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Abstract

In this paper, a revisit solution of Adomian decompo-
sition method based on series Fourier is proposed to
solve the homogenous and non-homogenous initial and
boundary value problem of heat equation, leading to the
same solution as the one obtained by the separation of
variables method. A numerical example is thus given
to prove that the presented method is reliable, e¢cace
and can be employed to derive successfullt analytical
approximate solutions of heat equation.

Key-words : Heat equation- Adomian decomposi-
tion method- Separation of variables method.

1 Introduction

The Adomian decomposition method ([3],[7],[2]) is used
for solving the linear and nonlinear systems (di¤eren-
tial, partial, algebraic, integral ,...). The solution is an
analytical function given in series form explicitly de-
pendent on the parameters of the system. This method
is based on the decomposition of the nonlinear part of
the system, using special polynomials called Adomian
polynomials. These polynomials are calculated by re-
cursive formulas ([3]). The numerical methods, like the
di¤erences method or elements method give a numerical
solution that depends implicitely on those parameters.

In its original form, the Adomian method method
(ADM) does not take into account the boundary con-
ditions for solving most partial di¤erential equations
(PDEs). In [7] the authors proposed a new scheme of
the ADM to solve a non linear PDE : Fisher equation
with Neumann boundary conditions. [8] has presented

an e¢cient modi…cation of the ADM that facilitates the
calculations. Benabidallah and Y. Cherruault [1] have
given a solution of some class of linear PDEs with the
Dirichlet boundary conditions. Serdal Pamuk [10] have
given a solution of linear and nonlinear heat equations
by ADM. In ([9]), the authors have proposed a revised
scheme of the ADM applied to parabolics and hyper-

bolics (heat and wave) equations with inhomogeneous
boundary conditions. We are motived to give a revised
solution of the ADM in order to avoid this inconvenience
for solving a heat equation with Dirichlet boundary con-
ditions.

The resolution of the homogenous initial and
boundary value problem of heat equation with sepa-
ration of variables method ([5],[6]) need of solving or-
dinary di¤erentials equations, to avoid these computa-
tions we propose a revisit solution of the ADM and that
take into account the boundary conditions.

This article is organised as follows, in the sec-
ond section we apply the separation variables method
(Fourier method) to heat equation. We developed in
section 3, a solution of the ADM, to solve the equation.
Section 4 is devoted to solve a non-homogeneous heat
equation with two methods, namely separation variables
method and the ADM. The examples illustration are
given.

2 The separation of variables method :
homogeneous heat equation :

In this section we apply the separation of variables
method to solve the homogeneous initial boundary value
problem (IBVP) of heat equation.

We denote by  = [0; l]; l > 0; Q =
]0; l[£]0;+1[:The heat equation ([10],[5]) is given as
follows :
(1)8
><

>:

@V (x; t) = ®@V (x; t) + qV (x; t); (x; t) 2 Q

V (x; 0) = f(x); x 2
¡


V (0; t) = V (l; t) = 0; t > 0

where q; l are the positive constants. f(x) is a
function C([0; l]). V (x; t) is an unknown function.

We seek out solution to equation (1) applying the
Fourier method as follows :

(2) V (x; t) = X(x)T (t)
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After substituting (2) in (1) and separating the
variables, we get :

X(x)T
0

(t) = ®X
00

(x)T (t) + q X(x)T (t)

If T (t) 6= 0 and X(t) 6= 0;we deduce two pos-
sible superpositions of ordinary di¤erentials equations
(ODEs) that each side is equals a constant, therefore
we set :

T
0

(t)¡ qT (t)

T (t)
=

®X
00

(x)

X(x)
= ¡¸

T
0

(t)

T (t)
=

®X
00

(x) + qX(x)

X(x)
= ¡¸

with the following conditions, we get : T (0) = f(x);
X(0) = 0; X(l) = 0:

By resolving the ODEs established from the second
superposition,we get :

(3)
T
0

(t)

T (t)
= ¡¸ and

®X
00

(x) + qX(x)

X(x)
= ¡¸

Thus the solution obtained is :

(4) V (x; t) =
1X

=1

b sin
³m¼x

l

´
e


¡(

 )
2


where :

(5) b =
2

l

Z

0

f(») sin

µ
m¼»

l

¶

d»; m = 1; 2; :::

The following are worth mentioning :

² The same exact solution is obtained by choosing
arbitrarily any superpositions.

² Applying the Fourier method, two ODEs have to
be solved : one is a simple equation and the
other being a second degree equation. However,
the Adomian method can be used to spare us the
harassment of computation.

3 Revisit solution of the ADM for
homogeneous heat equation

We seek to solve the homogeneous (IBVP) of heat
equation (1) presented in section 2.

The decomposition method consists in writing V of
equation (1) into a series form :

(6) V (x; t) =
1X

=0

V(x; t)

Applying the inverse operator L¡1 (:) =

Z

0

(:)d¿ , to

both side of equation (1) we get :

(7) V (x; t) = V (x; 0)+®L¡1 LV (x; t)+ qL¡1 V (x; t)

where L(:) = @(:)
Identifying the …rst component to be the initial

condition, and using the recursive algorithm, we can
write the solution as follows :
(8)8
<

:

V0(x; t) = V (x; 0) = f(x)



V = ®L¡1 LV¡1(x; t) + qL¡1 V¡1(x; t); n > 1

We get :
(9)
8
>>>>>><

>>>>>>:

V0(x; t) = V (x; 0) = f(x)
V1(x; t) = ®L¡1 LV0 + qL¡1 V0

= ®L¡1 Lf(x) + qL¡1 f(x)
V2(x; t) = ®L¡1 LV1 + qL¡1 V1

= [®2
¡
L¡1 L

¢2
+ 2®q

¡
L¡1

¢2
L + q2

¡
L¡1

¢2
]f(x)

:::::

This gives the relation of V :

V(x; t) =
X

=0

C
®

¡q
¡
L¡1

¢
(L)

(¡)
f(x)

=
¡
L¡1

¢
(®L + q)f(x) (10)

¡
L¡1

¢
=

Z

0

:::

Z

0

Z

0

(:)dsd¿:::dr is the n th integra-

tion.
V is Adomian solution given as follows :

V (x; t) =
1X

=0

¡
L¡1

¢
(®L + q)f(x) (11)

=
1X

=0

t

n!
(®L + q)f(x)

In practice we seek for a truncated solution of the
order ’s’ :

V (x; t) =
X

=0

¡
L¡1

¢
(®L + q)f(x)

=
X

=0

t

n!
(®L + q)f(x) (12)

If V (x; t) satis…ed the PDE , then V is an exact
solution to (1). Else, we expand f(x) in an in…nite
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series, thus :

(13) f(x) =
1X

=1

b sin
³m¼x

l

´

where the coe¢cients b are given by :

(14) b =
2

l

Z

0

f(») sin

µ
m¼»

l

¶

d»; m = 1; 2; :::

Substituting (13) in (11) yields :

V (x; t) =
1X

=0

X

=0

C
®

¡q
¡
L¡1

¢
(L)

(¡)

1X

=1

b sin
¡



¢

=
1X

=1

b

1X

=0



!

X

=0

C
®

¡q
¡
L sin

¡



¢¢(¡)

=
1X

=1

b

1X

=0



!

X

=0

C
®

¡q
¡



¢2(¡)
(¡1)¡

sin
¡



¢

=
1X

=1

b sin
¡



¢ 1X

=0



!

³
q ¡ ®

¡



¢2
´

=
1X

=1

b sin
¡



¢
e


¡(

 )
2


(15)

which is the Fourier expansion of the solution
V (x; t) derived by the rearrangement of the decomposi-
tion solution

In practice, an approximate solution is satis…ed,
when the upper board of m is …xed.

The fonction V (x; t); sum of series (15) is continu-
ous on [0; l]£ [0;+1[,

V (x; t) 2 C2(]0; l[£]0;+1[); V (x; t) satis…es
(IBVP) of heat equation.

3.1 Example Let : l = 1, f(x) = 300; ® = 0:01 and
q = 0:1:

In this example, we see that, the solution is given
by the ADM for s = 5; does not satisfy the boundary
conditions :

V (0; t) = V (l; t) = 300 + 300:qt + 150qt2 + 50
q2:t3 + 12:5 q4:t4 + 2:5 q5t5 6= 0

Consequently, we give a Fourier expansion of the
solution V (x; t):

The solution V (x; t) is given by the following …g-
ures, for m = 10 :

Fig 1: Curve of V (x; t) by ADM

Fig 2: Curve of V (x; t) by revisit ADM

We note that, more m is great, then we approach
to the exact solution.

4 Resolution of non-homogeneous heat
equation with Fourier method

In this section we consider the non-homogeneous IBVP
of heat equation :
(16)8
<

:

@u(x; t) = ®@u(x; t) + qu(x; t) + h(x; t)
u(x; 0) = f(x); 0 < x < l
u(0; t) = u(l; t) = 0; t ¸ 0

h(x; t) is C1([0; l]).
We seek out solution to equation (16) applying the

Fourier method as follows :

(17) u(x; t) = V (x; t) +W (x; t)

where V (x; t) is solution of homogenous problem
studied in section (2) and W (x; t) is a particular solu-
tion.

We writing the solution W(x; t) into a series form :

(18) W (x; t) =
1X

=1

T(t) sin
³m¼x

l

´
e


¡(

 )
2


After substituting (18) in (16), we get :

(19)
1X

=1

T
0

(t) sin
³m¼x

l

´
e


¡(

 )
2


= h(x; t)
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We expand h(x; t) in an in…nite series, thus :

(20) h(x; t) =
1X

=1

±(t) sin
³m¼x

l

´

where

(21) ±(t) =
2

l

Z

0

h(»; t) sin

µ
m¼»

l

¶

d»;m = 1; 2; :::

Substituting (20) in (19) yields :

(22) T
0

(t)e


¡(

 )
2


= ±(t) , m = 1; 2; :::

The solutions of equations (22) are as follows :
(23)

T(t) =

Z

0

±(¿) e
¡(¡()2)d¿ , m = 1; 2; :::

Substituting T(t) in the serie (18) yields the
solution W (x; t) :

W (x; t) =
1X

=1

2

4

Z

0

±(¿) e
¡(¡()2)d¿

3

5 (24)

sin (¸x) e(¡()
2)

where : ¸ =

 ;

(25) ±(t) =
2

l

Z

0

h(»; t) sin (¸») d»;m = 1; 2; :::

The function u(x; t) = V (x; t) +W(x; t) will be the
solution of (16).

5 Revisit solution of the ADM for
non-homogeneous heat equation

We seek to solve the non-homogeneous heat equation
(16) presented in section 4.

We seek a solution V (x; t) into series form :

(26) V (x; t) =
1X

=0

V(x; t)

Applying the operator L¡1 (:) =

Z

0

(:)d¿ , we get :

V (x; t) = V (x; 0)+®L¡1 LV (x; t)+qL¡1 V (x; t)+L¡1 h(x; t)

where L(:) = @(:)
The ADM de…nes the components V; n > 0 by the

following recursive relationship :
(27)8
<

:

V0(x; t) = V (x; 0) + L¡1 h(x; t) = f(x) + L¡1 h(x; t)



V(x; t) = ®L¡1 LV¡1(x; t) + qL¡1 V¡1(x; t); n > 1

The components V, n > 0 of (26) can be obtained
as follows :
(28)
8
>>>>>><

>>>>>>:

V0(x; t) = V (x; 0) = f(x) + L¡1 h(x; t) = f + g
V1(x; t) = ®L¡1 LV0 + qL¡1 V0

= (®L¡1 L + qL¡1 )(f + g)
V2(x; t) = ®L¡1 LV1 + qL¡1 V1

= [®2
¡
L¡1 L

¢2
+ 2®q

¡
L¡1

¢2
L + q2

¡
L¡1

¢2
](f + g)

:::::::::

with g = L¡1 h(x; t):
We deduce a formula to calculate V :

V(x; t) =
X

=0

C
®

¡q
¡
L¡1

¢
(L)

(¡)
[f(x) + g(x; t)]

=
¡
L¡1

¢
(®L + q)[f(x) + g(x; t)] (29)

where

¡
L¡1

¢
=

Z

0

Z

0

Z

0

(::::)dsd¿dr is the n th integration.

(L)
 represent the n th derivation.

Consequently V is the Adomian solution given as
follows :

(30) V (x; t) =
1X

=0

¡
L¡1

¢
(®L + q)[f(x) + g(x; t)]

If V (x; t) satis…ed the PDE and the boundary
conditions, then V is an exact solution to (16).

Else, we expand f(x) and g(x; t) in an in…nite series,
thus :

(31) f(x) =
1X

=1

b sin
³m¼x

l

´

(32) g(x; t) =
1X

=1

±(t) sin
³m¼x

l

´

where :

b =
2

l

Z

0

f(») sin

µ
m¼»

l

¶

d»; m = 1; 2; :::
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±(t) =
2

l

Z

0

g(»; t) sin

µ
m¼»

l

¶

d»;m = 1; 2; :::

Substituting (31) and (32) in (30) yields :

V (x; t) =
1X

=1

b sin
³m¼x

l

´
e


¡(

 )
2


+ (33)

1X

=1

1X

=0

¡
L¡1 ±(t)

¢
sin
³m¼x

l

´µ

q ¡ ®
³m¼

l

´2¶

In order to illustrate the technique discussed above,
we shall give in the following an example in which we
can apply our technique and Fourier method.

5.1 Example : non-homogeneous heat equation
Consider the non-homogeneous initial and boundary
conditions value problem of heat equation :
8
<

:

@u(x; t) = 0:01 @u(x; t) + 0:1 u(x; t) + x(x¡ 1)t
u(x; 0) = x(x¡ 1); 0 6 x 6 l
u(0; t) = u(l; t) = 0; t ¸ 0

The solution of above problem given by the initial
form of ADM does not take into account the bounary
conditions, we have used the revisit solution of ADM.
Let l = 1:m = 6; n = 4:

Fig 3: Curve of u(x; t) by a revised scheme
of Adomian

Fig 4: Curve of u(x; t) by
Fourier method

Fig 5 : Superposition of curves solutions obtained by
(revisit ADM : Red, Fourier : +colors) methods
It’s clear that we have a good superposition of the

curves solutions.

6 Homogeneous eqaution with inhomogeneous
boundary conditions: Functions

Now let us consider the equation (1) with non-
homogeneous boundary conditions. As seen in previous
section, the result (11)-(15) does not satisfy the non-
homogeneous boundary conditions. Hence it important
to consider the problem :
(34)8
>><

>>:

@V (x; t) = ®@V (x; t) + qV (x; t); 0 < x < l; t > 0
V (x; 0) = f(x); 0 6 x 6 l
V (0; t) = g1(t); t ¸ 0
V (l; t) = g2(t); t ¸ 0

Let :

(35) V (x; t) = v(x; t) +w(x; t)

where :

w(x; t) =
x

l
g2(t) + g1(t)

(l ¡ x)

l

Substitution of V (x; t) in problem (34) yields :

8
>><

>>:

@v(x; t) = ®@v(x; t) + qv(x; t) + h(x; t)
v(x; 0) = F (x)

v(l; t) = 0
v(0; t) = 0

where :

h(x; t) = qw(x; t)¡@w(x; t); F (x) = f(x)¡w(x; 0):
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Solving for L v , we have :
v0 = F + L¡1 h
v =



! (®L + q) v0 ,n ¸ 0:

v =
1X

=0

v

In cases where v0 is ill de…ned, we consider the
Fourier expension of v0:Thus, v can be found as above
and (35) yields the solution V to the corresponding non-
homogenous problem.

7 Conclusion

We have considered the ADM to solve non-homogeneous
initial and boundary conditions value problem of heat
equation. The ADM gives a solution explicitly depend-
ing on the parameters of the equation. The advantage
of this method is that, it solves the problem without
linearization or discritisation of space or time variables.
The main di¢culty in applying the ADM to heat equa-
tion equation lies in the fact that the solution series does
not take into account boundary conditions. We have
proposed a revisit solution of the Adomian method for
solve the heat equation that takes into account all the
boundary conditions and we have compared the solution
with the traditionnel separation of variables method.
The work shows that Adomian has signi…ant advantages
over the existing techniques. The method does not re-
quire restrictive assumption or transformation formulae.

Our future work is to propose the new scheme to
solve a non linear parabolic partial di¤erential equation
[4]. The idea can be extented to solve many other kinds
of equations.
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