance value of 0.1 suggests that helicopter will 
experience 10% extra force in the direction of travel or a push 
backwards (if it sets at -0.1).  
One example of that disturbance is wind (ambient conditions), 
with its specified direction and strength. This external 
disturbance can cause the system to have steady state error, as 
well as more oscillation of the output. Very high values of 
disturbances can even cause instability.  
 

 Fig. 13 Simulation model with a disturbance 
 
 
From the Fig. 14, it can be seen that 10% disturbance (wind) 
causes that system experiences big overshoot (60%) and 
slower settling time (more than 40 seconds).  
 
 
 
 
 
 
 
 
 
 
 
 
 
             Fig. 14 System response with 10% disturbance 
 

VI. CONCLUSION 
 

The helicopter pitch control system went through the 
procedures to obtain the desired parameters in order to 
stabilize the system. System was analyzed in Matlab through 
Root Locus to evaluate the variation of the poles of the open 
loop transfer function. Subsequent to open-loop analysis, 
closed-loop system was created in Simulink. This is when trial 
and error was done in order to determine the critical or 
ultimate gain (Gu) and ultimate period (Pu) which were used 
in Zeigler-Nichols Second tuning method to calculate the 
values for P, PI and PID controller.  
Furthermore, Systematic Trial tuning method was done to 
improve PID controller parameters, which gave better system’s 

response. Integral Absolute Error (IAE) criteria proceeded 
from Systematic Trial tuning method to get the “optimal’ 
parameters, which was used in our final response for the 
helicopter pitch control system. 
Optimal values were tested with protection limiter, but were 
not taken into consideration in the final model, because 
“derivative kick” does not exist. Disturbance was also added 
into the system which suggests that the object will experience 
10% extra force in the direction of travel.  
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