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Abstract: The article deals with a system of nonlinear differential 
equations of tumor growth cancer model under the influence of 
white noise.  This system can be used as   mathematical tools for 
analyzing of various real problems of tumor growth associated with 
cancer. Necessary and sufficient conditions for the asymptotic mean 
square stability of the zero solution of this system are derived in this 
article. The article introduces a new approach to studying such 
problems through construction of a suitable deterministic system 
with the use of Lyapunov function. Recently we observed that cell-
mediated immunity plays a vital role in immune responses against 
cancer. Cancer cell development and survival is a multifactor 
process involving genetic mutation of normal cells with 
physiological changes within both cancer cells and the body's 
defence mechanisms. In this paper we considered the special impact 
of tumor-immune interaction along with the two immune 
components– resting (helper) T-cells which stimulate CTLs and 
converting them into hunting (active) CTL cells which 
attack/destroy/ingest the tumor cells. Critically we have examined 
the existence of the system with local and global stability analysis at 
different equilibrium points. We have also developed a theoretical 
framework for understanding the complexity of the tumor growth 
cell under the influence of white noise. Using   various sensitive 
hypothetical parameter values with different initial densities the 
numerical simulations shown the dynamical behaviour of the tumor 
cells along with the resting and hunting cells showing interesting 
patterns in the evolution of the tumor and immune cell populations.  
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I.  INTRODUCTION 

We can come across stochastic behaviour while examining 
many important problems of a global character in various 
fields of research, for example, in the theory of cancer 
modelling. Detailed understandings of extreme events of 
cancer cell proliferation which is beyond our normal 
expectations and is a very important topic in greatest killer 
disease in all over the world. Common methods of studying 
cancer modelling, such as the statistical approach, the 
empirical-physical approach or the numerical modelling 
approach, have some limitations, and the study of them has 
been largely empirical. The dynamics of cancer and tumor 
growth requires special attention in the modeling analysis. 
Cancer is such a fatal disease which is known as malignant 
neoplasm characterized by the abnormal growth of cells. In 
cancer disease, cells are dividing randomly and growing in an 
uncontrolled manner forming malignant tumors and invade 
also the neighbouring parts of the cell of the human body. 
Recently, mathematical modeling of tumor has been 
developed by the researchers using different tools. 
Mathematical analysis has a wide range of contribution in the 
field of micro molecular level of cell biology. The cancer 
disease may spread to distant parts of the human body 
through the lymphatic system or bloodstream. Obviously, all 
tumors are not cancerous. The tumors which do not grow in 
an uncontrolled manner and do not invade neighboring 
tissues and also do not spread throughout the body are mostly 
non - cancerous. There exist few stages in the growth of a 
tumor cell before it reaches the lethal size. The factors which 
trigger the changes due to gene mutations are still unknown 
in cancer field but have impact on both ecological with 
genetic effects. One of the outcomes of this series of changes 
is an increase in the propagation rate and a decrease in the 
death rate of the cells which give rise to a cluster of tumor 
cells rising faster than the host cells [10-12].  Also a fast 
growing cluster of tumor cells cannot grow beyond a certain 
size as there is a balance between cells inside the clusters 
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consuming nutrients and nutrient diffusion into the cluster. 
Therefore, one of the most important steps in malignant 
tumor growth is angiogenesis which is the main process by 
which tumors develop their own blood supply. For this 
reason novel drugs which developed specifically to target 
tumor blood vessels. Once, the tumors have acquired their 
own blood supply, the tumor cells can escape the primary 
tumor via the circulatory system (metastasis) and set up 
secondary tumors somewhere else in the body [1-3]. 

The immune component in mathematical modelling analysis 
of tumor growth reflects the clinical observation phenomena 
of uncontrolled growth of tumor cells and also the oscillatory 
behaviour of the tumor size [1-12]. Similar tumor behaviour 
is also predicted in ordinary differential equation model [13] 
with interleukine-2 (IL-2). Recently advances in cancer 
immunology have been facilitated by the joint work of 
immunologists and mathematicians [1],[14-15]. Very 
interesting knowledge about interactions between the 
immune system and tumors gives a nice result for using 
mathematical models. Most existing mathematical models in 
cancer immunology are based on sets of nonlinear ordinary 
differential equations [2]. Our approach has some limitations 
of the problems involving spatial interactions or emerging 
properties [16-17]. Besides these, the analysis of ordinary 
differential equations model is associated with a high level of 
aggregation of the system entities. An alternative to ordinary 
differential equations modeling which overcomes these 
limitations is a system of stochastic modeling. It is a set of 
methodologies and applications which reflects the behavior 
of a real system [2],[18-19]. Also,    stochastic modeling 
having benefits compared with the real-world 
experimentation in immunology including time and costing 
due to the resource-intensiveness of the biological 
environment. But in simulation environment, it is also 
possible to generate different scenarios for   conducting 
experiments. Cancer is one of the main causes of mortality in 
the recent world. In   last few decades, mathematical 
modeling analysis of tumor in differential equations using 
different mathematical tools and computational techniques. 
Tumor cells have different mechanisms for escaping from 
host immunity to defeat cancer immunotherapy. Typical 
immunity-escaping strategies employed by tumor cells 
including the down regulation of target antigens and antigen-
presenting machinery associated with  the recruitment of 

specialized subset of CD4 +  T cells and  CD4 + CD25 +  
regulatory T cells (TRegs) into the tumors [20–22]. In fact, 
the activation of TRegs is one of the major tumor immune 
escape mechanisms [23–27]. In this paper we summarized 

the role of CD4 +  T cells in shaping and augmenting 
antitumor immunity.  In human body the immune system 
recognized by the cancer cells which strengthen its response 

so that it can destroy them. The immune response of the 
cancer specific antigens is our interest due to the 
development of the new vaccines and antibody therapies. 
Cell mediated immunity associated with the production of 
cytotoxic T-lymphocytes cells (CTLs), activated 
macrophages and release of various cytokines for response to 
an antigen. A cytotoxic T-cell (CTL) is a T-lymphocyte (a 
type of white blood cell) which kills the cancer cells which 
are already infected or cells that are already damaged due to 
some other reasons. Recently, the culture of stimulation of 

CD4 +  T helper cells in cancer immunotherapy is considered. 
T helper cells are a subgroup of lymphocytes which is a type 
of white blood cell and it play a major role particularly in the 
adaptive immune system. Sometimes, it helps for the activity 
of immune cells through release of T-cell cytokines. They 
also help the other white blood cells in immunologic 
processes including maturation of B-cells into plasma cells 
and memory B-cells with the activation of cytotoxic T-cells 
(CTLs) and macrophages.                                                             

In last few decades many researcher analysed different 
mathematical models which describes the interaction among 
the various compartments of tumor-micro environment [16-
19]. But they have not concentrated their study for the 
immune response of tumor growth. Recently, cancer research 
has already developed on different control strategies and drug 
therapies which are focused on experimental aspects and 
immunology [2-5], [20], [26-30]. There are lot of ordinary 
differential equation models of tumor growth and tumor 
immune system interactions [1], [6-7], [15], [21-25], [31-34]. 
Some of them followed the historical approach [22] while 
others focused on multi-scale modelling and tumor evolution. 
They also studied the competition between tumor cells and 
immune cells of the continuous and discrete dynamical 
system [1], [21], [25], [35]. They also identified the evolution 
of the number of cells which belongs to different interacting 
populations of tumor cells and immune cells in different 
scales namely molecular, cellular and macroscopic etc. The 
method of the classical mathematical kinetic theory for active 
particles to study the immune competition is a special 
attention of cancer disease have been analysed by et.al [36]. 
They mainly focused on modelling aspects of the early stage 
of cancer disease and competition with the immune system. 

Many authors have already used the concept of prey-predator 
type interactions in population biology in the field of tumor 
growth studies where, in general, the immune cells play the 
role of predator and the tumor cells that of prey [37-40]. 
These types of analysis is associated with the qualitative 
study of ordinary differential equation model gives rise a 
mathematical framework exploring the interactions among 
the tumor cells and the different types of immune and healthy 
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tissue cells. This type of study of the nonlinear complex 
system in immunogenic tumor’s growth based on parametric 
estimation and global bifurcation phenomenon which was 
carried out by N. Bellomo et.al.,[37]. Also immunotherapy of 
tumor-immune interaction has been studied by D. Kirschner, 
and J.C. Panetta [38]. They elucidated that the dynamics 
among the tumor cells, immune cells and IL-2 which can 
explain both short-term oscillations of tumor size as well as 
long-term tumor growth relapse. The self-remission and 
tumor growth stability through incorporation of stochastic 
perturbation have been analysed by Sarkar et.al.,[39]. Also in 
last few decades, retarded differential equations are used in 
mathematical modelling of cancer disease [41-47].The 
complexity of the dynamics of a vascular tumor growth by 
incorporating the discrete type of time-delay in the net 
proliferation rate of the cells studied by [48]. The effect of 
time delay on the two-dimensional system which represents 
the basic model of the immune response is analysed by [49]. 
They also studied the variations of the stability criteria of the 
equilibrium points due to incorporation of time delay and the 
occurrence of chaos. Recently the time delay has been 
incorporated in solid vascular tumor growth by [50] where 
the two main processes are taken into account i.e. 
proliferation and apoptosis. Simplified version of the 
Kuznetsov-Taylor model [37], where immune reactions are 
described by a bilinear term with constant time delay [8]. 
Also [9] analyzed an interaction between the proliferating 
cells and quiescent cells tumor growth with the impact of 
single delay. Also [9] showed that the existence of Hopf 
bifurcation as the constant time delay passes some lumping 
parameter critical value. Also the study on cancer self 
remission and tumor growth with optimal control strategies 
shows the changes from its unstable state to an 
asymptotically stable one [40].  
 
The progress of cancer like tumor growth is multifaceted and 
deals with different cells in the human body. Most important 
components of these cells are tumor cells, immune cells and 
healthy tissue cells. A cancerous growth is a typical nonlinear 
system which is unpredictable. It grows in a multiple manner 
and ultimately conquers the good cells in the human body. 
Non-linear differential equation mathematical model [18] 
plays a vital role for understanding the dynamics of its 
exploration and identifying the tumor cells and immune cells 
populations with respect to time with the impact of various 
parameters and different initial populations [2],[19], [26]. In 
the last few years, a lot of researchers devoted themselves to 
control strategies and drug therapies specially emphasised on 
experimental aspects and immunology [3-5],[20-23],[27-30].  

 
The idea of replacing the whole deterministic system with a 
stochastic differential equation is a very good attempt to 

judge the nonlinear effect on the considering system. It has a 
wide effect to improve the cancer growth tumor deterministic 
model by incorporating the influence of the fast variables in 
the form of random white noise. The univariate linear 
systems that appear in the work have been successful in 
describing various modes of cancer growth variability. 
Success of these models has inspired researchers to consider 
the stochastic external driving force acts as a possible source 
of more complex dynamics. This analysis can be treated as 
the beginning of describing extreme events in cancerous 
tumor growth by a stochastic system of differential equations 
in which random growth changes are expressed by a 
nonlinear stochastic perturbation in the form of white noise. 
Also we have constructed Lyapunov function, as a tool, to 
study stability of a stochastic system that works under the 
influence of white noise. We construct Lyapunov function 
that works under the influence of white noise. 

 
Let (Ω, Ƒ, F, P) be a filtered probability space, or stochastic 
basis, consisting of a probability space (Ω, Ƒ, F) and a 
filtration F = {F t , 0≥∀ t } contained in F. On the 

probability space we consider the stochastic system of 
nonlinear differential equations of the 
form ( ) ( ) ( ) ( )tdwxhdtxftdx iiii += ,      

,,........,2,1 mi = 0≥t                                         (1)  
 
where the state function  

( ) ( )T
mxxxtx ,........,, 21= (the operation T denotes 

transposition) is a continuously differentiable m -

dimensional column vector-function, ( )T
mfff ,.....,1= , 

( )T
mhhh ,.....,1=  are also continuously differentiable m -

dimensional column vector functions such that 

( ) ( ) ( ) mThf ℜ∈=== 0,......,0,00,00,00 hold. The 

function f  represents a slow deterministic process, the 

product ( ) ( ) mitdwxh ii ,....,2,1, = , is the stochastic 

approximations to a fast phenomenon. The m -dimensional 

column vector-function ( )T
mwwww ,.......,, 21= indicates 

a standard Wiener process. The m -dimensional Wiener 
process is said to be standard Wiener process if 

( )0 0,w = ( ){ }(1) 0,E ds t =  

( ) ( ){ }(1) TE dw t dw t Idt=                                 (2)     

hold for It ,0≥ , is the identity matrix. Any realization of 

the Wiener process ( )tw is continuous but not differentiable 
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at each point. Moreover because of ( ) ( ){ } IttwtwE T =)1( , 

the process ( )tw is a non-stationary stochastic process.  
For, simplicity, we denote  

( ) ( ) ( )T
mm dwhdwhtdwxh ,.......,11= in our consideration. 

So, the product ( ) ( )tdwxh means neither a scalar product 
nor a vector product, but it is  
 

a column vector with components  ( ) ( ) ,i ih x dw t . 

1, 2,.....,i m= Using this, system (1) can be rewritten into 

the vector form ( ) ( ) ( ) ( )tdwxhdtxftdx += ,       0≥t             
(3)  
 are interested in stability of solutions of the system. There 
are several various definitions of stability that can be used. 
Here we recall the mean square stability and the asymptotic 
mean square stability of the zero solution. 

 
Definition 1 The trivial solution of system (3) is said to be 
mean square stable on the interval [ )∝,0  if, for each 0>ε , 

there exists 0>δ such that any solution ( )tx corresponding 

to the initial data ( )0x exists for all 0≥t and the 

mathematical expectation ( ){ } ε<2)1( txE    whenever  

0≥t  and ( ) δ<0x . The mean stability of the zero 

solution of system (3) is defined in a very similar way, with 

only ( ) 2tx being replaced by ( )tx  

Definition 2 The trivial solution of system (3) is said to be 
asymptotically mean square stable on the interval [ )∝,0  if it 

is stable and moreover, ( ){ } 0lim 2)1( =
→∝

txE
t

                                            

(4) 
                                                                                                       

Remark 1 It is easy to see that (4) is satisfied if and only if 

the matrix ( ){ }txE )2(  converges to zero matrix ʘ,    

( ){ } ( ) ( ){ }==
→∝→∝

txtxEtxE T

tt

)1()2( limlim  ʘ,   

Denote a neighbourhood of the point mℜ∈0   as O(o) 

Definition 3 The function ( )( )txtg , is said to be positive 

definite on O(o) if ( )( )txtg ,  is       

continuous with respect to ( ) <∝≥ txtt ,0,  on O(o), 

( ) 00, =tg and there exists a positive  

definite quadratic form ( )xV  such that ( ) ( )xVxtg ≥,   

whenever  ,0≥t   ∈x  O(o)  and ( ) <∝tx .Recall, if a 

function ( )( )txtg ,  is positive definite on O(o), then the 

function – ( )( )txtg , is negative definite on this 
neighbourhood. 
 
Remark 2 The previous definition is equivalent to the 
following one: 
The function ( )( )txtg ,  is said to be positive definite on 

O(o) if ( )xtg , is continuous with respect to 

( ) <∝≥ txtt ,0,  on O(o), ( ) 00, =tg  and there exists a 

constant 0>k such that  

for any positive definite quadratic form ( )xV ,    

( ) ( )xkVxtg ≥,   whenever  ,0≥t   ∈x  O(o)  and 

( ) <∝tx . 

Definition 4: We define a Lyapunov function ( )( )txv in the 

form   ( )( ) ( ) ( )tCxtxtxv T=                                 (5)                                                                 

where C is a mm× positive definite symmetric matrix. We 

also use the diagonal matrix dC which has the same elements 

on the diagonal as C . 
 
Theorem 1:  Let there exist a neighbourhood O(o), in which 
the function  

( ) ( ) ( ) ( )xhCxhxCfxx d
TT += 2δ                    (6) 

 is negative definite with respect to system (3). Then the 
trivial solution of (3) is asymptotically mean square stable on 
the interval [ )∝,0  
Proof: First we calculate the differential of Lyapunov 
function (5) with respect to     
trajectories of system (3). We have 

( ) ( ) ( )
( ) ( )T T

dv x v x dx v x

x dx C x dx x Cx

= + −

= + + −
 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )

TT T

T

x f x dt h x dw t

C x f x dt h x dw t x Cx

= + +

+ + −
 

( )
( ) ( )( ) ( )

T T T

T T

x Cx x Cx x Cf x dt

x C h x dw t f x dtCx

= − +

+ +
   

          ( ) ( )Tf x dtCf x dt+       
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( ) ( ) ( )( )
( ) ( )( )
( ) ( )( ) ( )

T

T

T

f x dtC h x dw t

h x dw t Cx

h x dw t Cf x dt

+

+

+

  

          ( ) ( )( ) ( ) ( )( ).T
h x dw t C h x dw t+  

After modifying the obtained equation, applying operation 

mathematical expectation   ( ) ( ){ }tdvE 1 , 
in regard to assumptions (2), and leaving aside the member 

with 2dt , we get the equation    
 

({ } ( ) ( )(1) ( ( )) T TE d v x x Cf x dt f x Cxdt= +  

                                              ( ) ( )T
dh x C h x dt+   (7) 

or, in view of (6), it can be written in the more simple 

form ( ) ( ){ } ( )dtxxdvE δ=1                                   (8) 

Because ( )xδ is a negative definite deterministic function, 
the equalities 

( ) ( ){ } ( ) ( ) ( )1 , , .E x x x kv x k constδ δ δ= ≤ − = are 

true (see Remark 2). By using them and equation (8), we get 

( ) ( ){ } ( ) ( ){ },11 xvkExvE
dt
d

−≤  

So, ( ) ( ){ } ,1 ktexvE −≤ therefore, 
( ) ( ){ } ( ) ( ) ( ){ }==

→∝→∝
txtxEtxE T

tt

12 limlim  ʘ, which implies 

asymptotic mean square stability of a trivial  
solution of the considered  system. 
Remark 3 Analogous result about instability can be derived 
in the same way as the result  
of Theorem 1. Namely, if there exists a neighbourhood O(o), 
in which the function  

( ) ( ) ( ) ( )xhCxhdtxCfxx d
TT += 2δ  

is positive definite with respect to system (3), then the trivial 
solution of (3)  is unstable  on the interval [ )∝,0 . Further we 
will discuss the stability of a system in the more general form 

( ) ( ) ( ) ( ),,,
1
∑
=

+=
n

k
kk tdwxthdtxtftdx ,0≥t  (9)                                                                                  

where nkhf k ,.......,1,, = , are  m -dimensional column 

vector-functions continuously  
differentiable in both variables, such that 
( ) ( ) 00,,00, == thtf k hold. 

Expressions ( ) ( ) nktdwxth kk ,........,1,, = , are again 

column vectors with components   
( ) ( ) .,.......,2,1,,.....,2,1,, nkmitdwxth ikik ==  

Functions ( )1 ,......, , 1, 2,....T
k k mkw w w k n= =   are also 

m -dimensional column vector-functions indicating standard 
Wiener processes, such that each of them satisfies the 
following relationships:  

( ) 00 =kw ; ( ) ( ){ } 01 =tdwE k ;
( ) ( ) ( ){ } ,1 IdttdwtdwE T

kk = nk ,.......,2,1= for 0≥t .                                                                    

(10)                                                                     
The following theorem can be proved in the same way as 
Theorem 1. 
Theorem 2: Let there exist a neighbourhood O(o), in which 
the function 

( ) ( ) ( ) ( )xthCxthxtCfxtx hd

n

k

T
k

T ,,,2,
1
∑
=

+=δ                                                                                     

                                                                               (11) 
is negative definite with respect to system (9).Then the trivial 
solution of (9)  is asymptotically mean square stable on the 
interval [ )∝,0 . 

 
Remark 4: A similar remark as Remark 3 can be formulated 
in this case. Namely, if there exists a neighbourhood O(o), in 
which the function 

( ) ( )

( ) ( )
1

, 2 ,

, ,

T

n
T
k d h

k

x t x Cf t x

h t x C h t x

δ

=

=

+∑
  

is positive definite with respect to system (9), then the trivial 
solution of (9) is unstable on the interval [ )∝,0 .  
In the last part of this section, let us consider one special case 
of a stochastic system of   differential equations, namely the 
linear system  

( ) ( ) ( ) ( ),tdwtHxdttAxtdx += ,0≥t              (12)                                                                               

where HA, are mm× constant matrices and w is a 
standard Wiener process that satisfies (2). 
Corollary 1:  Let there exist a neighbourhood O(o),  in 
which the function 

( ) HxCHxCAxxCxAxx d
TTTTT ++=δ  (13)                                

is negative definite with respect to system (12). Then the 
trivial solution of (12) is asymptotically mean square stable 
on the interval [ )∝,0 . 
Proof: The proof of this theorem follows immediately from 
Theorem 1 if   
( ) ( ) ., HxxhAxxf ==  

Remark5: If there exists a neighbourhood O(o), in which the 
function  
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( ) HxCHxCAxxCxAxx d
TTTTT ++=δ  

 is positive definite with respect to system (12), then the 
trivial solution of  (12)  is unstable on the interval [ )∝,0 . 

 
Remark 6:   Stability of the trivial solution of a stochastic 
system of linear differential equations in the form (12) was 
studied in the works by Korenevskii in [60]. The following 
stability criterion was obtained there by different methods. 
The trivial solution of system (12) is asymptotically mean 
square stable on the interval [ )∝,0  if and only if there exist 

a positive definite matrix  C  satisfying the matrix equation  

GCHHCACA TT −=++ ,  
where matrix G is positive definite. 
 
The rest of the paper is structured as follows. In section 2 we 
present the deterministic mathematical model of tumor 
growth. In section 3, we studied the stability of the 
deterministic system. In section 4, we built and analyzed the 
stochastic mathematical model. Computer simulations are 
incorporated in section 5. Finally, section 6 contains the 
general discussions and conclusions of the article and 
epidemiological implications of our mathematical & 
statistical findings.  

 

II.  MATHEMATICAL MODEL 

In this section we consider a deterministic mathematical 
model for the growth of tumor [51] and incorporated the 
stochastic environmental perturbation with white noise on the 
system whose behaviour has been investigated in section 4. 
The preys are the tumor cells which are attacked and 
destroyed by the immune cells. The predator has two states 
viz., hunting and resting cells which destroys the prey. The 
resting predator cells can interact with antigens. These resting 
cells cannot kill tumor cells but they are converting into a 
special type of T-lymphocyte cells which is called natural 
killer or hunting cells and begin to multiply which release 
other cytokines simulating more resting cells. This 
conversion between hunting and resting cells results in a 
degradation of the resting cells undergoing natural growth 
and an activation of hunting cells. 
 
The required mathematical model assumes that the tumor 
cells are being destroyed at a rate proportional to the tumor 
cell densities according to the law of mass action like prey-
predator interaction. It is also assumed that the resting 
predator cells are converted into the hunting cells either by 
direct contact with them or by contact with a fast diffusing 
substance produced by hunting cells. We consider that once a 
cell has been converted, it will never return to the resting 
stage and active cells which die out at a constant probability 
per unit time. The dynamical system can be described by the 
following set of non-linear differential equations 

1 1 2( ) 1 (1 )x t a x x k xy k x′ = + − − −                              

2 3 3( )y t a yz a y k xy′ = − −                       (14)                                                                                                         

4 5 6 4( ) (1 )z t a z z a yz a z k xz′ = − − − −  

where ( )x t represents the density of tumor cells at time ‘ t ’, 
( )y t represents density of hunting predator cells at time 

‘ t ’, ( )z t represents density of resulting cells at time ‘ t ’, 

1a is the growth rate of tumour cells, 1k is the rate of killing 

of tumour cells by hunting cells, 2k is the specific loss rates 

of tumour cells, 3k  represents the rate of killing of hunting 

predator cells by tumour cells,    4k  represents rate of killing 

of resting cells by tumour cells, 2a  represents the conversion 

rate of the resulting cells to hunting predator cells, 3a is the 

specific loss rates of hunting predator cells, 4a  represents the 

growth rate of resting cells, 5a is the conversion rate of 

resting cells to hunting predator cells, 6a is the specific loss 
rates of the resting cells. The initial positivity conditions 
are (0) 0;x > (0) 0;y > (0) 0z >                      (15)                                                                                                                            

 
 

POSITIVE INVARIANCE AND BOUNDEDNESS: 
Feasibility or biologically positivity studies aim to 
objectively and rationally uncover the strength of the 
proposed model in the given environment. Biologically 
positive insures the population never become negative and 
population always survive. The following theorems ensure 
that the positivity and boundedness of the system (14). 

Theorem 3: All solution ( ( ), ( ), ( ))x t y t z t of the system 
(14) with the initial conditions (15) are positive for all 0t ≥  

Proof: From (14) it is observed that 

1
1 1 2

1

(1 )

( , , ) (say)

dx x a x k y k dt
x

x y z dtφ

− = + − − − 

=
 

 [ ]2 3 3 2 ( , , ) (say)dy a z a k x dt x y z dt
y

φ= − − =   

 
[ ]4 5 6 4

3

(1 )

( , , ) (say)

dz a z a y a k x dt
z

x y z dtφ

= − − − −

=
 

where 
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1
1 1 1 2( , , ) (1 )x y z x a x k y kφ −= + − − − ;

2 2 3 3( )z a z a k xφ = − − ;

3 4 5 6 4( , ) (1 )x y a z a y a k xφ = − − − −  

and its solutions in the region[0, ]t  are given by 

( )1( ) (0)exp ( , , ) 0x t x x y z dtφ= >∫ ; 

( )2( ) (0)exp ( , , ) 0y t y x y z dtφ= >∫ ;

( )3( ) (0)exp ( , ) 0z t z x y dtφ= >∫  for all t  

Hence, all solutions starting from interior of the first octant 

(In 3R+ ) remain positive in it for future time. 

Theorem 4: All the non-negative solutions of the model 

system (14) that initiate in 3
+ℜ  are uniformly bounded. 

Proof: Let ( ), ( ), ( )x t y t z t be any solution of the system (14). 

Since, 1( ) (1 )x t a x x′ ≤ − , we have ( )lim sup 1
t

x t
→∞

≤ .  

Let L x y z= + + . Differentiate with respect to t  

 we get  ( ) ( ) ( ) ( )L t x t y t z t′ ′ ′= + +                (16) 

From (14) and (16), we get 

( )1 1 2( ) 1 (1 )L t L x a x x k xy k xθ′ + = + − − −  

                 2 3 3( )a yz a y k xy y+ − −  

               4 5 6 4( (1 ) )z a z z a yz a z k xz+ − − − −  

                ( )x y zθ+ + +  

( )1

3 4 6

( ) 1 (1 )
( ) ( (1 ) )

L t L x a x x
y a z a z a

θ θ
θ θ

′ + ≤ + − +

+ − + − − +
   

                ( )( ) ( )1 11 1 1x a x x aθ θ≤ + − + ≤ +  

1( ) since 1 ( ))L t L a sayθ µ θ µ′ + ≤ + + =  

Applying Lemma on differential inequalities Birkhoff [61] 
we obtain  

( ) ( )( )
( ) ( ) ( )( )( )

0 , , / 1

0 , 0 , 0 /

t

t

L x y z e

L x y z e

θ

θ

µ θ −≤ ≤ −

+
 

and for t →∞ we have ( )0 ( , , ) /L x y z µ θ≤ ≤ . Thus all 

solutions of system (14) enter into the region 

( )
( )

3, , : 0 1,

0 / , 0

x y z R x

L µ θ ε ε
+ ∈ ≤ ≤ Γ =  

≤ ≤ + ∀ >  
.  This 

completes the proof. 

 
 
 
 

III.  STABILITY AND DYNAMICS OF THE TUMOR 
GROWTH SYSTEM 

 
For the system (14) we have the equilibrium points as (i) 

( )0 0,0,0E  which always exists.  

(ii) ( )1 ,0,0 .E x  

where
2

2 2

1 1 1

1 41 1
2

k kx
a a a

     = − ± − +        

.    For x  to 

be feasible we have 1 2a k>  

(iii) ( )2 ,0,E x zφ φ

 
where xφ  and zφ  are: 

2

2 2

1 1 1

1 41 1
2

k kx
a a a

φ
     = − ± − +        

  and          

6 4

4 4

1 a kz x
a a

φ φ= − − . For feasible existence of the 

equilibrium we have the parametric  
restriction as 4 6 4a a k xφ> + .  

(iv) ( )* * *
3 , ,E x y z where * *

3 3
2

1z a k x
a

 = +  ,  

* * *
* 1 2

*
1

1 (1 )a x x k xy
k x

+ − −
= with the restriction 1 2a k> .

  
To check the local stability of the system (14), it is necessary 
to check the nature of eigenvalues of characteristic equation 
of the variational matrix J    
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where  

1 1

3 2

4 5 4

1 0

0

a x k x
x

J k y a y
k z a z a z

− − −

= −
− −

      

It is found that the characteristic equation of the system (14) 
cannot be defined about the steady state ( )0 0,0,0E . Also, it 
is observed that the system (14) is semi negative definite at 

steady states ( )1 ,0,0E x  and ( )2 ,0,E x zφ φ .  About 

( )* * *
3 , ,E x y z  , the characteristic equation of (14) is in the 

form of 3 2 0A B Cλ λ λ+ + + =           

where * *
1 4*

1A a x a z
x

= + + ; 

*
* * * * * *

1 1 4 2 5 1 3*

zB a a a x z a a y z k k x y
x

= + + − ; 

* *
* * *

2 5 1 2 5*

* * * * * *
4 1 3 2 1 4

y zC a a a a a x y z
x
a k k x y z a k k x y z

= +

− −
;  

By Routh-Hurwitz criteria, it can be stated that the model 
(14) is locally stable around the interior equilibrium 
point 3E , if the following set of conditions involving the 

parameters are satisfied. 0; 0; 0A C AB C> > − > . 

Clearly we observe that A  is positive. For C  to be positive, 
we should have  

( ) ( )* 2 * 2
2 5 1 1 4 3 2 41 ( ) ( )a a a x k x a k a k+ > +  and for 

AB C−  to be positive, we should have   

( )* * * 2
2 4 1 31 ( )a k x z a x k> + . Thus the above conditions 

are necessary and sufficient for the stability of the interior 
equilibrium point.  

Theorem 5:  If the parametric conditions 

( ) ( )* 2 * 2
2 5 1 1 4 3 2 41 ( ) ( )a a a x k x a k a k+ > +  and  

( )* * * 2
2 4 1 31 ( )a k x z a x k> +  holds, then the equilibrium 

point * * *
3( , , )E x y z is locally asymptotically stable in 3 .+ℜ  

The numerical solution of the set of equation is shown in 
figures 1 and 2. The figure shows that the system is stable 
around 3E . The numerical simulation also depicts that the 
system is unstable under certain parameter values such as 

1 0.6;a = 1 0.9;k = 2 0.5;k = 2 0.99;a = 3 0.1;a =  

3 0.05;k = 4 0.6;a =  5 0.06;a =  6 0.07;a =  

4 0.02;k = .This phenomenon is shown in Figure 2. The 
simulation results show that the solution of the system of 
equation is periodic as depicted in figure 2. It has very 
important implication of the model system. It implies that the 
stage of the tumor is alarming. This phenomenon is known as 
the self-regression of tumor.                                
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                                   Figure 1 

Figure 1: The time series evolution of the three populations 
of the system (14) showing the stable oscillation of the 
population towards 

( )3 1.3213,  0.5656,  0.1186E . 
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                                    Figure 2                                                                 

Figure 2: Periodic time series evolution of the three 
populations of the system (14) showing the unstable 
oscillation of the population towards 

( )3 1.3213,  0.5656,  0.1186E  for parameter values 

1 0.6;a = 1 0.9;k =   2 0.5;k =  2 0.99;a =  3 0.1;a =  

3 0.854;k =  4 0.6;a =  5 0.06;a =  6 0.118;a =  

4 0.02k = .   
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Theorem 6: The equilibrium point * * *
3 ( , , )E x y z is also 

globally asymptotically stable in 3
+ℜ .  

Proof: To verify the global stability at the interior 

equilibrium point 3E , we construct the following Lyapunov 

function as given by  

* *
*

* * * *
1 2* *

( , , , ) ( ) ln

( ) ln ( ) ln

xV x y z E x x x
x

y zl y y y l z z z
y z

 = − −  
   + − − + − −     

 

* * *

1 2 ;dV x x dx y y dy z z dzl l
dt x dt y dt z dt

     − − −
= + +     
       

 ( )2*
1 *

1dV a x x
dt xx

 = − + − 
   

          ( )( )( )* *
1 1 3k l k x x y y− + − −  

         ( )( )( )* *
2 5 1 2l a l a y y z z− − − −

      

          ( )( ) ( )2* * *
2 4 2 4l k x x z z l a z z− − − − − ; 

by choosing, 1
1

3

kl
k

= ; 1 2
2

3 5

k al
k a

= ,                                                                                                   

( )2*
1 *

1dV a x x
dt xx

 ≤ − + − 
 

 

        
( ) ( )2 2* *

12
2 2

x x y y
k
 − − − +
 
   

     

( ) ( )2 2* *
2 1 4

5 3 2 2

x x z za k k
a k

 − − − +
 
   

                  

       ( )2*2 1

5 3

a k z z
a k

− − ;  

Therefore,   we have, ( ) 0V t′ < , which proves that the 
given system is globally asymptotically stable about the 
equilibrium point 3E . This phenomenon is very important as 

it tells that at several initial states of the tumor cells the 
immune cells have sufficient strength to keep the tumor cells 
under control. Numerically, it is shown in the following 
Figure no 3. 
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                                   Figure 3 

Figure 3: Global phase portrait of three populations of the 
system (14) showing the stable oscillation of the population 
towards             

( )3 1.3213,  0.5656,  0.1186E  for many initial 
conditions. 

IV.  STOCHASTIC DIFFERENTIAL EQUATION MODEL 

In this section, we extend the deterministic differential 
equations model (14) to a system of stochastic differential 
equations, where relevant parameters are modeled as suitable 
stochastic processes, or stochastic processes are added to the 
driving system equations. This approach assumes that the 
dynamics are partly driven by noise. There are a number of 
ways in which environmental noise may be incorporated in 
system (14). However, real biological systems will always be 
exposed to influences that are not completely understood or 
not feasible to model explicitly and therefore there is an 
increasing need to extend the deterministic models to models 
that embraces more complex variations in the dynamics. A 
way of modeling these elements is by including stochastic 
influences or noise. All biological dynamical systems evolve 
under stochastic forces, if we define stochasticity as the parts 
of the dynamics that we either cannot predict or understand 
or that we choose not to include in the explicit modeling. To 
be realistic, models of biological systems should include 
random influences, since they are concerned with subsystems 
of the real world that cannot be sufficiently isolated from 
effects external to the model. Generally, the environmental 
noise is distinguished from demographic or internal noise, for 
the variation over time is due to different causes. External 
noise may arise either from random fluctuations of the 
parameters around some known mean values or from 
stochastic fluctuations of the population densities around 
some constant values. In this section, we compute the 
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population intensities of fluctuations, i.e., variances around 
the positive equilibrium 3E due to noise, according to the 
method introduced by Nisbet and Gunney [52]. If the 
amplitudes of the different cells are large from their average 
levels the populations are in unstable situation. Here we have 
the average values of the populations as the equilibrium state 
of the populations. Different sources of errors will require 
different modeling of the noise, and these factors should be 
considered carefully as the modeling of the deterministic 
part, in order to make the model predictions and parameter 
values possible to interpret. It is therefore essential to 
understand and investigate the influence of noise in the 
dynamics. In many cases the noise simply blurs the 
underlying dynamics without qualitatively affecting it, as is 
the case with measurement noise or in many linear systems. 
However, in nonlinear dynamical systems with system noise, 
the noise will often drastically change the corresponding 
deterministic dynamics. In general, stochastic effects 
influence the dynamics and may enhance, diminish or even 
completely change the dynamic behavior of the system.  
 
In 2006, Carletti [53] studied a delay differential equations 
model with bacteriophage infection and discussed the 
robustness of the positive equilibrium with respect to 
stochastic perturbations of the environment using two 
different approaches. He investigated the analytical estimates 
of the population intensities with fluctuations by Fourier 
transform methods. Extensive numerical simulation 
suggested that a noisy environment for the bacteria 
population has much more destabilizing effect on the 
concentrations at the equilibrium point than a noisy 
environment for the phage. In this model, we introduce the 
fluctuating term ( )i tξ  in the deterministic growth of the 
tumour cells, hunting predator cells and resulting cells at time 
t. The growth rate ia ( 1, 2,3i = ) adjusted by the fluctuation, 

is rewritten as ( )i ia tξ+ . We can address the final 
stochastic differential dynamical equation as given by  
 

( )1 1 2 1 1( ) 1 1 ( )x t a x x k xy k x tα ξ′ = + − − − +                                                                   

2 3 3 2 2( ) ( )y t a yz a y k xy tα ξ′ = − − +
              

(17)                       

( )4 5 6 4 3 3( ) 1 ( )z t a z z a yz a z k xz tα ξ′ = − − − − +                  

where  ( )x t , ( )y t and ( )z t  be the density of tumour cells, 
density of hunting predator cells and density of resulting cells 
respectively at time ‘ t ’. 1α , 2α and 3α are real constants 

and  ( ) [ ]1 2 3( ), ( ), ( )t t t tξ ξ ξ ξ=  is a three dimensional 
Gaussian white noise process satisfying  

( ) 0; 1,2,3iE t iξ  = =  ;

( ) ( ) ( ); 1, 2,3i j ijE t t t t i jξ ξ δ δ′ ′  = − = =  (18)                       

where ijδ  is the Kronecker symbol;δ  is the Dirac-delta 
function. Using the below perturbations 

*
1( ) ( ) ;x t u t S= + *

2( ) ( ) ;y t u t P= +
*

3( ) ( ) ,z t u t T= +  the linear part of the system (17) is 
                          

* *
1 1 1 1 2 1 1( ) ( ) ( ) ( )u t a u t S k u t S tα ξ′ = − − +        

* *
2 2 3 3 1 2 2( ) ( ) ( ) ( )u t a u t P k u t P tα ξ′ = − +

      
 (19)                        

* * *
3 4 3 5 2 4 1

3 3

( ) ( ) ( ) ( )
( )

u t a u t T a u t T k u t T
tα ξ

′ = − − −

+
                              

Taking the Fourier transform on both sides of (19) we get, 
( ) ( ) ( )M uω ω ξ ω= 

                                 
 (20)                                          

where  ( )
11 12 13

21 22 23

31 32 33

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

A A A
M A A A

A A A

ω ω ω
ω ω ω ω

ω ω ω

 
 =  
 
 

 ;  

( )
1

2

3

( )
( )
( )

u
u u

u

ω
ω ω

ω

 
 =  
  



 



 ;   ( )
( )
( )
( )

1 1

2 2

3 3

α ξ ω
ξ ω α ξ ω

α ξ ω

 
 =  
  



 



; 

*
11 1( )A i a Sω ω= + ; *

12 1( )A k Sω = ; 13 ( ) 0A ω = ; 
*

21 3( )A k Pω = ; 22 ( )A iω ω= ; *
23 2( )A a Pω = − ;

*
31 4( )A k Tω = ; *

32 5( )A a Tω = ; *
33 4( )A i a Tω ω= +

                 

Equation (20) can also be written as    

( ) ( ) ( )1
u Mω ω ξ ω

−
 =  



 . Let ( ) 1
( )M Kω ω

−
  =  ,    

therefore, ( ) ( )( )u Kω ω ξ ω= 


; where 

( )

2 2

( ) , , 1, 2,3ij ijX Y
K i j

M
ω

ω
+

= = ,where  

( ) ( ) ( )M R iIω ω ω= +  

Real part of ( )M ω  =  

( ) ( )2 * *
1 4

* * *
1 2 5 4 1 3 2 1 4( )

R a S a T

a a a a k k a k k S P T

ω ω= − +

+ − −
               

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 12, 2018

ISSN: 2074-1308 21



Imaginary part of ( )M ω  = 

( )
( )

3

* * * * * *
1 4 2 5 1 3

I

a a S T a a P T k k S P

ω ω

ω

= −

+ + −
           

The intensities of fluctuations in the variable ; 1, 2,3iu i =  
are given by   

3 22

1

1 ( ) ; 1, 2,3
2iu j ij

j
K d iσ α ω ω

π

∞

= −∞

= =∑ ∫  

                                       (21) 

Thus (21) becomes     

( )
( )
( )

1

2

2 2
1 1 1

2 2
2 2 22 2

2 2
3 3 3

1 1
2 ( ) ( )

u

X Y

X Y d
R I

X Y

σ

α

α ω
π ω ω

α

∞

−∞

  +
    = + +  +  + +   

∫
 

( )
( )
( )

2

2

2 2
1 4 4

2 2
2 5 52 2

2 2
3 6 6

1 1
2 ( ) ( )

u

X Y

X Y d
R I

X Y

σ

α

α ω
π ω ω

α

∞

−∞

  +
    = + +  +  + +   

∫
 

( )
( )
( )

3

2

2 2
1 7 7

2 2
2 8 82 2

2 2
3 9 9

1 1
2 ( ) ( )

u

X Y

X Y d
R I

X Y

σ

α

α ω
π ω ω

α

∞

−∞

  +
    = + +  +  + +   

∫
 

where 2 * *
1 2 5X a a P Tω= − + ; *

1 4Y a Tω= ; 
* *

2 4 1X a k S T= − ; *
2 1Y k Sω= − ; 

* *
3 2 1X a k S P= − ; 3 0Y = ; * *

4 2 4 4 3( )X a k a k P T= − + ; 
*

4 3Y k Pω= − ; 2 * *
5 1 4X a a S Tω= − + ; 

( )* *
5 1 4Y a S a Tω= + ; * *

6 1 2X a a S P= ; *
6 2Y a Pω= ; 

* *
7 5 3X a k P T= ; *

7 4Y k Tω= − ; 
* *

8 1 4 1 5( )X k k a a S T= − ; *
8 5Y a Tω= − ; 

2 * *
9 1 3X k k S Pω= − − ; *

9 1Y a Sω= . 

If we are interested to find the dynamics of the system (17) 
with either 1 0α =  or, 2 0α =  or, 3 0α = , then the 

population variances are the following . If 1 2 0α α= =  or 

2 3 0α α= = or 1 3 0α α= = , then  

1

2
2 3 3

2 22 ( ) ( )u
X d

R I
ασ ω
π ω ω

∞

−∞

=
+∫ ; 

( )
2

2 2
6 62 3

2 22 ( ) ( )u

X Y
d

R I
ασ ω
π ω ω

∞

−∞

+
=

+∫ ;

( )
3

2 2
9 92 3

2 22 ( ) ( )u

X Y
d

R I
ασ ω
π ω ω

∞

−∞

+
=

+∫  

( )
1

2 2
1 12 1

2 22 ( ) ( )u

X Y
d

R I
ασ ω
π ω ω

∞

−∞

+
=

+∫  ; 

( )
2

2 2
4 42 1

2 2 ;
2 ( ) ( )u

X Y
d

R I
ασ ω
π ω ω

∞

−∞

+
=

+∫  

( )
3

2 2
7 72 1

2 22 ( ) ( )u

X Y
d

R I
ασ ω
π ω ω

∞

−∞

+
=

+∫  

( )
1

2 2
2 22 2

2 22 ( ) ( )u

X Y
d

R I
ασ ω
π ω ω

∞

−∞

+
=

+∫ ; 

( )
2

2 2
5 52 2

2 22 ( ) ( )u

X Y
d

R I
ασ ω
π ω ω

∞

−∞

+
=

+∫ ;

( )
3

2 2
5 52 2

2 22 ( ) ( )u

X Y
d

R I
ασ ω
π ω ω

∞

−∞

+
=

+∫   

The above analysis is illustrated numerically in Figures 4-6. 
The figures show that the system undergoes a stable state 
under the influence of the random noise of the environment. 
The time series of the volumes of the tumor cell, predator cell 
and the resulting are close to their equilibrium values. So 
under such influence of the environment the system remains 
stable. On the other hand in Figures 7-9, the fluctuations of 
the populations from the equilibrium states are higher. The 
reason of such increment is the influence of the environment, 
that is, the activation of the tumor cells are more that the 
strength of the predator cells. As a result the system is 
vulnerable to cancer. The treatment in that case is extremely 
urgent.                                                        
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                                           Figure 5                                                                                                                             

Figure 4: The time series evolution of the Tumor Cell of 
the stochastic system showing the stable oscillation of 
the population around 1.3213. Figure 5: The time series 
evolution of the Predator Cell of the stochastic system 
showing the stable oscillation of the population around 
0.5656.                              
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                              Figure 7                                                                      

Figure 6: The time series evolution of the Resulting Cell 
of the stochastic system showing the stable oscillation of 
the population around 0.1186. Figure 7: The time series 
evolution of the Tumor Cell of the stochastic system 
showing the chaotic behaviour of the population. 
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                                Figure 9        

Figure 8: The time series evolution of the Predator Cell of the 
stochastic system showing the chaotic oscillation of the 
population. Figure 9: The time series evolution of the 
Resulting Cell of the stochastic system showing the chaotic 
situation of the population.                                                
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                                   Figure 10                                              

Figure 10: The phase-portrait of the three populations of the 
stochastic system showing the chaotic behaviour of the 
system. 
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V.  SIMULATIONS ANALYSIS 

Based on the above numerical simulations and diagrams i.e 
Figures 1-10 along with the model studied above the 
following analysis is carried out. Model with and without 
environmental factors and fluctuations are studied and 
simulated in the above sections. In the above sections the 
model and its graphical results allow us to know more about 
the influence of our noise induced fluctuations can be 
discussed here. We have modeled the system with a set of 
differential equation which is non-linear in nature. We have 
given both deterministic as well as stochastic effect with 
white noise of the system. The analytical results show some 
restrictions on the parameters for the control of the system. 
The stability property definitely shows how we can keep the 
tumor in our control. The numerical simulations have been 
carried out for both kinds of situations where tumor cell will 
remain in control and also the situation in which the disease 
becomes malignant in human body. (i) We have obtained the 
stability situation of the populations. It means that the tumor 
growth is under control. We have also obtained the criteria 
for which the populations exhibit periodic oscillations. This 
implicates that the tumor is malignant. 

 
We have used the deterministic differential equations and we 
have considered a hypothetical value of the system 
parameters. In our theoretical work, original experimental or 
clinical data is very difficult to collect. We have chosen the 
following values: 1 0.6a =  ; 1 0.9k = ; 2 0.5k = ; 

2 0.99a = ; 3 0.1a = ; 3 0.05k = ; 4 0.6a = ; 5 0.06a = ; 

6 0.07a = ; 4 0.02k = .The above values of the parameters 
satisfy the feasibility and existence criteria of the equilibrium 
states. The growth of the tumor cells is shown in the Figure 1. 
The simulation result shows that the system is stable around 
the interior equilibrium point 3E (1.3213, 0.5656, 0.1186). 
Now, if the value of the rate of killing of the hunting predator 
cells and specific loss rate of the resting cells are increased 
by approximately150 times then at 3 0.854k =  and  

6 0.118a =  , the oscillations of the tumor cells become 
periodic. This type of oscillations indicates the system to 
become less immune. The tumor cells, predator cells and the 
resulting cells are changing periodically over a period of 
time. In this situation the tumor cells become malignant. 

 
Under certain set of parameters, the numerical simulation 
suggests that the growth of the tumor may become alarming. 
This situation is shown in Figure 2. The global stability 
criterion is one of the important features in tumor growth. At 
several initial stages the system behavior has shown to be 
stable. We have illustrated the phenomena in Figure 3 with 
same parameter value. 
 
In Figures 4-6, we have illustrated the simulation of the 
stochastic system. The figures show that the environmental 
noise has the key role in shaping the growth of the tumor 
cells in human body. We do not know the complex 

phenomena of the growth of the tumor cells. We cannot 
exactly model the system using any kind of mathematical 
formula (differential equations and others). As this is a 
modeling, we could find some value of the activation of the 
tumor cells or of resulting cells/predator cells which give 
different kind of growth from their average values. The 
amplitudes of the populations say what could happen to the 
system. Figures 7-10 show that the system becomes chaotic 
with some different value of the parameters for which the 
system behaves abruptly. This is because the change of the 
strength of the environmental noise. As the noise is increased 
the amplitude of the populations are increased about their 
mean values. As do not know how the tumor cells grow in 
the complex system in human body, we can trust on the 
modeling to obtain an approximate answer. 

 

VI.  CONCLUDING REMARKS 

Our concept of studying asymptotic mean square stability of 
the zero solution of stochastic differential equations is more 
effective in comparison with previously known methods and 
it can also be used in various application problems. For 
example, by stochastic equation of the type  

( ) ( ) ( ) ( )[ ] ( ) ( )tdwtxdttxtxatxatdx σ+−= ln21 . We can 
describe a tumor growth, where the expected size of the 
tumor is contaminated with white noise [33], [54]. Such type 
of equations can be used also in biomedical research [55, 56], 
epidemic modelling [57], in describing animal motion [58], 
receiving signals [56, 59] and many others. However, the 
approach to the study of these models in the cited works is 
different compared to our method. They use numerical or 
statistical methods and estimation methods in there. 

In this paper we have incorporated white noise in the form of 
stochastic perturbation of the immune system through the 
growth mechanism of the hunting cells and some other terms 
involved in the non-linear system. It is also assumed that 
hunting cells do not respond to the killing of tumor cells, as 
soon as they have signal from resting cells and they will be 
activated after some fixed time. Cancer is a stochastic process 
affected by random mutations and cell proliferation. The 
dynamics and the behavior of stability results of our system 
showed three main types of solutions: (i) existence of stable 
equilibrium (ii) appearing limit cycle (iii) chaotic attractor. In 
real problems, all the three cell populations coexist as a limit 
cycle or as periodic solution. In our case, the tumor is termed 
as mildly malignant so the existence of periodic solutions are 
relevant feature  in our tumor growth cancer model analysis 
which implies that the tumor levels are  oscillating  around a 
fixed point in the absence of any treatment.  
 
When the hunting cells are too tired in their response for 
killing the tumor cells (i.e. when they are large in numbers), 
all the three cell populations will grow in irregular fashion 
with respect to time shows chaotic attractors. This is indeed 
the case when the tumor is said   to be malignant and a 
serious treatment strategy is required due to continuous 
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changing the density of tumor cells over time. It is well 
known from ecological-model analysis results that stochastic 
white noise gives the insight of the dynamics of irregular 
fluctuations leading to the instability of equilibrium points. 
We observed that instability in the form of chaotic attractors 
in cancer model is a challenging issue and interesting 
outcome of our study. For existence of some sensitive 
parameters involved in our system preserving the stability 
and also detect the mode of action for controlling the disease. 
In our model extensive numerical simulation suggested that a 
noisy environment for the tumor growth has much more 
destabilizing effect on the concentrations at different 
equilibrium points. 
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