
Fault diagnosis in dynamic processes: a data
mining and SVM application

Addison Rı́os-Bolı́var, Francisco Hidrobo, Pablo Guillén, Francklin Rivas

Abstract— The major inconvenient for the fault detection
and isolation (FDI) in technical processes based on analytical
redundancy is the requirement of a very accurate model of the
system. By contrary, in the methods based on data handling it
is not required of a precise model, since they are based on the
manipulation of the information by means of the measured data.
Thus, in this work a set of statistical indices allowing quantifying
the amount of information contained in the collected data is
presented, in order to realize the FDI. These indices are used for the
reconstruction of the fault patterns, and next for its classification is
used the machine learning technique, in particular the support vector
machines (SVM). For verification of the results, generated data by
two nonlinear models are used; one of discreet time that simulates
the Logistic Application, which is used under different types of
dynamic states behavior that represent the occurrence of faults. The
other model is a continuous time that represents the control of a
magnetic levitation system. For the first model, the results show
that by means of the obtained statistical indices the reconstruction
of fault patterns is obtained, which allow separating the different
dynamic behaviors (faults) and using a SVM considering different
kernel, a classification between the faults is obtained (classes). For
the second model, the classification of the faults by means of a
SVM is realized, obtaining one diagnosis index.

Keywords—Fault diagnosis, Data mining, Operational classi-
fication, Machine learning, Support Vector Machines.

I. Introduction
In the processes of industrial production, the safety and

operational reliability must be guaranteed by means of the
correct operation of the processes, by the associate control
systems and the coordination between them. In the context
of a reliable and safe operation, some systems are developed
in order to allow the events recognition, which must orient
the decision making when the performance of the productive
process is affected by the presence of any abnormality.

As the reliability is highly related to the security concept,
then, it is fundamental to equip the industrial processes with
demanding safety mechanisms, whose basic elements are
the Monitoring, Detection, and Diagnosis (MDD) systems,
which, by means of the indicators and the measured vari-
ables of the processes, maintain a continuous and constant
supervision of the evolutionary behavior in the production
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time, reporting symptomatic conditions that are considered
abnormal. The MDD systems are based on their capacity to
respond under unexpected situations of the process behavior,
so that its main task is the one of the FDI. A FDI system,
such as is shown in Figure 1, uses the measurements of
the process in order to produce residues, from which, by
means of evaluation functions and logic decisions, it looks
for the faults identification and the isolation, with perspective
of prognosis and autonomic maintenance [11].
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Fig. 1. FDI System

From the point of view of the residual generation by
comparison, the FDI filters design techniques can be classi-
fied in

1) Physical Redundancy: in which physical duplicates of
the devices and systems under study are used. The
residues are obtained by comparison of the outputs of
the different elements. These techniques have the main
disadvantage of the costs involved for its implementa-
tion and maintenance.

2) Model based Methods: from which they produce es-
timated values of the process outputs for the gener-
ation of the residuals, by means of the comparison
with measured real outputs. The main disadvantage of
this technique is concerning the construction of very
precise models.

When for the residual generation some models are used,
it is necessary to consider aspects important of the technical
processes [14], [15]:

• Noisy industrial environments (Disturbances).
• Approximate models (Uncertainties).
• Different structures for the production.
• Physical limits of production.

Those aspects entail to consider that the FDI filters must be
able to respond satisfactorily under adverse conditions due
to the reality of the productive processes [16], [17].
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Thus, the models based on knowledge are based more on
the information or data available, which entails to have mech-
anisms of handling of data: data reconciliation, conventional
numerical methods, machine learning, among others. These
methods based on historical data have the strength of which
they are possible to be integrated of complementary way to
object to extract qualitative and quantitative characteristics,
that allow to the detection and the diagnosis of faults [1],
[6], [8], [12], [19].

Following this context, the taxonomy for the residual
generation can be extended taking into account methods
based on the handling of data (see Figure 2).
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Fig. 2. A taxonomy for residual generation.

Thus, there is necessity to develop mechanisms for
design and implantation of FDI systems in productive pro-
cesses, from residual generation filters that consider envi-
ronments of real industrial production. Then, in this work a
set of statistics is presented corresponding to fault patterns,
each one of as they measure different characteristics from
the measured data, quantifying the dynamic activity inherent
to the presence of faults, which allows his location for a
greater exactitude, according to the MDD techniques. A
SVM, considering different Kernel, is used to classify the
reconstruction of the fault patterns, then, the potentiality
of the use of the SVM in the recognition of anomalies is
verified, and next a classification algorithm based on decision
trees is used from the values of the obtained statistical indices
and it verifies that the decision tree can identify with very
good precision and exactitude the faults, determining the
patterns of the operation conditions.

II. FDI filters

With reference to the analytical methods, the dynamic
systems can be described by models that enter within two
categories: the representative models and the diagnosis mod-
els. The representative models allow to describe the dynamic
behavior of the systems in terms of a structure standardized
that, of satisfactory way, comes near to the behavior input-
output or the behavior of state of the systems, in them are the
heuristic models. On the contrary, the diagnosis models allow
to describe to the dynamic behavior through an retort of the
structure or physical architecture of the systems. There, the

basic functional units, or of interest, are modeled in explicit
form: models of sensors, actuators, etc. To the aims to design
the filters of FDI, the diagnosis models are most useful,
whereas for control intentions, the representative models are
used.

A. FDI filters based-on state observers

Since in this analytical technique of design of FDI
filters a mathematical model is fundamental, we consider the
dynamics of a linear, continuous and invariant system in the
time, LTI,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) (1)

where x ∈ X ⊂ Rn are the states, u ∈ U ⊂ Rm are the control
signals, y ∈ Y ⊂ Rq are the outputs ; and the matrix A ∈ Rn×n

, B ∈ Rn×m , C ∈ Rq×n are known. There, the pair (A,C) is
observable.

In the description of the system (1) is easy to distinguish
three subsystems: the structure of the process represented by
A; the actuators that are described by B; and the sensors
represented by C. In anyone of those subsystems inadequate
situations of behavior with respect to the established char-
acteristics of performance in the design can appear. So that
the monitoring schemes are due to construct that generate
the residuals based on the possible faults in each one of the
functional units. The design of FDI filters can be divided is
two stages: first stage is the generation of the residuals, (the
detection problem). The second stage is the evaluation of
the residuals to object to determine the origin of the faults,
(the problem of separation of the faults). The residuals take
place when comparing the exit considered with the measured
output of the physical plant. Thus, for the system (1) exists
a gain matrix D ∈ Rn×q so that estimated state vector x̂(t) of
the state vector x(t) will be the solution for the equation of
the observer of complete order:

˙̂x(t) = Ax̂(t) + Bu(t) + D(y(t) −Cx̂(t)),

ŷ(t) = Cx̂(t). (2)

There, ŷ(t) are the estimated outputs and D the feedback
gain of the observer, which should be select suitably. That is,
D is selected such that (A−DC) is stable, and the estimation
error will be null, e(t) = 0. Since for t < t0, the process has a
normal operation, that is, faults do not exist, then the residual
signal is approximately equal zero. When any fault becomes
present, in t ≥ t0, the residual is different from zero and it is
propitious for the fault detection. We can observe, from the
different representations from the faults, that the same can
be described like additional entrances in the dynamics of the
process, in addition, of the susceptibility to the existence of
different faults in a same subsystem, in future we will adopt
the following model of diagnosis for the systems put under
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faults:

ẋ(t) = Ax(t) + Bu(t) +

k∑
i=1

Liνi(t), x(0) = x0

y(t) = Cx(t) +

k∑
i=1

Miνi(t), (3)

where: Li, Mi are the fault directions in the sensors and
actuators, respectively. One assumes that these directions are
known. In the future, one assumes that the directions of faults
are linearly independent.

νi ∈ Vi corresponds to the fault mode. It is an indepen-
dent, arbitrary, and unknown function. In addition, νi = 0
if t < t0; and νi , 0 for t ≥ t0. k is the number of
faults that functional and statistically are significant. Under
this representation, where multiple possible faults exist, with
different directions, the fault isolation problem becomes
evident, we must construct a generator of residuals that
allows us to distinguish to what direction of the state space
of (3) the fault belongs that has become present. In the
case of filters based on observers, we must construct a gain
of the observer so that the vector of residuals, that is, the
output of the estimation error, has characteristics in a single
direction associated with some direction of well-known fault,
the result is the isolation of the faults in the output space.
As the important information is in the fault direction, it is
not required of the knowledge of the fault mode [13], [17].

We consider an observer of states like in (2), for the
system (3), then, the dynamics of the estimation error will
be governed by

ė(t) = (A − DC)e(t) +

k∑
i=1

(Li − DMi) νi(t)

η(t) = Ce(t) +

k∑
i=1

Miνi(t) (4)

with e(0) = x0 − x̂0.
If D is selected so that (A − DC) is stable, and if

νi(t) , 0, then e(t) , 0, therefore take place the residuals,
since η(t) , 0. Any change in the process, as a result of faults,
will be accentuated in the innovation in the observer output,
in this way completes the phase of residual generation. On
the other hand, due to the properties of the observers, the
uncoupling in the initial conditions does not have major
effect. At this moment, if the unique condition that prevails
for the selection of the matrix of gain of the observer, D,
is that (A − DC) is stable, is not in capacity to establish a
clear distinction between the effects of the different faults. In
principle, it would be possible to be thought about the design
of a set of observers, each one of as it is made correspond
with a direction of specific fault, which suggests the design of
different gains which is not nor practical, nor elegant feasible.
The idea is to construct a unique filter of FDI. Of previously
exposed two important questions stand out: when a fault is
detectable?, the detection problem, and when the faults are

separable?, the diagnosis problem. If Mi = 0, the conditions
ensuring that faults are detectable and separable are given
by, [11]:

ker (CLi) = 0, i = 1, . . . , k (5)

Im(CLi)
⋂(∑k

i, j=1 j,i
Im(CL j)

)
= 0, (6)

which, in the technical processes, are difficult to satisfy, so
that the generation of residues by means of the handling of
measured data is necessary [18].

In order to generate the residues, some knowledge based
models can be used, that are based on the information
or historical data, which entails to have mechanisms of
data handling: data mining, data reconciliation, conventional
numerical methods, machine learning, among others [6],
[12], [19]. These methods based on historical data have the
strength of being possible to be integrated in a comple-
mentary way to objects in order to extract qualitative and
quantitative characteristics, that allow the faults detection and
diagnosis [1], [8], [18].

In that context, in this work a set of statistics is presented
corresponding to fault patterns, each one of them measures
different characteristics from the measured data, quantifying
the dynamic activity inherent to the presence of faults, which
allows its location for a greater exactitude, according to the
MDD techniques. A SVM, considering different Kernel, is
used for classifying the reconstruction of the fault patterns,
then, the potentiality of the use of the SVM in the recognition
of anomalies is verified, and next a classification algorithm
based on decision trees is used from the obtained statistical
indices values [10], and it verifies that the decision tree can
identify with very good precision and exactitude the faults,
determining the patterns of the operational conditions.

III. Methodology based on data mining
A. Statistical indices

In machine learning applications, for the information
or characteristics extraction, some statistical indices are re-
quired, such that certain information zones can be classified.
In our case, two indices are used.

Curve size: This characteristic is useful for knowing the
stability of the signal values. If in an interval, the value of
this characteristic is ”low” indicates that the signal is stable,
in the other case, the signal is unstable. The equation (7)
defines how index can be measured:

L =

N−1∑
i=1

|xi+1 − xi| (7)

where each xi corresponds to a sample of the data set
X = (x1, x2, · · · , xN).

Threshold: the determination of the threshold γ is based
on the calculation of the data deviation, in order to know
how dispersed they are inside of a data window of size .
The threshold is determined by means of:
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γ =
3

N − 1

√√√ N∑
i=1

(x − X̄) (8)

where X̄ is the average of the data set. In the context of fault
detection, this threshold allows minimizing false alarms.

B. Support Vector Machines
The theory of the SVM was developed by Vapnik [1],

[2]. It is based on the idea of minimization of the structural
risk (inductive principle SRM). First, the SVM maps the
input points to a space of characteristics, which will have
a greater dimension (for example: if the input points are
in R2 then these points are mapped to R3 by the SVM),
immediately an hyperplane is found in order to separate
the characteristic points by maximization of the m margin
between the classes, see Figure 3

Fig. 3. Maximization of margin m

As a result of the maximization of m margin, the
class separation problem is transformed into a quadratic
programming problem, which can be solved by its dual
problem introducing Lagrangian multipliers [2], [3]. The
SVM can find the optimal hyperplane using the dot product
with functions (kernels) in the space of characteristics. The
support vectors are combinations of a few input points that
allow defining the solution of the hyperplane in a simpler
way. Thus, let us consider the case with:
• a set of N points of training data {(X1, y1), · · · , (X1, y1)}.
• a hyperplane

H0 : y = wX − b = 0 (9)

where w is normal with respect to the hyperplane, b/‖w‖
is the perpendicular distance to the origin and ‖w‖ is the
Euclidean norm of w.

• two parallel hyperplanes to H0:

H1 : y = wX − b = 1 (10)

H2 : y = wX − b = −1 (11)

with the condition that does not exist data points be-
tween H1 and H2.
This situation is illustrated in the Figure 3. If the

distance d+(d−) corresponds to the smallest separation from
the separation of the hyperplane H0 to the point nearest
positive (negative), where the hyperplane H1(H2) is located,
then the distance between the H1 and H2 planes is d+ + d−.
Thus, d+ = d=1/‖w‖ , then the margin is equal to 2/‖w‖. The
problem is to find the hyperplane that gives the maximum
margin. The parameters w and b are called weight and
slant vectors, respectively. Thus, the optimization problem
is defined by the following equation:

min
w,b

1
2

wtw restricted by : γi(wX − b) ≥ 1 (12)

The optimization problem presented in the previous
equation can be declared as convex and quadratic optimiza-
tion problem in (w, b), into a convex set. Using the La-
grangian formulation, the limitations can be replaced by limi-
tations of Lagrangian multipliers in themselves. Additionally,
introducing the Lagrangian multipliers in this reformulation,
like a consequence of the training data, it could only appear
as the dot product between the data vectors, α1, · · · , αN ≥ 0.
Therefore, a Lagrange function for the optimization problem
can be defined as:

Lp(w, b, α) =
1
2

wtw −
∑

i

(αiγi(wX − b) − αi) (13)

Using the dual formulation and the limitations of the La-
grange optimization problem, the parameters αi can be
calculated and the parameters w and b, which specify the
separation of the hyperplane, can be calculated using the
following equations:

w =
∑

αiγiXi (14)

αi(γi(wX + b) − 1) = 0;∀i (15)

According to (14), the parameters αi that are not equal to
zero correspond to Xi,Yi data, which are the support vectors
for b, c and d (see Figure 3). If the separation surface of two
classes is nonlinear, the data can be transformed into another
characteristic space with higher dimension, then the problem
is linearly separable.

If the transformation to a greater dimensional space is
φ() , then the Lagrangian function can be expressed as:

LD =
∑

ai −
1
2

∑
i, j

aia jγiγ jφ(Xi)φ(X j) (16)

The scalar product φ(Xi)φ(X j), in the space of greater
dimension, defines a kernel function k(Xi, X j) and therefore
this is not necessarily explicit from the transformation φ(), as
long as the kernel function, corresponding to the dot product,
is known in the same characteristic space of higher dimen-
sion. From an appropriate kernel, the SVM can separate, in
the characteristic space, the data that in the original inputs
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space are not separable. There are some kernel functions that
can be used, for example:

Gaussian kernel function of radial base

k(Xi, X j) = e−γ‖Xi−X j‖
2

(17)

Polynomial kernel

k(Xi, X j) = (XiX j + m)p (18)

A kernel function has a good efficiency if the support
vectors that were calculated using the corresponding trans-
formation are few and if the classification of the testing data
is sufficient [9].

In summary, with the purpose of separating a data set, a
training data set (X,Y) is selected, the optimization problem
is solved and the αi, w and b parameters are calculated.
Then, a X data vector given of the initial data set is classified
according to the value from (wX∗ + b).

The efficiency of the calculated support vectors is proven
using the testing data set derived from the initial data set.

In principle, the SVM have been proposed for binary
classification. Then, this method has been extended to mul-
ticlass classifications, in which binary combinations of SVM
are used in order to consider all the classes simultaneously,
also there are SVM with multiclass classification. One of
the methods for approaching the multiclass problem is the
denominated “one against one”, in which each class is
compared with the rest of separated way, this method entails
a total of K(K−1)/2 classifiers, and it is applied in this work.

IV. Fault Diagnosis using SVM
First of all, it is possible to be combined the potential-

ities of the filters based on state observers and the SMV.
The technique consists of the generation of residues, for the
fault detection problem, from filter based on state observer,
which entails to that the condition given by (5) is satisfied.
Then, for the fault isolation problem, the residues are process
for recognition and classification of fault patterns using
SVM. This has the advantage that is possible to recognize,
immediately, the presence of faults. In addition, it is not
necessary to satisfy the hard condition of fault separability
given by (6). In a schematic way, the Figure 4 shows the
different elements to construct to obtain this FDI system.

Fig. 4. A model for FDI based on SVM.

If the fault detectability condition given by (5) is not
satisfied, as it happens in many technical processes, mainly
of nature nonlinear, becomes the generation of the residues
by means of observers complicated. Then, it is possible to
resort to the SVM to reconstruct certain fault patterns from
the inputs and outputs of the process, to see the Figure 5.

Fig. 5. Fault diagnosis with SVM

Thus, the fault diagnosis by means of the data han-
dling consists, first of all, in the information extraction of
the measured data, from which the fault detection prob-
lem can be solved. For this, statistical indices are used.
Secondly, in order to solve the fault separation problem,
some classification techniques are used, that in this work
correspond to SVM. Thus, in the technical processes the
operative conditions according to faults presence or not, can
be distinguished. Consequently, through distinguishing the
status or the operational condition, the faults presence can
be associated.

This is the case that will be presented next, where
the characterization of operative conditions, represented as
faults, for a dynamic process denominated logistic applica-
tion, is obtained, in order to evaluate the previously shown
techniques as tools for fault diagnosis.

A. Logistic application
The logistic application or logistic map is mainly applied

to problems of population growth and has the following
expression:

xn+1 = r ∗ xn ∗ (1 − xn) (19)

Where xn+1 (dependent variable) represents the popula-
tion in the n + 1, stage or generation, of the related species,
xn (independent variable) symbolizes the population in n
stage, and r is the rate of growth that will depend on the
environmental conditions, climatic, nourishing, etc.

One of the properties that the logistic maps present
is the arrival to a stationary state, fixed or attractor, as
usually it is called, which is characterized for being equal for
the dependant variable as for the independent variable, this
means, that the population stays invariable. If r is increased,
a state with two attractors appears, and if r continues being
increased, the number of attractors or attractor cycles begins
to be duplicated. For example, when r is 3.5, the cycle will be
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of four attractors because the previous one had two attractors.
As a result of the duplication of the cycle, the separation
or distances between the points (values of r) becomes de-
creasing, but the relation between the separation distance, for
two consecutive cycles, and the previous analogous distance
stays constant. This is other of the interesting properties that
presents iterative maps like the logistics. The graph that turn
out to take in the X-axis the r values in each bifurcation, and
in the ordinates one (Y-axis), the values of the attractors is
known as Feigenbaum Diagram. This way, for the abscissa
r = 2, corresponds the ordinate 0.5. From the point (2, 0.5)
a parallel line to the X-axis draws up until arriving to the
beginning point of the cycle of two attractors. For each of
these two attractors, a parallel line to the X-axis that will
arrive until the point of the following bifurcation is made. It
will be completed satisfied when in the graph, the figure of
a parallel bracket or the X-axis is found. When arriving at
the r value of the following duplication, each branch of the
bracket will be branched off, and so on they will be formed
small and more and more nearer brackets to each other.

As it is possible to be observed in Figure 6, when r goes
from 1 to 3, there is a single attractor (simple attractor), from
r = 3 until r = 3.5, there are two attractors (double attractor),
and finally, when r has a value very near 4, no longer appear
repetitions or attractor cycles, that is, the process has lost
regularity and also appears the fact that very small variations
of the initial value of the independent variable, generates
remarkable variations of the values that are being obtained.
This situation, where the regularity does not exist and the
great sensitivity to the variations of the initial conditions is
present, is well-known as chaos.

Fig. 6. Feigenbaum Diagram for x0 = 0.3

According to this, in a logistic map we can distinguish
three zones (operational conditions), depending on the attrac-
tors number (states). These zones are presented in the Table
I.

The logistic application or Feigenbaum diagram was
generated with N = 1000 samples. Following, this series was

TABLE I
Zones in a logistic map by attractors number

Zone Initial value r Final value r
Simple Attractor 1 3
Double Attractor 3 3.5

Chaos 3.5 4

divided into consecutive windows of 5 samples and for each
of these windows; we have determined both statistical indices
or characteristics, yielding a total of 200 instances (patterns)
for each characteristic. Then, we have labeled the first 200
instances as Class 1 (C1) and the second 200 instances as
Class 2 (C2).

Figure 7 shows the patterns extracted at logistics appli-
cation, the most irregular pattern (upper pattern) corresponds
to the curve size, and the other one corresponds to statistical
threshold.

Fig. 7. Reconstructed patterns of the logistic application

The training and validation of SVM was made con-
sidering the linear, polynomial and RBF kernels; with all
them, the prediction for the known patterns (C1 and C2)
has been done. Table II shows the best results, and the
parameters associated with each kernel, with respect to the
most efficient percentage in the classification model. These
results are obtained using a cross-validation of 10 layers.

TABLE II
Classification results with SVM

Kernel Parameters Succes %
Linear C=100 94.7%

Polynomial C=10, p = 2 94.2%
RBF C=10000, γ = 0.01 95.2 %

Table II shows a better efficiency of the classification
with the RBF Kernel.

In order to obtain a better efficient of classification with
SVM, we have considered the instances that were correctly
predicted using regression analysis, such as are immediately
shown:

In practical sense, as it is shown in the values for
classification percentage and relative statistics for each class,
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TABLE III
Stratified cross-validation (Summary)

Parameter Value
Time taken to build model 0.86 seconds

Correctly Classified Instances 387 (96.9849%)
Incorrectly Classified Instances 13 (3.0151%)

Kappa statistic 0.9397
Mean absolute error 0.063

Root mean squared error 0.1688
Relative absolute error 12.5959 %

Root relative squared error 33.7512%
Coverage of cases (0.95 level) 98.4925%

Mean rel. region size (0.95 level) 63.6935%
Total Number of Instances 400

TABLE IV
Detailed Accuracy By Class

Precision Recall F-Measure ROC Class
0.94 0.969 0.975 0.97 C1

1 0.971 0.975 0.91 C2

both classes have high precision and recall. ROC areas as
well as F-Measure, which is the harmonic mean of the
precision and recall values, are above 0.9. All these values
can be considered excellent, in this way, it is possible
determining the operating condition patterns and occurrence
of each of the classes (faults).

Once analyzed that is possible to distinguish opera-
tive conditions, regarding the faults presence, by means
of statistical indices and SVM from the measured data,
these techniques will be applied for the fault diagnosis in
a technical process.

B. Magnetic Levitation
A diagnostic model for the magnetic levitation system

is given by:

ẋ1 = x2

ẋ2 = − k
2m ( x3

x1
)2 + g + v1(t)

ẋ3 =
x2 x3
x1
− R

k x1x3 + 1
k u(t) + v2(t)

y1 = x1, y2 = x3

(20)

where x1 = z (vertical separation distance), x2 = ż (vertical
relative speed), x3 = i (electrical flow in the magneto),
g (gravitational force), m (suspended object mass), u(t)
(voltage in the magneto) and k =

u0N2A
2 (force factor). The

physical parameters are: A = 0.04m2, N = 660, µ0 = 4π10−7,
R = 1Ω, g = 9.8 m

s2 , m = 0.300Kg. The signals µ(t), y1, y2

v1(t) and v2(t) are control, outputs and faults, respectively.
The fault classification data is obtained according to Figure
5.

We have simulated 300 seconds with four possible
states:

• Normal: Non faults (t < 100 and t >= 250).
• Fault 1: The first fault appears. (100 ≤ t < 150). This

fault has a sinusoidal behavior with amplitude 0.5 and
frequency 1.

• Fault 2: The second fault appears. (200 ≤ t < 250). This
fault has a sinusoidal behavior with amplitude 15, and
frequency 1, and its absolute value is considered.

• Multiple Faults: Both faults occur. (150 ≤ t < 200).

Using the generated data, a SVM with a Gaussian kernel
has been trained. In this case, the control and output of
the system are used as input data values. Taking a time
window of 0.5 second, with simulation step of 0.05 second,
10 values in each window are obtained. In order to reproduce
and smooth the trend of the time series in each window, a
third degree polynomial interpolation is applied, then each
set of 10 values is represented by a polynomial of the form:
ax3 + bx2 + cx + d. For training data the SVM achieves the
classification in each state without any error.

Subsequently, in order to test the effectiveness of the
SVM with a different setting, the same parameters were used
for the faults, but the system was modified to produce them
at different time (This is shown in the Figure 8):

• Normal: Non faults (t < 100 and t ≥ 250).
• Fault 1: The first fault appears. (200 ≤ t < 250).
• Fault 2: The second fault appears. (100 ≤ t < 150).
• Multiple Faults: Both faults occur. (150 ≤ t < 200).

Fig. 8. Classification of the operation condition

In this case, an operating condition prediction of the
system (classification) with a precision greater than 97% is
achieved. Then, the amplitude of fault 2, from 15 to 20
is changed, obtaining a prediction error of 3.62%, so that
the SVM is able to make a good classification even when
the operating condition have changed. Subsequently, the
frequency of fault 1 is changed, from 1 to 1.1, simultaneously
with the above change. With these new values, the prediction
of operating conditions is correct by 95%. For this evaluation,
Figure 8 shows the comparison of the prediction found using
the SVM with the real state of the system. The X-axis
represents the time and the axis of the ordinates the state
of the system: 1 means Normal condition, 2 means Fault 1,
3 means Fault 2, and 4 means multiple Faults.

V. Conclusions
In order to provide industrial processes with demanding

security mechanisms, it is possible to use statistical indices,
in conjunction with machine learning algorithms, such as
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those presented in this paper. Then, we can build reliable
systems for monitoring, diagnosis and detection (MDD).

The obtained results by considering different Kernel in
SVM methodology, on mathematical model for the logistic
application, confirm the potential of SVM for the patterns
recognition and classification, which could be used in MDD
for responding to unexpected behavior of the process.

For the logistic application, the results show that the
decision tree generator algorithm is able to select the vari-
ables and theirs values for achieving the best classification of
two analyzed classes. The decision tree, and decision rules
that can be easily extracted from it, can help us in order
to identify with good precision and accuracy the operating
condition patterns and occurrence of each of the classes
(faults).

Finally, the use of data mining techniques, as presented
in this study, can be used for real time monitoring of
industrial processes, reporting the behavior of the production
as well as symptomatic conditions that are considered as
abnormal situations.
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