

Abstract— Requirements definition is the first step in the

life cycle of a software system. Requirements are

formulated as paragraphs of text and appear ambiguous,

so they cannot be translated directly into code. For this

reason, they are treated as secondary artifacts for

software developers. This paper presents a model-driven

based approach where requirements are treated as first-

class citizens, and can contribute to the final code. In this

approach, requirements are formulated as use case models

with their textual scenarios, using a precise requirements

language called RSL, allowing an automatic transition to

executable Java code. The structure of the generated code

follows the Model-View-Presenter (MVP) architectural

pattern. The work focuses on the Model layer code, which

is responsible for the persistence and storage of data in a

database system.

Keywords— model-driven requirements engineering, use

cases, scenarios, model transformation, metamodels.

I. INTRODUCTION
oftware development starts with requirements definition,
conceptual and design models, and ends with source code
generation and maintenance. Requirements engineering

defines the problem domain of a software system and
determines the needs of users and the environment [1]. Errors
at this stage can affect the other stages of the life cycle and the
quality of the software [2]. The use cases invented by Ivar
Jacobson [3] and their descriptions are widely used to specify
functional requirements, they are written in natural languages
(e.g. NLP techniques [4]), and using semi-formal diagrams
such as the Object Management Group (OMG) Unified
Modeling Language (UML) [5]. The use cases are therefore

ambiguous, and their transition to design models and code is
done manually [6].

 Many researchers in this field have proposed alternative
visual notations or extensions to other existing approaches
(like UML language…), to treat use cases as first-class
citizens in software development, and to automate the
translation of these models and their descriptions into other
models or code. Some relevant studies can be found in [7],
[8], [9], and [10], …etc. Model-Driven Requirements
Engineering (MDRE), officially introduced in 2001 at the first
International Workshop on Model-Driven Requirements
Engineering in San Diago [11], specifies requirements by
developing requirement models. In this paper, another term is
used, namely Requirements-Oriented Programming, which
focuses on the direct contribution of the requirements models
to the final code, and brings the programming activities closer
to the precisely specified requirements [12].

Hermann Kaindl, Michał Śmiałek et al. in [13] introduced a
new language for specifying requirements, called the
Requirements Specification Language (RSL), implemented in
the framework of ReDSeeDS [14]. This language provides
more precision for use case notation and their representations
(scenarios), and allows the automatic translation of use case
models into more detailed models [15]. To our knowledge, no
work has been introduced for the automatic translation of
functional requirements (e.g., use case models) into database
access code.

In this work, a set of translational semantics was developed
for the RSL in terms of UML and Java code to manage
database access: persisting and storing data in a database. The
algorithms are expressed in a graphical transformation
language which is MoLA to implement these semantics [16].

Database Access Layer Code Generation
Directly from Use Case

Scenarios

1Nassima Yamouni-Khelifi, 2Kaddour Sadouni, 3Michał Śmiałek, 4Mahmoud Zennaki
1,2,4 University of Science and Technology-Mohamed Boudiaf-

 El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
3 Warsaw University of Technology,
Pl. Politechniki 1, 00-661, Warsaw

Poland

Received: February 20, 2021. Revised: March 27, 2021. Accepted: March 30, 2021. Published: April 1, 2021.

S

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 41

The effectiveness of the proposed method was validated with
a case study for the "Tribunal E-Services" system.

Fig. 1 presents the proposal of a transformation process that
allows to generate a database access code from high-level
requirement models. The source model includes the use case
diagrams and their textual scenarios written in RSL language.
The target models are: model classes, and DTO classes written
in Java. MoLA was used to perform the transformation. The
mapping of the Object code to the Relational code was
performed using the Hibernate Object Relational Mapping
tool [17]. Hibernate allows to map persistent classes of Data
Transfer Objects (DTOs) to database tables using XML files,
and to manage the data using CRUD
(Create/Read/Update/Delete) operations.

Fig. 1 Transformation process

II. DEFINITION OF USE CASES
This section describes the RSL language used to define

precise use cases and their descriptions: scenarios that are well
linked to domain model elements. RSL introduces a
comprehensive language that is based on natural language
constrained sentences described in Subsection Σφάλμα! Το

αρχείο προέλευσης της αναφοράς δεν βρέθηκε.. The RSL
use case constructs allow defining the entire application logic
of a software system. Application logic refers to the
observable behavior of the application as perceived by users,
and covers the interactions between the user and the system.
The following subsections provide details of RSL constructs
that are related to the generation of source code from use case
scenarios related to domain elements (notions). Details of
other RSL constructs are beyond the scope of this study are
discussed in [12].

A. Overview of Requirements Specification Language
The Requirements Specification Language (RSL) is a semi-

formal language for specifying the requirements of a software
system [7], [15], and [18]. RSL is different from other
requirement languages because it allows to separate the
description of the system behavior from the description of the
problem domain, and to keep the relationship between them
via "hyperlinks". System behavior can be described by thought
use cases and their textual scenarios. The domain definition in
RSL includes "actors", "system elements" and "notions"
(words: "nouns" or "verbs"). These notions are used in
scenario sentences that describe use cases. Thus, the basic
constructions of the RSL allow the specification of typical
text-based requirements specifications with some graphical
elements. The RSL grammar is defined by the metamodel
written in a meta language called Essential Meta Object
Facility (EMOF) standardized by the Object Management
Group (OMG) consortium [19], which is a subset of MOFTM.
The main objective of MOF is to allow the definition of
metamodels using the basic syntax of class models (classes
with attributes and relationships). The full description of the
RSL language (abstract syntax, concrete syntax and semantics)
can be found in [12], and [13]. Functional requirements in
RSL are defined by use case models. Use cases are observable
elements of functionality that lead to goals that may succeed
or fail. Use cases are derived from the UML, but here they
define new and changed features.

B. Domain elements
In RSL, all kinds of problem domains can be defined

(physics, biology, aeronautics, etc.). Regardless of the domain,
a set of related concepts and possible ways to visualize and
process the data related to these concepts must be defined,
which constitutes the domain (business) logic of the system.
RSL offers three types for domain elements: "Actors",
"SystemElements", and "Notions". Notions have names and
may contain "DomainStatements". A domain statement
consists of a single "Phrase". The concrete syntax of the
domain statement is explained in Fig. 5.

Notions have several types; the basic element is the
"Concept". Its notation is equivalent to the UML class. The
other types of elements are the "Attributes". These elements
are not contained graphically in concepts as in UML classes;
they are separated from notions and include information about
the type of data (text, real number, date, true/false, ...). Data
types are not limited and can be extended according to the
problem domain, but must be defined in advance during
transformation. The other types of RSL are: "Data Views".
They are divided into two types: "Simple Data Views", and
"List Data Views". Data views point to a set of attributes.
"Simple Data Views" are used to present single instances of
combined attributes. "List Data Views" are used to present
lists containing many instances. These types of domain
elements (notions) are linked by appropriate relationships
(e.g., association, containment).

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 42

In this work, these data views are used in the
transformation, and are mapped to views in the database
system. Section III explains this process.

In addition to the business logic and its elements, the
application logic in the RSL is defined by UI elements, which
must be linked to the domain elements by relationships. RSL
offers four types of UI elements: "Screens", "Triggers",
"Messages" and "Confirmations". The most important
elements are the "Screens" as they contain the other elements.
The "Triggers" are associated with the user's interactions with
the system. "Messages" and "Confirmations" are used to
present information and accept user decisions. "Screens" can
associate "Data Views" to present and update data, through
"present" and "update" relationships. Triggers may point to a
data view or an attribute to indicate the data that needs to be
updated when they are invoked. "Screens" and "Triggers" are
linked by the "action param" relationship, and are linked to
the domain elements by arrows. These UI notions also
contribute to the generation of code for graphical elements
(see Section V). More details on the metamodel of UI
elements and their relationships can be found in [12].

Fig. 2 Domain Model metamodel for Notions and their relationships

Fig. 2 illustrates part of the RSL metamodel for the notions
and the relationships between them. The "Domain elements"
can be connected by "DomainElementRelationships. One of
the domain elements is treated as the "source" of the
relationship, and the other as the "target". The directed
attribute indicates whether the domain element is a source
element or a target element. Relationships have multiplicities:
"sourceMultiplicity" and "targetMultiplicity".

Attributes in RSL, are normal notions, and have "Data
Type" defined via the "primitiveDataType" metaclass. The
possible values of the data types are defined by an
enumeration, as shown on the left side of Fig. 2. The concrete
notation in Fig. 3 illustrates an example of an RSL domain
model, which includes two concepts within their attributes.
These concepts and attributes are presented by rectangles with
appropriate tags, and are linked by a "containment"
relationship, which resembles an "aggregation" relationship in
UML. Concepts are interconnected by relationships of
"association" of multiplicities type, from "1" to "*" (many).

C. Constrained Language Sentences and Scenarios
Some domain rules need to be defined to complete the

description of the RSL. This implies how to process the data?.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 43

Fig. 3 Example of a concrete syntax of a domain model

In RSL, data is processed by means of "verb phrases". Verb

phrases are similar to operations in UML. The difference is
that they have no parameters, and they have a defined verb-
noun grammar. Verb phrases can be contained in most types
of domain elements (concepts, screens, data views, etc.).
There are various predefined types depending on the types of
the domain elements. For problem domain elements
(Concepts, and Data Views), the predefined actions available
are the common CRUD operations (CREATE, READ,
UPDATE, DELETE) and VALIDATE. The other predefined
actions for the rest of the domain elements are not described
here. For more information, the reader can refer to [12].
 CREATE: adds new items to the system. A set of verbs can

be used as keywords for the "CREATE" action: "create",
"save", "add" and "write".

 READ: obtains values from data items in the system. The
following verbs can be used for "READ" action: "read",
"get", "fetch", "retrieve", "search" and "build".

 UPDATE: substitutes data in the system with other new
values. The following list of verbs can be used for
"UPDATE" action: "update", "modify", "edit" and
"override".

 DELETE: deletes data from the system. The following
verbs can be used for "DELETE" action: "delete",
"remove", "erase" and "destroy".

 VALIDATE: verifies the values of a domain element. The
following verbs can be used for the "validate" action:
"validate", "verify", "check", "inspect" and "examine".

Each RSL use case must have a main scenario and
alternative scenarios that lead to the achievement or failure of
the objective. The scenario (story) consists of a sequence of
actions performed either by the user or by the system. The
actions are expressed in simple sentences in the form of a
Subject-Verb-Object (Indirect Object) grammar. The subject
indicates who performs the action (user or system), the verb
describes the operation that can be performed (e.g., build,
show, search, etc.) and the objects represent notions (e.g.,
course list). The indirect object represents the detailed data
transmitted when executing actions (e.g. with book list) [15],
[18], and [20].

Fig. 4 illustrates the abstract syntax of SVO sentences in

use case scenarios, which is composed of two metaclasses:
"Subject" and "Predicate". These two metaclasses represent
phrase hyperlinks, one pointing to: "NounPhrase" and the
other to "VerbPhrase". These two hyperlinks point to phrases
that contain the appropriate text. Each SVO sentence predicate
is a hyperlink to a verb phrase. The object indicates the actual
domain element, and the verb selects the appropriate verb
phrase. In the RSL editor, these links must be maintained
automatically. Each time an SVO sentence is created, its parts
should be hyperlinked to the appropriate phrases in the
domain model.

In RSL, there are certain types of constrained language
sentences. This study only focuses on one type of sentences,
namely SVO sentences. SVO (-O) sentences can also be
divided into three main categories, depending on whether the
subject refers to "Actor" or "System". Furthermore, six sub-
categories can be distinguished. Two are "Actor-to" sentences
and four are "System-to" sentences.
 Actor-to-System: the subject is an actor and the direct-

object is an element of the user interface (button, option,
etc.). Two subtypes can be distinguished: "Actor-to-
Trigger" and "Actor-to-Data Views".

 System-to-Actor: the subject points to a system and the
direct-object is a user interface element (window, form,
etc.). There are also two subtypes: "System-to-Dialogue"
and "System-to-Screen".

 System-to-System: the subject points to a system and the
direct-object points to a domain element. This category has
two types: "System-to-Concept" and "System-to-Data".

This study uses sentences from the sub-category "System-
to-Data Views", which facilitate the management of data in a
database system. Fig. 5 shows an example scenario for "E-
Correction of Civil Documents" in the "Tribunal E-Services"
use case model. In this concrete notation, as can be seen, the
scenario is a sequence of textual SVO sentences, which are
numbered. The number of sentences allows for better
readability and referencing. The scenario contains ten SVO (-
O) sentences, with four types of actions, one of which is a
CRUD action("Update"), and the other is a "Validate" action.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 44

Fig. 4 Abstract syntax for SVO sentences

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 45

Fig. 5 SVO sentences in domain statement

The other actions ("Select" and "Show") are related to the
other elements of the domain (triggers and screens). In each
sentence of the scenario, the subject points to a "NounPhrase"
with different subject types (Actor, System). The "Predicate"
points to a "VerbPhrase" which is contained as a name of the
"Domain Statement" of a certain notion of domain (here "user
data", as shown at the bottom of Fig. 5.

III. SCENARIO TRANSLATIONAL SEMANTICS FOR DATABASE
ACCESS

This section describes transformation rules for generating a

database access code from use case scenarios to persist and
store data in a database system. The semantics of RSL are
defined by translating it into another language. This approach
is called "Translational semantics". However, RSL has to be
considered as a superior language to 3GL (3rd Generation
Languages) such as Java to apply this approach. In this case,
RSL constructs can be translated into 3GL constructs. The
semantics of 3GL are well known. Thus, a transformation
program can be built to generate source code from RSL. The
source language of the transformation is RSL, and the target
language is Java. In this work, Java was chosen because it is
widely used by the majority of software developers. The
architecture of the target code follows the Model-View-
Presenter (MVP) pattern [21]. The View layer represents the

GUI elements for displaying data and interacting with the
user, and the Presenter layer is in charge of driving the
observable behavior of the system, and controlling the
sequence of updates made to the Model and View layers. The
Model layer is the main focus of this study, as it allows
persistence and storage of data in a database. The rules for the
other layers were discussed in [6], [12] , and [20].

Next, the transformation rules are cited and, for each rule,
an illustration is presented.
 Rule R1: Each View-type notion is translated into a Model

class. The name of the class is derived from the notion’s
name, without space, turning it to upper camel case, and
adding the prefix "M".

 Rule R2: Any notion of view type with associated notions
of attribute type is translated into a DTO class. The class
name is derived from the notion’s name by removing spaces
and changing to upper case. The attributes are translated
into the attributes of the DTO class. Their names are copied
from the names and types of the attribute notions
respectively ("Text" to "String", "Whole number" to
"Integer", "Real number" to "Float", "True/False" to
"Boolean", "Date" to "DateTime"). In addition, each DTO
class contains an ID attribute of type "long".

 Rule R3: Each "non-read" sentence of the type: "System-
to-Simple View" is translated into a class in the Model
layer. The sentence must involve an action different from

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 46

the "Read" action, i.e. "Create", "Update", "Delete", plus
"Validate". The name of the operation is derived from the
predicate name of the sentence without spaces, and turns it
into camel-case format. Fig. 6 illustrates the rule. The "user
data" simple view notion in the sentence "System updates
user data" is translated into the UML class "MUserData".
This class contains the method: "updatesUserData", which
is treated as an "UPDATE" action as explained in Section II
(Subsection C). Then, the UML class is transformed into a
Java class. The lines 15-28 show the "updatesUserData"
method which takes the name of the notion as parameter,
and updates it using the "update" method of the session
object. The "session" object is an instance of the "Session"
class in Hibernate, used to obtain a physical connection
with a database. It allows to persist and retrieve data each
time it is instantiated. It must not be opened for a long
period of time, using the "close" method. The transaction
object "tx" is also a unit of work with the database.
Hibernate's common () method is used to initiate objects in
Hibernate and is inherited from a generic model class.

 Rule R4: Each "Read" System-to-ListView (Simple View)
sentence is translated into a class in the Model layer. The
sentence must involve a "Read" action, and may contain
one or two objects (direct or both direct and indirect). The
direct object points to a List View and the indirect object, if
it exists, points to a Simple View. The name of the
operation is derived from the concatenated predicate in the
direct object. Fig. 7 shows the description of the rule. The
notion of "lawyer list" in the sentence "System gets lawyer
list according to lawyer search criteria" is translated into the
UML class "MLawyerList", with the "getsLawyerList"
method. It is then transformed into a Java class (see lines
16-37) and contains the notion "LawyerSearchCriteria" as a
parameter, which is the indirect object. It uses Java iteration
constructs to loop a list of data and print certain information
for the user.

 Rule R5: Each "Read" System-to-Simple View (List View)
sentence is translated into a class in the Model layer. The
sentence must involve a "Read" action, and can have direct
and indirect objects. The direct object refers to the Simple
View and the indirect object, if it exists, refers to a List
View. The operation’s name is derived from the predicate
to the direct object (Simple View). Fig. 8 shows the rule.
The direct object "lawyer data" in the sentence "System
gets lawyer data" is similarly translated into the model class
"MLawyerData", and contains the "getsLawyerData"
method, which is treated as a "Read" action. Then it is
translated into a Java class. The method (lines 16 to 29)
takes an "ID" identifier as a long type parameter, for
example, to identify the data in the database table, and uses
the "load" method of the session object, to read the data.

Fig. 6 Illustration of Rule R3

1

2 public class MUserData extends

GenericModel {

3

4 private Session session;

5 private Transaction tx;

6

7 public MUserData(){

8

9 }

10

11 public void finalize() throws

Throwable {

12

13 }

14 public void

updatesUserData(UserData userData){

15 try{

16 common();

17 session.update(userData);

18 session.flush();

19 tx.commit();

20 } catch

(HibernateException e){

21 if (tx!=null)

tx.rollback();

22 e.printStackTrace();

23 }

24 finally{

25 session.close();
26 }

27 }

28 }

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 47

Fig. 7 Illustration of Rule R4

Fig. 8 Illustration of Rule R5

 1

 2

 3 public class MLawyerList extends

GenericModel {

 4

 5 private Session session;

 6 private Transaction tx;

 7

 8 public MLawyerList(){

 9

10 }

11

12 public void finalize() throws

Throwable {

13

14 }

15

16 public List

getsLawyerList(LawyerSearchCrietria

lawyerSearchCriteria){

17 List list= null;

18 try{

19 common();

20 list =

session.createQuery("from

LawyerSearchCriteria").list();

21 Iterator iterator =

list.iterator();

22 while (iterator.hasNext())

{

23 LawyerSearchCriteria

lawyerList= (LawyerSearchCriteria)

iterator.next();

24

System.out.println(lawyerList +" ");

25 }

.. ………

37 }

 1

 2

 3 public class MLawyerData extends

GenericModel {

 4

 5 private Session session;

 6 private Transaction tx;

 7

 8 public MLawyerData(){

 9

10 }

11

12 public void finalize() throws

Throwable {

13

14 }

15

16 public LawyerData

getsLawyerData(long ID){

17 LawyerData lawyerddata=null;

18 try{

19 common();

20

lawyerData=(LawyerData)session.load(L

awyerData.class, ID);

21 } catch

(HibernateException e){

22 if (tx!=null)

23 tx.rollback();

24 e.printStackTrace();
25 }

26 finally{session.close();

27 }

28 return LawyerData;

29 }

30

31 }

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 48

IV. CODE GENERATION

A. Model Transformation Language:MoLA
The aforementioned translation rules were implemented

using the MoLA transformation language. This language was
chosen because it can be easily interfaced with RSL's
modeling environment: i.e.: editor and model repository. In
addition, it can produce models in UML and has good text
processing capabilities. MoLA is a procedural graphical
language that combines two programming paradigms:
declarative and imperative, developed at the University of
Latvia, IMCS, and supported by the Eclipse-based
METAclipse tool [22] and [23]. In graph transformations, the
declarative paradigm is specified by specifying models that
must be found or generated in the model graphs. When
executing a declarative rule, certain objects in the model graph
are found or updated, and are then available for further
processing via references. The results of declarative
processing can be used by imperative elements, which can
define sequences in which the declarative rules are to be
executed. The basic element in MoLA is a rule, which consists
of a "pattern", and "actions". A pattern is a class element that
conforms to a metamodel. In addition to pattern matching, a
MoLA rule also performs other tasks: it creates a class
instance or link, deletes an instance or link, or changes
(modifies) the values of an instance. A MoLA procedure - the
executable transformation unit - is built from rules, using
constructions from traditional structural programming: loops,
branchings, If-then-Else, procedure calls in graphical forms.
All these look like UML activity diagrams. It can also contain
declarations: parameters and variables (primitives, and class).
The next paragraph discusses MoLA constructs by giving
examples of transformation procedures that implement the
rules described in Section III.

B. Transformation Algorithm
 This sub-section presents the implementation of the

semantics from RSL to Java presented in Section III. MoLA
was used to write the transformation rules. This work focuses
on the rules that allow to generate the database access code,
and the associated Hibernate code to persist and store the data
in a database.

Fig. 9 illustrates the main MoLA procedure, which
contains six procedure calls. This main procedure is
the implementation of the process shown in

. The first two procedures are used to organize the package

structure for the entire application. The third procedure is used
to create the hibernate configuration file. This file contains all
required database data and other related parameters. The
fourth procedure is used to generate the DTOs classes, which
are called persistent classes in Hibernate. They must contain
an ID to easily identify objects in Hibernate and the database.
The ID attribute is mapped to the primary key column in a
database table. Other attributes must be declared as private,
and have getter/setter methods. These classes are used by

Hibernate for mapping, because Hibernate maps DTOs to
database tables and database views, and maps Java data types
to SQL data types. The fifth procedure generates mapping
files for each DTO class, which contain the mapping
information defining how the Java classes are linked to the
database tables. It also contains information about the
associations between tables: One-To-One, One-To-Many,
Many-To-One, and Many-To-Many mappings. The last
procedure is used to generate the database access code, i.e. the
Model layer. This procedure is used to generate classes for
manipulating data in a database system using the popular
CRUD methods. Fig. 10 illustrates the details of this
procedure. It iterates on each notion of an RSL model, whose
type can be either a SimpleView ("tagNonpersistent") or a List
View ("tagList"), and creates a class with the prefix "M" as
indicated in the above rules concatenated with the notion
name (notion’s name) in the "Model" package. Then, it loops
SVO sentences that are linked to a certain domain statement,
and creates the necessary dependencies. The remaining
instructions allow to get the action using the verb name of the
sentence. Then, the appropriate method will be called to
create, read, update or delete the data from the database,
following the rules described in Section III.

Fig. 11 shows the implementation of rule R3. This
procedure takes four input parameters, and creates an
operation (op: Operation) for a Model class (@cl:Class). The
name of the operation takes the name of the verb concatenated
with the notion’s name. And the parameter’s name is the name
of the DTO class in camel-case. And, then the code of the
operation is inserted according to the type of action ("Create",
"Update", "Delete" or "Validate"). The Hibernate's predefined
operations that are linked to the Session class (for example,
session.save(object), session.update(object), and
session.delete(object)). For the "Validate" action, only the
code skeleton is generated. Rule R4 (Fig. 12), allows reading
data from a database table. This procedure takes three input
parameters and, like the previous procedure, it creates an
operation for the model class and inserts the code of the
operation which will be repeated on the objects of the
table/view. Then, it prints the data required by the user (for
example, ID, name, or other data). Fig. 12 shows that the
operation takes a parameter which is the DTO object in this
case, because there is an indirect object in the SVO sentence.
Otherwise, if there is no indirect object, the method will have
no parameters.

V. CASE STUDY

A. Validation Approach
The proposed approach was applied in the "Tribunal E-

Services" system to test its reliability. This is the domain
problem defined using the RSL’s domain model notation. The
example contains user-system interactions, which are defined
using scenarios. The system uses a dozen interconnected use
cases of four types related to citizens, lawyers, documents

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 49

Fig. 9 Main MoLA Procedure

Fig. 10 MoLA procedure for the Model generator (a)

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 50

Fig. 10 MoLA procedure for the Model generator (b)

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 51

Fig. 11 MoLA procedure for Rule R3

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 52

Fig. 12 MoLA procedure for Rule R4

 (criminal record extract, etc.) and other services and other
services (e.g. follow judicial affair). The source domain model
was developed using the ReDSeeDS (Requirements-Driven
Software Development System) framework [14], and the
transformation rules using MoLA. Java code was generated
using the Enterprise Architect tool generator [24]. Following,
snapshots of the case study are presented.

A. Source Model
The overall scope of the system is defined using the

conceptual domain model, in addition to use cases, and, must
be extended by further details of the application logic.

The RSL source model includes eleven use cases, as shown
in Fig. 13. Four of the use cases are connected to the actor by
a "use" relationship. The remaining use cases are
interconnected by the "invoke" relationship. The problem
domain illustrated in Fig 14 comprises seven concepts related
to the citizen and different e-services that can be realized with
this system. Of course, these concepts have attributes and are
linked by associations that have multiplicities (1, *) as
explained in Section ̨II (Subsection ̨B).

Fig. 14 shows a part of the RSL model as a whole. One use
case, "Extract nationality", represented by a scenario in Fig.
15, is described. The scenario begins with an "Actor-to-
Trigger" sentence that defines the initial user interaction.

Another relationship between "Data Views" and "Concepts"
in the RSL can also be distinguished, called "main concept

Fig. 15 shows a relationship between the "user data" simple
view and the "citizen" concept. Sentence 3 is a "System-to-
Screen" sentence to show a screen element (here: "System
shows nationality form"). The following sentences allow the
actor to edit (sentence 4) the data. Then the system checks the
data, if it is correct, then the system saves it (sentence 7), and
the main scenario ends with two SVO phrases, which allow
the user to view the data and close the form. If not, it displays
a message (quell message to indicate error), and asks the user
to fill in the data again. If this is the case, the main scenario is
rejoined from the sentence "Citizen fills user data", using the
"rejoin" relationship. Otherwise, the system will close the
form. The remaining use cases and their stories are similar to
the "Extract nationality" scenario, and they are not presented
in this study.

A. Target Code
Once the implementation of the RSL source model and all

rules is complete, the transformation can be executed (main
procedure in Fig. 9). The target model includes Java code.
The proposed code can be easily combined with the code
generated in the works of Michał Śmiałek and Wiktor
Nowakowski [6], and [12] in which the researchers have
generated code following the Model-View-Presenter design
pattern.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 53

Fig. 13 Use case diagram for "Tribunal E-Services" system

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 54

Fig. 14 Part of the RSL domain model

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 55

Fig. 15 Details for "Extract nationality" use case

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 56

They generated a code for the Presenter and View layers,
and only a code skeleton for the Model layer for both Desktop
and Web-based applications [12]. In the present work, the
code of the Model layer is generated to persist and store the
data in a database system using CRUD methods and Hibernate
ORM for a Desktop-based application.

Fig. 16 shows the structure of the translational framework.
It can be seen that the classes of the three layers are linked by
associations; the associations between the Presenter layer and
the View layer are bidirectional, and the associations between
the Presenter layer and the Model layer are unidirectional. In
this MVP variant, there is no association between the View
and Model layers. By convention, View class names begin
with the letter "V", Presenter class names begin with "P" and
Model class names begin with "M", as mentioned above.

Fig. 16 Structure of the translational framework

VI. RELATED WORK AND COMPARISON
In this section, we survey earlier works that allow to derive

target models (structural or behavioral) from requirements.
After that, we discuss approaches that are able to generate
source code from requirements. At the end of this section, we
compare our approach with recent approaches (last five years)
in this area.

Ding et al. [25] proposed a method in which they
automatically adapted the Cockburn’s use cases to IBM and
Microsoft Service Component Architecture (SCA) models,
using the Taurus tool and the Atlas Transformation Language
(ATL) [26] to write the transformation rules, in addition to the
Eclipse ATL Development Tools (ADT) platform.

Santonu Sarkar et al. [27] proposed a solution called
"Design Assistant Tool" (DAT) to create a detailed design
(based on UML) from requirements and use case texts written
with natural language processing (NLP). This tool combines
natural language processing techniques and design heuristics.

Yue et al. [28] proposed a method and a framework called
aToucan that allows to automatically derive UML analysis
models (class, sequence, activity diagrams) from documented
functional requirements such as UCMod (use case diagrams,
natural language information, etc.). The authors presented a
MOF-based use case metamodel; UCMeta models use case
models that follow RUCM.

Recent pertinent works that can generate executable code
automatically from requirements models are cited below.

The authors in [29], proposed an approach for generating
Java code automatically. They extract a semantic model
representation from requirements written in any natural
language (English, French … etc.), and then covert this model
into a code called: Pegasus_code, and finally, they refine and
transform the Pegasus_Code into Java code. To support their
approach, they implemented a tool called: Code Recovery tool
(CodeRec-tool). To proof the feasibility of their approach,
they presented a case study for “library management system”.

The approaches cited in the next paragraphs apply the
MDD/MDA principles to produce code for Web-based
applications. There are also approaches that can generate code
for Rich Internet Applications (RIA), which are not discussed
here.

Christoforos Zolotas et al. [30] presented an MDE engine
for generating RESTful web services from textual
requirements (based on SVO motif) and their visual
storyboards, following the MDA technology [31]. For this,
they developed two modules as Eclipse plung-ins that are:
Reqs2Specs modules and an MDE Engine. Reqs2Specs was
used to write the requirements (with: requirements editor, and
Storyboard creator). The MDE engine was used to apply
transformations from CIM to PIM, and from PIM to PSM with
ATL language, and from PSM to code with Acceleo [32].
Their mechanism covers non-CRUD functionalities such as:
Authentication, keyword searching, and also: interoperability
with existing 3rd party services. To examine the validity of
their approach, the authors provided the RestMarks case
study.

Imane Essebaa et al. [33] introduced a tool support to
automate the MDA process for MVC Web Application called:
“MoDAr-WA”. To model their requirements, the authors used
business vocabulary and business rules of the SBVR OMG
standard [34] at the Computational Independent Level (CIM)
level, and then, they generate a use case diagram from SBVR
at the same level. After that, they generate the PIM level (class
and sequence diagrams) from CIM. The PSM level is
generated from PIM level, for web application (detailed class
and detailed sequence diagrams). The transition between these
MDA models was performed with QVT-Operational language
[35]. At the end of the process, the generation of code from
PSM is possible with Acceleo tool. The design of the
different MDA models was done with Papyrus modeling
environment [36]. The MoDAr-WA tool was implemented as
an Eclipse plug-in. The validity of this approach has been
tested for a Music Store System case study.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 57

Another prominent work was given by [37]. This approach
is very similar to [33]. The authors also focus on generating
source code automatically for web application from CIM
models down to source code following the MVC three-tiered
architecture. To define requirements, at the CIM level, the
authors propose to deploy use cases: Business Actors,
Business UC Realization Diagram, the Business Object
Diagrams, and the Sequence Diagrams of the Business
scenarios. The transitions from CIM models PIM and PSM
models, and finally to code are conducted by a proprietary
tool called: xGenerator. The researchers used StarUML [38]
to design the UML models at the different MDA layers. They
presented An Automated Teller Machine (ATM) as a case
study.

The Use case Specification Language (USL) is a concurrent
DSL language for specifying precise use cases introduced in
[39], The aim is to open the possibility to transform the USL
models into other software artifacts.

There are some model-driven tools that can generate an
implementation from design models. The Procasor tool [40]
can generate source code from use cases and transform them
into behavior protocols (procases) and UML state machine
diagrams; then, a generator takes these procases and the
domain model (UML class diagram), and generates an
executable implementation. In this approach, the
implementation is composed of three layers: a Presentation
layer (pages), a middle layer (business) and a Data layer
(generation of classes from UML class diagrams). The
JBehave tool [41] is a concurrent tool that can generate source
code from user stories. AndroMDA [42] can generate source
code from UML models. eMOFLON [43] also generates Java
code from UML class diagrams using Enterprise Architect.

These presented approaches can produce code or models
(structural or behavioral) from high-level requirements
formulated as paragraphs of text (NLP based- approaches…),
or use case diagrams and their scenarios (textual or visual)
using general purpose modeling languages such as UML, or
domain specific modeling languages such as RSL. The authors
implemented tools to support the transformation process from
requirements to other models or code.

A comparison study between our proposed approach and a
list of approaches cited aforementioned (last 5 years) was
performed to summarize this section, according to the criteria
of different (see Table. I). We focus in this comparison on
generating target source code from requirements never less
their notation: textual or visual.

The common points between our approach and the
compared approaches, are (1) the generation of code from
high-level requirements. (2) the utilization of models and
model transformations with MDD/MDA-based approaches.
(3) the utilization of the Model-View-Presenter/Controller
architectural pattern to structure the generated code for our
approach and two other approaches.

The main difference between our approach, and the other
approaches is the consideration of the visual notation (in our
approach) for use cases and their textual scenarios formulated

using the domain specific language: RSL under the
ReDSeeDS tool.

 We concentrate in our work, on generating code for
database access code (model layer) directly from use cases
(verb sentences) directly with a simple click

Besides the automatic generation of database access code,
our approach has also other advantages. The requirements
specification language: RSL is easy to understand, and to use.
It does not need a high-level background for developers, or
domain experts ...etc to be familiar with. From the other side,
the ReDSeeDS tool that supports RSL has the possibility to be
interfaced with another code generator Modelio [44] –
actually-, in addition to the Enterprise Architect tool. Theses
modeling tools can visualize and generate code from exported
UML models with ReDSeeDS.

To create a ready-to-run web-based application, the
transformation engineer can develop some transformation
rules easily, and run the program to see the result.

Table. I shows the comparison. The columns present the
approaches that are indicated by the authors' names. The rows
of the table are the different criteria, which are: source model,
target model, requirements tool support, model-to-model
transformations, model-to-text transformations,
automatic/semi-automatic code generation, generation of
database access code, web-based application, and the
approach if text in academia or industry.
 Source model: the source model in model-driven

requirements engineering are: the requirements defined as
paragraphs of text and/or accompanied with their use case
diagrams. In this study, the languages used for modeling
requirements are: UML use case diagrams, OMG’s SBVR
standard (Semantic of Business Vocabulary And Business
Rules), Natural Language Processing (NLP), and Domain
Specific Languages (DSLs) as in the proposed approach:
the RSL language.

 Target model: we mean by the term: target model, the
final result of all the MDD/MDA transformation process
(M2T transformation) (not the intermediary generated
models: such as UML class diagrams and so on). In model-
driven approaches, the source code is also treated as a
model. The latter can be written in any high-level
programming language. As can be seen in Table. I, Java
language was the most used in this comparison

 Requirements tool support: some researchers listed in
Table. I developed advanced tools to define requirements
models, such as: ReDSeeDS (Requirements-Driven
Software Development System) in our approach, Code
Recovery tool ([29]), Reqs2Specs ([30]). The others
employed existing tools: Papyrus (in [33]), and StarUML
(in [37]).

 Model-to-Model Transformation language: in M2M
transformation, the languages can perform the mapping
from source models to other target models (e.g.: UML
models). We distinguish text-based and graphical-based
transformation languages. Text-based languages used in this
comparison are: QVT-O language

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 58

Table. I Comparison between model-based code generation approaches from high-level requirements

Query/Views/Transformation-Operational), and ATL (Atlas
Transformation Language). MoLA is the graphical-based used
in our approach. For the rest of the approaches, the
transformation rules are embedded in the transformation tool,
and the analysts and the designers do not need to care about
them.
 Model-to-Text Transformation tool: M2T tools can

perform the mapping from models to code. As we can seen
from Table. I, different tools were used, such as: Acceleo
([30], [33]), Pegasus([29]), xGenerator ([37]), and
Enterprise Architect (in our approach).

 Automatic/Semi-Automatic code generation: the aim of
model-driven requirements engineering is to consider

requirements as first-class citizen, in order to contribute in
the final code from. The process can be automatic or semi-
automatic. In Table. I, we observe that all the approaches,
can produce source code automatically from requirements.

 Generation of database–access code: most approaches
available in the literature focus on the generation of source
code in general, but they do not focus on generating
database access code to store and maintain data in database
systems. The approach of Zolotas et al. [30] can generate
code for authentication, and keyword searching . Just, our

Approach

Criteria

Zolotas et al.

[30]

Mariem Mefteh et

al.

[29]

Imane Essebaa et

al.

[33]

Gaetanino Paolone

et al.

[37]

Nassima

Yamouni-

Khelifi et al.

Source model

Textual scenarios
and graphical
storyboards

Textual requirements
in natural language

Business vocabular

and business rules, and
UML Use cases

diagram

UML Use cases:

Use case diagrams

and
textual

scenarios in
RSL

Language

Target model

RESTful-web
services

Java Code

Java code for Web

application

Java code for web

application

Java Code

Requirements tool

support

Reqs2Specs Eclipse
module:

Requirements
Editor and the

Storyboard
Creator

Coode Recovery tool

Papyrus Modeling tool
(Eclipse Plugin)

StarUML

ReDSeeDS tool

Model-to-Model

Transformation

language

ATLAS
Transformation

Language

Transformation rules
embedded in the tool

QVT-Operational
Language

Transformation rules
embedded in the tool:

xGenerator

MoLA Language

Model-to-Text

Transformation tool

Acceleo

Pegasus

Acceleo

xGenerator

Enterprise Architecture

Automatic/Semi-

Automatic of

code generation

Automatic

Automatic

Automatic

Automatic

Automatic

Generation of

Database access

code

Yes (Database
schema for

authentication and
keyword

searching)

No

No

No

Yes

Web-based

application

Yes

No

Yes

Yes

Available for View and
presenter layers

Academic/Industrial

case study

Academic

Academic

Academic

Academic/Industrial

Academic

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 59

approach implements rules for generating CRUD methods
automatically.

 Web-based application: web-based applications are a trend
in the field of software applications because of because of their
flexibility and ease of deployment. Most approaches focus on
web-code. Our approach will be enhanced to generate code for
web-based applications. Meriam et al [29] has also the same
issue.

 Tested in academia or industry: the researchers listed in
Table. I conducted case studies to examine the efficiency and
the validity of their proposed methods/tools. The most
approaches involved in this comparison were tested in
academia. The approach of [37] was adopted by an industry.

VII. VALIDITY LIMITS AND THREATS
While the proposed approach has advantages with respect to

automatic code generation from high-level requirement
models, it also has some disadvantages and limitations. The
main threat to external validity concerns the experimentation
in this work. Can the experimental material be used for
industrial practice? With regard to this question, since its
development in 2009, the ReDSeeDS/RSL platform has
proven itself efficiency towards model transformation and
code generation, especially with large use case models and
their text scenarios. Several case studies have been carried out
for both academia and industry, and numerous performance
tests have been presented to validate the approach. The
product code was related to: DTO classes, and some DAO
classes, as well as the Presenter and View classes.
Furthermore, this work allows to produce code for database
access following the MVC design model for Desktop
application actually. The proposed approach was tested for an
academic case study (Tribunal E-Services System) with a
dozen of use case models and their scenarios, which is not
sufficient to prove the accuracy and completeness of the
method in the industrial world, where complex models and
very large database systems are required. Therefore, this
approach needs to be further improved and a more rigorous
evaluation of the generated code is required to examine its
validity.

Two drawbacks are associated with the generated code:
1) The type of software applications: are they desktop or web-
based?
2) Which query language is best suited to be used with
Hibernate ORM?
Regarding question 1, the proposed code runs actually on
desktop applications: the generated CRUD operations are
written in Java language, and visualized with the Eclipse
platform, or others. To this end, the transformation rules need
to be developed for the target (web) platform. With regard to
point 2, given the authors’ programming experience, the use of
SQL language to query database tables was the logical choice.
After reading the documentation, it was found that the use of
the Hibernate Query Language (HQL) with the Hibernate

ORM is better suited for complex queries and sophisticated
data access.

VIII. CONCLUSION AND FUTURE WORK
This paper aimed to introduce a new approach to generate

an executable database access code from requirement models
and to extend the work presented in [6], and [20]. In these
studies, the authors developed transformation algorithms to
automatically generate Java code from requirement models,
following the Model-View-Presenter architectural pattern. The
authors generated code for the Presenter and View layers for
both Desktop Application and Web-based application, but they
generate only code skeleton for the Model layer. This work
focused on the Model layer that is responsible for data
persistence in a database system using CRUD operations. To
this end, the Hibernate ORM that maps the Data Transfer
Objects (DTOs) to Relational database tables was used.

The case study presented in this work for the "Tribunal E-
Services" system, was performed using the ReDSeeDS
framework to edit the source model which is an RSL model
(i.e. using the cases with their stories and the domain model).
The transformation rules were written using the MoLA
language. The target model composed of model classes in
JAVA and Hibernate files was generated by the Enterprise
Architect tool. In the near future, the authors intend to present
the complete case study associated with the database tables
and views. The aim is to use the HQL language to query the
tables and perform more complex access operations such as
join problem. The authors also intend to merge the source code
proposed in this study with the View and Presenter layers code
generated in the work available in.[6], [20] and to create an
executable web- based application software.

ACKNOWLEDGMENT
The authors would like to thank Dr. Wiktor Nowakowski

from Warsaw University of Technology, Poland, for his
assistance regarding the ReDSeeDS framework, and MoLA
language.

References
[1] B. Cheng, J. Atlee, Research Directions in Requirements
Engineering. in Future of Software Engineering, 2007. FOSE
'07.
[2] G. Loniewski, A. Armesto, E. Insfran, An architecture-
oriented model-driven requirements engineering approach. in
Model-Driven Requirements Engineering Workshop
(MoDRE), 2011.
[3] I. Jacobson, Use cases - Yesterday, today, and tomorrow,
Publisher, City, 2004.
[4] C.D. Manning, H. Schütze, Foundations of Statistical
Natural Language Processing1999: MIT Press. 680.
[5] O. Object Management Group®, About the Unified
Modeling Language Specification Version 2.5.1, 2017 2020

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 60

[cited 2021, [online]. Available:
https://www.omg.org/spec/UML/About-UML/.
[6] M. Smiałek, W. Nowakowski, N. Jarzebowski, A.
Ambroziewicz, From use cases and their relationships to code.
in Second IEEE International Workshop on Model-Driven
Requirements Engineering, MoDRE 2012, Chicago, IL, USA,
September 24, 2012.
[7] M. Smiałek, A. Ambroziewicz, J. Bojarski, W.
Nowakowski, T. Straszak, Introducing a unified requirements
specification language, Publisher, City, 2007.
[8] A.M.R.d. Cruz, A pattern language for use case modeling.
in 2014 2nd International Conference on Model-Driven
Engineering and Software Development (MODELSWARD),
2014.
[9] A. Silva, et al., A Pattern Language for Use Cases
Specification, 2015.
[10] A.J. de Souza, A.L.O. Cavalcanti, Visual Language for
Use Case Description, Publisher, City, 2016.
[11] B. Berenbach, A 25 year retrospective on model-driven
requirements engineering. in Model-Driven Requirements
Engineering Workshop (MoDRE), 2012 IEEE.
[12] M. Smialek, W. Nowakowski, From Requirements to Java
in a Snap - Model-Driven Requirements Engineering in
Practice2015: Springer International Publishing. 352.
[13] H. Kaindl, et al. (2009). Requirements specification
language definition (Deliverable D2.4).
[14] ReDSeeDS | Requirements-Driven Software Development
System, [cited 2021, [online]. Available:
http://smog.iem.pw.edu.pl/redseeds/.
[15] M. Smialek, N. Jarzebowski, W. Nowakowski,
Translation of Use Case Scenarios to Java Code, Publisher,
City, 2012.
[16] MOLA pages, 2011 2011 [cited 2021, [online].
Available: http://mola.mii.lu.lv/.
[17] C. Bauer, G. King, Hibernate in Action (In Action
Series)2004: Manning Publications Co. 408.
[18] S. and Michał, A. Albert, W.N. Tomasz Straszak,
Requirements-level language and tools for capturing software
system essence, Publisher, City, 2013.
[19] OMG, OMG's MetaObject Facility (MOF) Home Page,
[cited 2021, [online]. Available: http://www.omg.org/mof/.
[20] M. Smialek, N. Jarzebowski, W. Nowakowski, Runtime
semantics of use case stories. in 2012 IEEE Symposium on
Visual Languages and Human-Centric Computing, VL/HCC
2012, Innsbruck, Austria, September 30 - October 4, 2012.
[21] M. Fowler, GUI Architectures, 2006 [cited 2021,
[online]. Available:
https://martinfowler.com/eaaDev/uiArchs.html.
[22] A. Kalnins, et al., Building tools by model
transformations in Eclipse. in Proceedings of Domain Specific
Modeling (DSM) 07. Jyvaskyla University Printing House.
[23] O. Vilitis, A. Kalnins, Technical Solutions for the
Transformation-Driven Graphical Tool Building Platform
METAclipse, Publisher, City, 2008.
[24] S.S.P. Ltd, ENTERPRISE ARCHITECT, [cited 2021,
[online]. Available:
https://sparxsystems.com/products/ea/index.html.

[25] Z. Ding, M. Jiang, J. Palsberg, From Textual Use Cases
to Service Component Models. in Proceedings of the 3rd
International Workshop on Principles of Engineering Service-
Oriented Systems. ACM.
[26] E. Foundation, ATL, [cited 2021, [online]. Available:
https://www.eclipse.org/atl/.
[27] S. Sarkar, V.S. Sharma, R. Agarwal, Creating design from
requirements and use cases: Bridging the gap between
requirement and detailed design. in India Software
Engineering Conference, ISEC 2012.
[28] T. Yue, L.C. Briand, Y. Labiche, aToucan: An
Automated Framework to Derive UML Analysis Models from
Use Case Models, Publisher, City, 2015.
[29] M. Mariem, B. Nadia, B.-A. Hanêne, From Language-
Independent Requirements to Code Based on a Semantic
Analysis. The Twelfth International Conference on Software
Engineering Advances, 2017: pp. 145-156.
[30] C. Zolotas, T. Diamantopoulos, K.C. Chatzidimitriou,
A.L. Symeonidis, From requirements to source code: a Model-
Driven Engineering approach for RESTful web services,
Publisher, City, 2017.
[31] O.M. Group, 2021, [online]. Available:
https://www.omg.org/mda/.
[32] I. Eclipse Foundation, Acceleo, 2020 [cited 2021,
[online]. Available: https://www.eclipse.org/acceleo/.
[33] I. Essebaa, S. Chantit, M. Ramdani, MoDAr-WA: Tool
Support to Automate an MDA Approach for MVC Web
Application, Publisher, City, 2019.
[34] O.M. Group, About the Semantics Of Business
Vocabulary And Business Rules Specification Version 1.5,
[cited 2021, [online]. Available:
https://www.omg.org/spec/SBVR/About-SBVR/.
[35] OMG, About the MOF Query/View/Transformation
Specification Version 1.3, 2021], [online]. Available:
https://www.omg.org/spec/QVT/About-QVT/.
[36] I. Eclipse Foundation, Papyrus, [cited 2021, [online].
Available: https://www.eclipse.org/papyrus/.
[37] G. Paolone, M. Marinelli, R. Paesani, P. Di Felice,
Automatic Code Generation of MVC Web Applications,
Publisher, City, 2020.
[38] L. MKLabs Co., StarUML, [cited 2021, [online].
Available: https://staruml.io/.
[39] C. Hue, D.-H. Dang, USL: A Domain-Specific Language
for Precise Specification of Use Cases and Its
Transformations, Publisher, City, 2018.
[40] V. Mencl, Procasor : Interactive Environment for
Requirement Specification, [cited 2021, [online]. Available:
https://d3s.mff.cuni.cz/software/procasor/.
[41] JBehave, [cited 2021, [online]. Available:
https://jbehave.org/.
[42] M. Bohlen, AndroMDA Model Driven Architecture
Framework - AndroMDA - Homepage, [cited 2021, [online].
Available: http://www.andromda.org/.
[43] e.D. Team, eMoflon, [cited 2021, [online]. Available:
https://emoflon.org/.
[44] MODELIO The open source extensible modeling
environment supporting: UML, BPMN, ArchiMate, SysML,
[online]. Available: https://www.modelio.org/.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 61

http://www.omg.org/spec/UML/About-UML/
http://smog.iem.pw.edu.pl/redseeds/
http://mola.mii.lu.lv/
http://www.omg.org/mof/
http://www.eclipse.org/atl/
http://www.omg.org/mda/
http://www.eclipse.org/acceleo/
http://www.omg.org/spec/SBVR/About-SBVR/
http://www.omg.org/spec/QVT/About-QVT/
http://www.eclipse.org/papyrus/
http://www.andromda.org/
http://www.modelio.org/

Nassima Yamouni-Khelifi is a PhD follower in Computer
Science and is a part time Lecturer in the Department of
Computer Science at the University of Sciences and
Technology -Mohamed Boudiaf-, Oran, Algeria. Contact e-
mail address: nassima.yamounikhelifi@univ-usto.dz

Kaddour Sadouni is a Titular Professor and Computer
Science Technician. He is the Director of the SIMPA
laboratory at the University of Sciences and Technology-
Mohamed Boudiaf-, Oran, Algeria. Contact him at
kaddour.sadouni@univ-usto.dz

Michał Smiałek is a Titular Professor at Warsaw University

of Technology, Warsaw, Poland. He is a researcher in the field
of Model-Driven Engineering and Requirements Engineering
and has contributed to the ReDSeeDS tool. He is also the
leader of the SMoG group. Contact him at
smialek@iem.pw.edu.pl or visit https://smialek.iem.pw.edu.pl/

Mahmoud Zennaki is a Senior Lecturer in the Department
of Computer Science at the University of Sciences and
Technology -Mohamed Boudiaf-, Oran, Algeria. Contact him
at mahmoud.zennaki@univ-usto.dz

Contribution of individual authors to the

creation of a scientific article

Nassima Yamouni Khelifi has implemented the
transformation rules in MoLA, and has written the
scenarios of the “Tribunal E-services System” case
study, and has realised the comparison between the
different approaches.
Kaddour Sadouni has carried out the progress of the
Article (as he is the supervisor of the PhD dissertation of
Nassima yamouni Khelifi).
Michał Śmiałek has proposed the rules of Section III,
and helped in the redaction of the Article, especially in
the sections related to the RSL language and ReDSeeDS
tool.
Mahmoud Zennaki has carried out the progress of the
Article (as he is the co-supervisor of the PhD
dissertation of Nassima Yamouni Khelifi)..

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
DOI: 10.46300/91015.2021.15.7 Volume 15, 2021

E-ISSN: 2074-1308 62

mailto:mahmoud.zennaki@univ-usto.dz
mailto:kaddour.sadouni@univ-usto.dz
mailto:nassima.yamounikhelifi@univ-usto.dz
https://smialek.iem.pw.edu.pl/
mailto:smialek@iem.pw.edu.pl

