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Abstract—Carbonate  reservoirs  represent  around  half 

hydrocarbon reserves in the world.  However, characterizing rock 

properties in these reservoirs is highly challenging because of rock 

heterogeneities revealed at several length scales. In the last two 

decades, a new approach known as Digital Rock Physics (DRP) 

revealed high potential to better understand rock properties behaviour 

at  pore  scale.  This  approach  uses  3D  X-ray  Micro  tomography 

images to characterize pore network and also simulate rock properties 

from these images. Even though, DRP is able to predict realistic rock 

properties results in sandstone reservoirs it is still suffering from a 

lack of clear workflow in carbonate rocks. The main challenge is the 

integration  of  properties  simulated  at  different  scales  in  order  to 

obtain the effective rock property of core plugs. In this paper, we 

propose  to  characterize absolute permeability in  a  carbonate core 

plug  sample  using  texture  analysis.  We  propose  to  segment  3D 

micro-CT image in terms of textures and predict the overall rock 

permeability by integrating classification result with absolute 

permeability simulations values computed locally for each texture 

class. Finally, we discuss and compare our numerical simulation 

results with experimental measurement from the laboratory. 
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I. INTRODUCTION 

Characterizing porosity and absolute permeability in cored 
area from oilfield reservoirs is a crucial step to evaluate 
hydrocarbon  reserves.  This  characterization  is  more 
challenging in carbonates representing half of the world 
reservoirs. Indeed, their high heterogeneity due to presence of 
pores at macro, micro and nano scales makes properties 
characterization very complex [1]. Recent development in 
image acquisition techniques based on X-ray Micro- 
tomography, Focused Ion Beam (FIB) and Scanning Electron 
Microscopy (SEM) allow investigating core samples at very 
high resolution and simulating rock properties at pore scale [2, 
3, 4]. This approach known as Digital Rock Physics (DRP) is 
seen as a complimentary tool to conventional laboratory 
measurements [5, 6, 7, 8, 9, 10]. 
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Nevertheless due to physical limitations of detectors size in 
scanning devices it is not possible to image macro, micro and 
nano pores at the same scale. Indeed, the best resolution to scan 
a core plug sample of 1.5 inches diameter using X-ray micro 
tomography with a detector size of 2000x2000 pixels is 20µm. 
At this scale, usually, macro pores and main textural 
heterogeneities can be visualised. In order, to image smaller 
pores, subsets of few millimetres are extracted physically and 
scanned at higher resolution around 1 to 2 µm. 
 

We introduce an approach using texture modelling in order 
to estimate porosity and permeability of some carbonate rock 
samples. This approach aims to discriminate objectively spatial 
variability of textures in Micro CT images. The main 
assumption is that variability in textures is related to variability 
in porosity and permeability [11, 12]. The idea of using X-Ray 
micro-CT scan images to estimate rock properties and textural 
facies classes of core samples has physical bases. Indeed, the 
perceptual texture of these images reveals granularity, 
mineralogy  and   porosity  features.   Relationships  between 
texture and granularity have already been carried out in the 
field of electrical borehole images [13, 14, 15]. Prasad and 
Mukerji implemented textural statistical models in scanning 
acoustic microscope images of shale microstructures in order to 
establish relationships with effective elastic properties [16]. 
Knackstedt et  al  used  textures to  model  rock  fabrics from 
digital 3D images and used it as a quantitative analysis tool of 
anisotropy in grain orientations [17]. More recently, Jouini and 
Keskes implemented a parametric model of textures to find 
main representative textures from X-Ray Computed 
tomography core samples images in sandstones and predict 
rock properties [12]. 
 

In this study we discretize, first, X-Ray Micro CT images 
into a regular grid. Then, we use a textural parametric model to 
classify each cell of the grid using supervised classification. 
The main parameters are first and second order statistics such 
as mean, variance, range and autocorrelations computed from 
sub-bands obtained after wavelet decomposition. Furthermore, 
we fill permeability property in each cell using two strategies 
based on numerical simulation values obtained locally on 
subsets through Lattice Boltzmann Method [6,18, 19, 20]. 
Finally, we simulate numerically the effective permeability 
using Darcy’s law simulator. 
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Fig. 1. 2D slice (2000x2000) grey level image extracted from 3d X-Ray Micro-Computed tomography 
image of carbonate sample revealing several textures. (Resolution 3µm) 

 

 

 
 

 
 

 
 

Fig. 2. Four classes of textures identified from the original image sample. 
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Class Texture T1 T2 T3 T4 

Sample 1 1 2 3 4 

Sample 2 1 2 3 1 

Sample 3 1 1 3 1 

Sample 4 1 2 3 4 

Sample 5 4 2 3 4 

Sample 6 1 2 3 4 

Sample 7 1 2 3 4 

Sample 8 4 2 3 4 

Sample 9 4 2 3 4 

Sample 10 1 2 3 4 

Classification rate 70% 90% 100% 80% 

Table 1:  Rate of good classification for 40 samples from 4 type of textures 
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II. METHODOLOGY 

 

A.   Rock sample images 

X-ray Micro-tomography scanners generate after acquisition 

and reconstruction 3D grey level images where voxels values 

depend  on  material  density.  High  values  corresponding  to 

bright voxels are related to solid phase whereas dark ones 

denote pores. Due to high variability of textures in samples it is 

very difficult to implement a unique segmentation method to 

separate solid and void phases. In this study, the data consists 

of  3.8  centimetres  diameter  carbonate  sample  from  United 

Arab  Emirates  oilfield  reservoir.  First,  we  image  the  full 

sample at a resolution of 20µm. At this scale, the acquired 

image is homogenous which means all pores are below image 

resolution so we have extracted a smaller subset of 6 mm3 and 

scan it at 3µm resolution. At this scale part of pore network 

starts to be revealed and we observe a variability of textures in 

the subset. Fig. 1 shows presence of several textures related 

mainly to variability of pores sizes and their distribution in 

space. The standard DRP approach is based on segmenting the 

3D image and simulate absolute permeability on extracted pore 

network. Nevertheless, on most of carbonates samples this 

procedure  can  hardly  be  implemented due  to  limitation  of 

image acquisition system to capture connectivity between 

pores. In the literature several segmentation algorithms were 

implemented for grey level images. Techniques implemented 

are based mainly on semi-automatic or fully automatic 

approaches [21, 22, 23]. The main advantage of automatic 

methods is to eliminate operator subjectivity. In our study, we 

implemented mainly Bi-level segmentation algorithm for the 

segmentation process. However, extracted pore networks from 

3D images at fine scales (13µm and 5µm) reveal very limited 

connectivity called also absence of percolation between 

opposite faces. Indeed, we apply a connected components 

algorithm into resolved pore phase and find that connected 

porosity proportion is very low. Whereas, experimental 

measurements show that permeability values for samples is in 

the range of few milli Darcy. This observation reveals that 

most of pore connections are below image resolution. Thus, it 

is not possible to run directly a simulation of fluid flow into 

unconnected pore network. However, we observe that 

connected component techniques reveals local connectivity for 

several  sub-cubes  into  the  same  image.  We  propose  to 

discretize each acquired 3D X-ray Micro tomography image in 

to a regular grid where pore networks percolate locally. In 

other words, we segment each subset of the grid to be able to 

run numerical simulations of permeability. Also, we observe 

that segmentation process depends mainly on the texture of 

subsets so we discretize 3D image into a grid by classifying 

each subset of the grid using texture classification. 

 

 
B. Texture model and classification 

In the literature, there is no universal definition for texture 
but several approaches exist depending on applications [24, 
25].  Parametric  modelling  consider  a  texture  as  random 
variable governed by a set of descriptors such as contrast, 
correlation, directivity, uniformity, entropy [26,27]. In our 
study, we implement a parametric model using mainly first and 
second order moments obtained after decomposing texture into 
steerable pyramids [28]. For example, if we choose 
decomposition  with  2  scales,  3  orientations,  and 
autocorrelation window of 7 the total number of descriptors 
will be 185 parameters for a texture. The model was 
implemented in several applications such as texture synthesis, 
texture analysis and image classification [15, 29, 30]. We select 
the main representative classes by inspecting visually texture of 
rock samples. Fig.2 shows some examples of main 
representative  classes.  We  propose  to  validate  the  texture 
model computing the rate of good classification. We created a 
small database of classes from the original 3D digital image 
containing 10 samples each. Then we classified all images by 
finding  the  minimum  distance  between  each  vector 
representing the image texture and the reference class. Table 1 
summarizes classification results for the sample textures 
illustrated in Fig. 2 and the overall average of good 
classification obtained was 85%. 
 

Based  on  these  results,  we  implemented  the  texture 
classification on the whole digital image. First, we divide the 
3D digital image into a regular grid of cells. Then, we analyse 
each 2D image of the cell and classify it using the proposed 
parametric model. Finally, we select the mode of the resulted 
classifications into each cell as representative class. 
 

 
C. Absolute permeability simulation 

After modelling and classifying subsets the absolute 

permeability is estimated by using Darcy’s law, which assumes 

a linear relation between gradient of pressure and volume of 

flow per unit area, to compute absolute permeability based on 

(1). 
 

 
K=(µLQ)/(A∆P) (1) 

 
where K is the absolute permeability, Q is the average velocity 

of particles called also flux from LBM simulation, ∆P is 

gradient of pressure along a sample of length L, µ is the fluid 

viscosity and A is the surface area of the sample cross section. 

In order to have reliable and representative values we run 

simulations into several subsets with same texture to obtain a 

distribution of permeability values inside each class. Finally, 

we populate the 3D grid of classified textures with local 

permeability values from each distribution and we estimate the 

effective permeability of the image sample using Darcy’s law 

simulation and averaging techniques. 
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III. RESULTS AND DISCUSSION 

Fig. 3 shows four groups of dataset points coloured based 
on  texture  classification result. Texture 1  dataset reveals a 
range of porosity between 11% and 17% with permeability 
range between 0.01mD to 14mD. Figure 2.a illustrates image 
Texture 1 which reveals highly porous subset with medium 
size pores when compared to texture2. Texture 2 reveals higher 
porosity and permeability ranges of respectively 16%-19% and 
0.9mD-110mD. This is expected as this texture shows larger 
pores with high connectivity. Also for both Texture 1 and 
Texture 2 show a linear relationship. Texture 3 shows very low 
porosity  and  permeability  data  points  because  of  the  low 
number of pores and their low connectivity. Finally, texture 4 
reveals a  large proportion of small connected pores with a 
range of permeability between 0.01mD to 2mD. 

 

Even  though,  the  porosity-permeability cross plot  along 
with textural information allow identifying classes with similar 
behaviour, there exists an overlap between these groups. In 
order to simulate the effective absolute property, we fill the 
classified grid with random values coming from the ranges in 
Table 2. Then, we simulate several realizations using the Darcy 
simulator. 
 

Fig.4b shows the simulation result for one realization and 
the effective property obtained is Keff=0.696 mD. The range of 
variation for the effective property is in the interval [0.65, 0.86] 
in mD for all realizations. This result shows the stability of 
prediction and the relevance of using textural information to 
model permeability property. 

 
 
 

 
 

 
 

Fig.3. Relationship between Porosity-Permeability cross plot and textural analysis 
 

 
 
 

K T1 T2 T3 T4 

min 0.009113 0.7 0 0.013194 

max 14.642 111.4 0.0154 1.78 

 

 
 

Table 2. Permeability ranges for main four textural classes 
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Fig. 4. a) Original 3D X-ray Microcomputed Tomography image. b) Permeability grid filled with local permeability 

simulation results. 
 
 
 
 
 

IV. CONCLUSION 

The laboratory measurement of the experimental absolute 

permeability for the 3.8 cm diameter core plug sample gave a 

value of 1.2 mD. Numerical simulations obtained from the 

different approaches were carried on a selected subsample of 

the whole core plug. Simulated result is in the same range than 

the experimental one for all approaches. Indeed, homogeneity 

visualized at core plug sample scale scanned at 20µm can 

explain the representatively of the subsample selected. 

Heterogeneity in this sample appeared only at pore scale and 

our  strategy  based  on  texture  was  able  to  capture  this 

variability and integrate it to obtain a relevant absolute 

permeability prediction. The main advantage of the proposed 

approach is to introduce an objective assessment of texture 

variability which is physically related to the porosity and 

permeability properties. However, the main limitation is the 

selection of textures representative into the sample done 

visually. We are working to improve this process and make it 

more objective by using non-supervised classification 

techniques to find most representative textures automatically. 

Also,  we  are  working on  proposing a  new 3D  parametric 

model for textures to better represent textures and improve 

simulation results for rock properties. 
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