
 
Abstract—In lung cancer computer-aided diagnosis 

(CAD) systems, having an accurate ground truth is 

critical and time consuming. Due to lack of ground 

truth and semantic information, lung CAD systems 

are not progressing in the manner these are supposed 

to. In this study, we have explored Lung Image 

Database Consortium (LIDC) database containing 

annotated pulmonary computed tomography (CT) 

scans, and we have used semantic and content-based 

image retrieval (CBIR) approach to exploit the 

limited amount of diagnostically labeled data in order 

to annotate unlabeled images with diagnoses. We 

evaluated the method by various combinations of lung 

nodule sets as queries and retrieves similar nodules 

from the diagnostically labeled dataset. In calculating 

the precision of this system Diagnosed dataset and 

computer-predicted malignancy data are used as 

ground truth for the undiagnosed query nodules. Our 

results indicate that CBIR expansion is an effective 

method for labeling undiagnosed images in order to 

improve the performance of CAD systems while 

tested on PGIMER data. Also a little knowledge of 

biopsy confirmed cases can also assist the physician’s 

as second opinion to mark the undiagnosed cases and 

avoid unnecessary biopsies. 

Keywords—Chest CT scan; computer-aided diagnosis; 

LIDC; cancer detection and diagnosis; 

biopsy;PGIMER 

I. INTRODUCTION 

 

Lung cancer is the leading cause of cancer death in 

the United States. Early detection and treatment of 

lung cancer is important in order to improve the 

five year survival rate of cancer patients. Medical 

imaging plays an important role in the early 

detection and treatment of cancer. In order to 

improve lung nodule detection, CAD is effective as 

a second opinion for radiologists in clinical settings 

[1]. A dataset with ground truth diagnosis 

information is essential for CAD systems in order 

to analyze new cases. To assess the high-quality of 

the data, several researchers and physicians have to 

be involved in the case selection process and the 

delineation of regions of interest (ROIs) to cope 

with the inter- and intra-observer variability, the 

latter being particularly important in radiology [2]. 

Efforts for building a resource for the lung imaging 

research community are detailed in [3] [4]. The 

pulmonary CT scans used in this study were 

obtained from the LIDC [4], and we refer to the 

nodules in this dataset as the LIDC Nodule Dataset. 

Recently, diagnosis data for some of the nodules 

were released by the LIDC; however, because the 

diagnosis is available patient-wise not nodule-wise, 

only the diagnoses belonging to patients with a 

single nodule could be  reliably  matched with the  

nodules in the  

LIDC Nodule Dataset, resulting in 18 diagnosed 

nodules (eight benign, six malignant, three 

metastases and one unknown). The 17 nodules with 

known diagnoses comprise the initial Diagnosed 

Subset as one case with unknown diagnose cannot 

be considered as ground truth. Since the diagnoses 

in the LIDC Diagnosis Dataset are the closest thing 

to a ground truth available for the malignancy of 

the LIDC nodules, our goal is to expand the 

Diagnosed Subset by adding nodules similar to 

those already in the subset. 

To identify these similar nodules and to predict 

their diagnoses, CBIR with classification is 

employed.  The radiologist’s annotation along with 

LIDC data is also considered as semantic rating to 

prepare the ground truth from LIDC data. 

Increasing the number of nodules for which a 

diagnostic ground truth is available is important for 

future CAD applications of the LIDC database. 

With the aid of similar images, radiologists’ 

diagnoses of lung nodules in CT scans can be 

significantly improved [5].  Having diagnostic 

information for medical images is an important tool 

for datasets used in clinical CBIR [6]; however, 

any CAD system would benefit from a larger 

Diagnosed Subset as well as the semantic rating, 

since the increased variability in this set would 

result in more accurately predicted diagnoses for 

new patients. 
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A. State of the Art 

Only a limited number of CAD studies have used a 

pathologically confirmed diagnostic ground truth, 

since there are few publically available databases 

with pathological annotations [7]. In CAD 

applications for which pathological diagnosis data 

is absent, determining a ground truth is more 

challenging.   Even with LIDC data where biopsy 

confirmed cases are available still due to the 

variability in the opinion of four different 

radiologists made the LIDC data more complex and 

redundant. In exploring the relationship between 

content-based similarity and semantic-based 

similarity for LIDC images, Jabon et al. found that 

there is a high correlation between image features 

and radiologists’ semantic ratings [8]. Though in 

this study, the malignancy rating is also considered 

for patients having multiple nodules by taking the 

mean of all the four radiologists rating. 

McNitt-Gray et al. [9] [10] used nodule size, shape 

and co-occurrence texture features as nodule 

characteristics to design a linear discriminant 

analysis (LDA) classification system for malignant 

versus benign nodules. Armato et al. [11] used 

nodule appearance and shape to build an LDA 

classification system to classify pulmonary nodules 

into malignant versus benign classes. Takashima et 

al. [12] [13] used shape information to characterize 

malignant versus benign lesions in the lung. 

Samuel et al. [14] developed a system for lung 

nodule diagnosis using Fuzzy Logic. Matsuki et al. 

[15] also used both clinical information and sixteen 

features scored by radiologists to design an ANN 

for malignant versus benign classification. 

In all these systems the major concern was to 

distinguish benign nodules from malignant one 

where as in the current study we have assigned a 

new class to the nodules metastases, which 

indicates that the nodule is malignant however the 

primary cancer is not lung cancer. The cancer has 

spread from other organ like neck, breast etc. to 

lung which can definitely further help the 

physicians in better understanding of cause and 

diagnosis for those patients. In the current study, 

we adopted a semi-supervised approach for 

labeling undiagnosed nodules in the LIDC. CBIR is 

used to label nodules most similar to the query with 

respect to Euclidean distance of image features. By 

evaluating the method with a CAD application, we 

determined how to effectively expand the 

Diagnosed Subset with CBIR. Finally precision is 

calculated for the PGIMER data with the prepared 

ground truth. 

 

II. MATERIALS AND METHODS 

 
A. Lung Image Database Consortium (LIDC) 

Dataset; A benchmark 

 

The NIH LIDC database, released in 2009, contains 

399 pulmonary CT scans. Up to four radiologists 

analyzed each scan by identifying nodules and 

rating the malignancy of each nodule on a scale of 

1-5. The boundaries provided in the XML files are 

already marked using manual as well as semi-

automated methods [1] [5]. Both cancerous and 

non-cancerous regions appear with little distinction 

on CT scan image. For accurate detection of 

cancerous nodules, we need to differentiate the 

cancerous nodules from the noncancerous ones. 

The nine characteristics are presented in [16] are 

the common terms physicians consider for a nodule 

to be benign or malignant. To our best knowledge, 

this is the first use of the LIDC dataset for the 

purpose of validating and classifying lung nodule 

using biopsy report as well as the semantics 

attached. 

 

B. Lung Nodule Detection and Selection of Slices 

Lung nodules are volumetric and almost available 

in each slice of patient. It is used for nodule 

diagnosis as well as for monitoring tumor response 

to therapy. CT scan of chest is the better method to 

analyze these nodules for detection as well as for 

diagnosis. Due to multiple slices in CT, the 

physician has to see each and every slice for better 

understanding of each nodule, if present. This task 

is time consuming   as   well   as   not   

deterministic   in   any way. We presented a CAD 

system designed to ensure the nodules marked by 

different radiologists and consider only effective 

nodules which can lead to lung cancer, if any, 

present in the patient. This method can further lead 

to decrease in time needed to examine the patient’s 

scan by a radiologist.  

In this work, these marking are used for the nodule 

detection and segmentation from chest CT scan, see 

Figure 1. For better results as well to prepare the 

ground truth the values of annotations are averaged 

for all the four radiologists. No automatic 

segmentation is considered as manual segmentation 

in medical imaging provides better results [17].  

 

 

  

 

 

 

 

 
Fig. 1. Comparison of automated and radiologist 

segmentation 

 

Each slice is read independently to identify its area 

marked by all the four radiologists and only those 

slices per nodule is considered to be in the database 

whose area is maximum [18] and visible in three 

consecutive slices.  

 

C. Final Extracted Nodule Dataset 
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CT scan of 80 biopsy confirmed patients with 

solitary pulmonary nodules mostly less than 3 cm 

have been taken from. All the images  are  of  size  

512*512  and  each  having  16  bit resolution. All 

images are in DICOM (Digital Imaging and 

Communication in Medicine) format which is well 

known standard used in medical field. Each patient 

file is associated with an XML annotated file 

having details of nodule boundaries as well as 

physician’s annotation is associated. Total of 1737 

nodules are marked in 80 patients considering each 

slice of a patient having area greater than all those 

marked by four different radiologists. Out of 80 

biopsy confirmed cases only 18 cases were 

available with single nodule. From these 18, only 

17 cases were considered further to prepare the 

ground truth as diagnosis for one patient was 

unknown and this set will be referred to as the 

Diagnosed17. The classes assigned to these nodules 

were malignant, benign and metastases based on 

the diagnosis report available. Rest 62 patients 

were assigned the class based on the mean of 

malignancy rating provided by four different 

radiologists as no ground truth is available for these 

62 patients with multiple nodules and this set will 

be referred as RadioMarked62. It contains 1677 

nodules from 62 patients. 83 well known image 

features were extracted for each nodule based on 

texture, size, shape, and intensity [16]. The four 

feature extraction methods used to obtain these 83 

features from the LIDC images were Haralick co-

occurrence, GLDM, Gabor filters, and Intensity 

[16]. The number of nodules was reduced to 210 by 

removing nodules smaller than five-by-five pixels 

and multiple slices per nodules because features 

extracted from these smaller nodules are imprecise. 

Four different “undiagnosed” query sets containing 

subsets of the LIDC Nodule Dataset were used, 

since neither computer-predicted nor radiologist-

predicted malignancy ratings can be considered 

ground truth due to high variability between 

radiologists’ ratings. Each of these query sets 

differed in diagnostic ground truth. The first query 

set (Rad210) used the radiologist-predicted 

malignancy, the second set (Comp210) used the 

computer-predicted malignancy, the third set 

(Comp_Rad_biopsy57) used only those nodules for 

which the radiologist, computer-predicted as well 

as biopsy confirmed malignancies agreed and the 

fourth set used only those nodules form which the 

radiologist- and computer-predicted malignancies 

agreed. For each query set, nodules with unknown 

malignancies were removed, and the set was 

balanced to contain all the three classes i.e. benign, 

malignant and metastases. The radiologist-

predicted and computer-predicted contained equal 

number of nodules i.e. 210. and radiologist-

computer-biopsy-agreement query set contained 

57, and Rad_Comp92 contained 92 nodules after 

all modifications.  

III. METHODS 

 

A. Labeling of the Nodules  

Nodules are labeled according to single nodule per 

patient and patients with multiple nodules. 

Following sections show the details: 

 

 Patients with single nodule 

Out of 80, only 18 patient cases were having one 

nodule whereas 62 patients were having more than 

one nodule.  The diagnostic report of LIDC data is 

patient-wise not nodule-wise. Due to this 

limitation, biopsy report is used only for 18 patients 

with single nodule to prepare the ground truth.  

Biopsy report for those patients has four classes 

identified as 0, 1, 2 and 3. The meaning of these 

terms is as described in following table, Table1: 

TABLE I.  MALIGNANCY RATINGS AND ITS MEANING IN 

LIDC DATASET 

 Diagnosis  Diagnosis at 

patient level 

as per LIDC 

diagnosis 

report 

Class 

assigned 

in this 

work 

Description 

0 Unknown I In-determined 

1 Benign B Non-Cancerous 

2 Malignant M Cancerous 

3 Metastases MT Cancer is 
spreading from 

other organ to 

lung. 

17 out of 18 biopsy confirmed cases were having 

the diagnosis as 1, 2 and 3 whereas only one patient 

was having the diagnosis as 0 which means 

unknown or indeterminate. This can decrease the 

classification results, so was not considered in this 

study. Consequently, 17 pathologically confirmed 

cases were assigned three classes malignant (M), 

benign (B) and metastases (MT). There are eight 

benign (B) nodules, six malignant (M) nodules and 

three metastases (MT) nodules present in the initial 

Diagnosed17 set. 

 

 Patients with Multiple Nodules 

62 out of 80 biopsy confirmed cases with multiple 

nodules are assigned classes on the basis of 

radiologist’s malignancy characteristics. The 

meaning and description of malignancy annotation 

feature of LIDC data is shown in Table1. Out of 

nine annotations only malignancy feature is used to 

assign the class to each nodule marked by 

radiologists as this is most promising feature to 

determine the malignancy of a nodule. Also, the 

other characteristics like margin, spiculation, and 

calcification are already involved in the medical 

definition of malignancy, so instead of considering 

all the nine only malignancy features is considered 

to assign the class as it approximately covers 
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almost all the other features too. The method used 

to label each nodule is as follows 

 

Nodules with malignancy rating >=3 assigned class 

Malignant (M) whereas 

Nodules with malignancy rating <3 assigned class 

Benign (B) 

 

In  most of studies, malignancy rating equal to 

three is considered as unknown however in our 

study, we have considered that nodule also as 

malignant which had made the system more 

sensitive than others. Nodules are having multiple 

markings by four radiologists on different slices; 

therefore to reduce the variability among 

radiologists, the mean of the radiologists’ ratings 

was used. In this way, 1677 nodules from 62 

patients were assigned the malignancy class as 

above. These 1677 nodules contain multiple slices 

per nodule also and assigned to RadioMarked62 

set, which further have been reduced to 210 and 

assigned to QueryNoduleSet210.  If the same 

nodule appears in the multiple slices, then only 

those slices are considered in which nodule are 

having maximum area [18]. This method definitely 

reduces the database of nodules as well as makes 

the complexity of volumetric data simpler and 

effective to analyze.QueryNoduleSet210 further 

assigned to various categories like Rad210, 

Comp210 and Comp_Rad_biopsy210 as explained 

earlier. 

 

B. Summary of CBIR method of Expanding the 

Diagnosed Subset17; CBIR Expansion Occurs 

Iteratively 

As ground truth for only 17 patients were available, 

there is a need to expand the diagnostically labeled 

database. In the absence of diagnostic information, 

labels can be applied to unlabeled data using semi-

supervised learning (SSL) approaches. In SSL, 

unlabeled data is exploited to improve learning 

when the dataset contains an insufficient amount of 

labeled data [19]. CBIR can be used as a machine 

learning process that trains a system to classify 

images as relevant or irrelevant to the query. Using 

available datasets and by evaluating the method 

with a CAD application, we determined how to 

effectively expand the Diagnosed17 with CBIR and 

assist the physicians in the final diagnosis. Each 

nodule in the QueryNoduleSet210 was then used as 

a query to retrieve the ten most similar images from 

the remaining nodules in the Diagnosed17 using 

CBIR with Euclidean distance. The query nodule 

was assigned predicted malignancy ratings based 

on the retrieved nodules (e.g., if the maximum 

retrieved nodules belong to class malignant then 

the query nodule was assigned the class M), Figure 

2.  The newly identified nodule was considered 

candidates for addition to the Diagnosed17. 

C. Diagnosed  Subset Evaluation 

In the current study, we adopted a semi-supervised 

approach for labeling undiagnosed nodules in the 

LIDC.  CBIR was used to label nodules most 

similar to the query with respect to Euclidean 

distance of image features. Nodules to be added to 

the Diagnosed17 were selected from the candidates 

described above. For verifying the addition of a 

candidate nodule in the Diagnosed17, a reverse 

mechanism is adopted. Diagnosed17 nodules acted 

as query and nodules to be retrieved are from 

QueryNoduleSet210, see Figure 2. 

 

 
Fig. 2. Selection of candidate nodules using CBIR and 

Diagnosed17 

 

 The first three similar nodules are assigned the 

same malignancy as the query nodule if they were 

previously assigned as candidate nodules (i.e. if the 

query nodule is benign then the top three retrieved 

nodules are also assigned the class benign if 

previously are assigned as candidate nodule).   

Finally based on CBIR and CAD nodules are added 

in the Diagnosed17. With this mechanism 

Diagnosed17 in expanded to Diagnosed74, which 

means that now 74 nodules have the confirmed 

diagnosis and can be treated as LIDC ground truth. 

Predicted diagnosis with the pathologically-

determined diagnosis, this process guarantees the 

accuracy of the CBIR-based diagnostic labeling. 

 

D. CBIR Mapping of Multiple Nodules Database 

with Single Nodule Database 

An independent CBIR framework is implemented 

to increase the Diagnosed17 using CBIR from the 

QueryNoduleSet210. QueryNoduleSet210 is 

having multiple nodules per patient. 210 different 

nodules are present in this set. One by one each 

nodule is taken as query nodule and matched 

against Diagnosed17 using CBIR with Euclidean 

distance. As patient-wise diagnosis is available for 

QueryNoduleSet210, hence the top retrieved result 

is matched with this diagnosis. If top retrieved 

nodule class matches with the patient-wise 

Diagnosed17 with 17 nodules 

categorized in 3 classes 

CBIR 

Query: RadioMarked62/QueryNoduleSet210 

Retrieval Set: Diagnosed17 

10 nodules retrieved per query 

New nodule added in the Diagnosed17 

New Diagnosed17 with more diagnosed 

nodules 
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diagnosis of query nodule then it is added in 

Diagnosed17 else discarded. With multiple 

iterations in this manner, Diagnosed17 is finally 

increased to Diagnosed121, see Figure 3. Predicted 

diagnosis with the pathologically-determined 

diagnosis, this process guarantees the accuracy of 

the CBIR-based diagnostic labeling. 

 

 
Fig. 3. Expansion of Diagnosed17 to Diagnosed74 and 

Diagnosed121 

 
E. Query and Retrieval Sets Concluded 

In this CAD scenario, two ways process is 

implemented as discussed earlier. Once the nodules 

in Diagnosed17 were used as query and 

QueryNoduleSet210 was used for retrieving the 

nodules based on CBIR and Euclidean distance and 

expanded the ground truth to 74 nodules first and 

then to Diagnosed121. Actually 74 nodules set is 

prepared from 17 confirmed cases having eight 

malignant and nine benign cases whereas 121 

nodules are prepared from 17 confirmed nodules 

with six malignant, eight benign and three 

metastasis cases are there. Secondly, nodules in 

QueryNoduleSubset210 were treated as query and 

Diagnosed17 set was used to retrieve most similar 

nodules to assign the malignancy class accordingly 

and expanded the Diagnosed dataset to 121. Since 

neither computer-predicted nor radiologist-

predicted malignancy ratings can be considered 

ground truth due to high variability between 

radiologists’ ratings [7]. This mechanism 

guarantees the preparation of LIDC ground truth 

and accuracy of CBIR based diagnostic labeling. 

All the nodules can be classified in three class 

benign, malignant and metastases. Various query 

sets were formed and their precision are compared 

and shown in Figure 4. 

 
IV. RESULTS 

 

Using the query and retrieval sets as described 

above, average precision after 3, 5, 10, and 15 

images retrieved was calculated. A retrieved nodule 

was considered relevant if its diagnosis matched 

the malignancy rating (either radiologist-predicted, 

computer-predicted, or both) of the query nodule. 

Initial precision values were obtained by using the 

17 nodules in the initial Diagnosed17 as the 

retrieval set. Then, nodules were added to this set 

as described in sections 2.2 and 2.3. Precision was 

recalculated, and the nodule addition process was 

repeated iteratively using the new Diagnosed17. In 

each subsequent iteration, only the newly added 

nodules in the Diagnosed17 were used to identify 

new candidates. This process repeated until no 

candidate nodules were added to the Diagnosed17 

following an iteration. Various experiments were 

setup for the validation of nodules examined.  

 

 
Fig. 4. Comparison of precision for different query sets at x-

axis and different retrieval sets at y-axis. 

 

Figure 4 shows that with five query sets and three 

retrieval sets Diagnosed17, Diagnosed74 and 

Diagnosed121, the precision increases respectively. 

Nodules in Comp_Rad_biopsy57 have provided the 

best precision i.e. 98% which is the best precision 

achieved in the history of medical CBIR with bets 

of our knowledge. Finally, the whole system was 

tested with three cases provided by PGIMER. The 

PGIMER data is provided with a seed point 

showing the location of nodule and hence nodule is 

extracted and shown in Figure 5. 

 

 
Fig. 5. Nodule extraction process for PGIMER test image 
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Figure 5 shows the original image with seed point 

and then shows the plot of nodule extracted from 

the original image. The third image the bounding 

box of the extracted nodule (marked in red). Figure 

6 shows the exact nodule of the original image.  

Precision and recall and calculated for the two 

queries and are shown in Figure 7.  Top 20 images 

are retrieved and tested for each case.  Results 

indicate that the precision for the malignant query 

is more than the benign query. 

 

 

 

 

 

 

 

 
Fig. 6. Nodule extracted from PGIMER test image 

 

 
Fig. 6. Performance evaluation on PGIMER test images 

 

V. CONCLUSION AND FUTURE 

WORK 

 

CBIR is an effective method for expanding the 

Diagnosed Subset by labeling nodules which do not 

have associated diagnoses. As LIDC is having lack 

of ground truth, CBIR techniques works 

tremendously better to prepare the ground truth. 

This method outperforms control expansion, 

yielding higher precision values when tested with a 

potential CAD application [17] that requires a 

diagnostically accurate ground truth. By increasing 

the size of the Diagnosed Subset from 17 to 74 and 

finally to 121 nodules, CBIR expansion provides 

greater variability in the retrieval set, resulting in 

retrieved nodules that are more similar to 

undiagnosed queries. The proposed CBIR 

expansion method can be applied to differentiate 

benign, malignant as well as metastases nodules. 

The third class metastases have not been introduced 

in the history of CBIR and medical imaging. An 

expanded set of diagnosed images is also useful for 

non-CBIR CAD systems, which require large 

datasets for robust and unbiased training and 

testing. In future studies, we will investigate using 

different distance metrics for nodule similarity 

when identifying candidates with the CBIR 

expansion method. More test images from 

PGIMER can provide better precision and recall 

values and make the system more efficient for use. 

We also plan to add more classes of malignancy as 

well as benign to further assist the physicians in 

more accurate diagnosis.   
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