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Abstract—The divergent and convergent-divergent nozzles are 

discussed. The airflow problem inside the duct has a high degree of 
complexity, and is modeled by using Partial Differential Equation, 
which is then solved by using numerical approach. Finite Volume 
Method is used to solve the equation because its suitability for 
complex geometry problems. The study of airflow inside the nozzle is 
important in order to have a good nozzle configuration design that 
suits the intended applications.  
 

I. INTRODUCTION 
OZZLES are used in various applications such as jet 
engines, rocket propulsion, spray painting, and extrusion 

molding process. The use of nozzle is to control the rate of 
flow, velocity, direction, shape and pressure of the liquid that 
emerges from it. In supersonic nozzle design for example, the 
flow is compressible, and the approach of analysis is different 
with the incompressible flow model.  The characteristic of the 
compressible flow in the nozzle is strongly depending on the 
physical design of the divergent-convergent section of the 
nozzle.  In fact, the convergent-divergent shape of the nozzle 
is compulsory in order to achieve supersonic velocity [1,2,3]. 
In this paper we, discuss the use of numerical method to study 
the airflow inside the convergent-divergent nozzle.  

Partial Differential Equation (PDE) function is widely used 
to model the fluid behavior mathematically. The airflow 
behavior can be examined quantitatively by solving the PDE 
through numerical approach. One of the numerical methods is 
Finite Volume Method (FVM), where it is a good solution for 
complex geometry [4]. The most common PDE that is used to 
model the airflow is hyperbolic equation which involved 
spatial derivatives and time marching. Hyperbolic equation has 
many schemes, the most common is the higher order Total 
Variation Diminishing (TVD) scheme.  

Harteen [5] introduced the concept of TVD in order to 
overcome weak solution in hyperbolic conservation problem.  
The concepts used a non oscillatory first order accurate  
scheme to an appropriately modified the flux function [5,6].   
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It is quite common to combine the TVD scheme with flux 
limiter. This flux limiter can control the amount of anti-
diffusive flux. Therefore many types of flux limiter were 
introduced such as Harteen [5] and Roe Sweaby []. 
Additionaly, TVD scheme is not only limited to FDM, but it 
has been successfully applied in FVM. The result is quite good 
especially for complex unsteady airflow and strong shock 
problem [8]. 

The combination of TVD and Runge Kutta was initiated two 
decades ago where Runge-Kutta was used as multistage 
stepping time discretizations [9]. This scheme is widely used 
for stabilizing the spatial discretizations [10,11]. However, 
TVD Runge-Kutta scheme is only suitable for third-order and 
fourth-order equations. For the higher orders, this scheme 
becomes more complicated and less stability [11].  Another 
attempt to improve the TVD-Runge Kutta scheme was to 
modify the coefficient of each stage [12]. 

In developing the computational fluid dynamics (CFD) 
code, the most convenient way is to start with a less 
complicated one-dimensional (1-D) airflow problem, followed 
by higher fidelity of two or three-dimensional models. 
Through the solution of 1-D airflow problem, it is relatively 
quick and easy to identify the effectiveness of the CFD code 
and also to detect errors due to coding and the numerical 
scheme limitation itself. 
 The development of the computer code for solving two or 
three dimensional airflow problems uses TVD Runge-Kutta 
scheme with FVM approach for its spatial discretization. The 
space inside the duct is modeled as a nozzle, where the quasi 
one dimensional airflow passes through it. Two different types 
of nozzles are investigated which are divergent and 
convergent-divergent. The airflow conditions inside the nozzle 
may be fully isentropic airflow over the whole nozzle or with 
shock wave may exist at some points in the divergent part of 
the nozzle. 

II. GOVERNING EQUATION 
The airflow pass through a nozzle can be considered as the 

airflow pass through a slow varying cross section.  As a result, 
the airflow problem can be considered as a quasi one 
dimensional airflow. In addition, the viscous effect can be 
ignored, so the Euler equation may represent the most 
appropriate equation to describe the airflow behavior 
throughout the nozzle. 

The Euler equation can be presented in various forms such 
as conservative, non conservative, scalar or vector notation 
forms.  When the presence of the shock wave in the airflow 
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field is considered as a part of the solution,  the appropriate 
form of the governing equation of fluid motion is in the 
conservative and vector notation. The Euler Equation in this 
form can be written as [13,14]: 
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Here W, F and Q denote the conservative variable, flux 
vectors and source term respectively. Meanwhile, ρ,u,p,E,H 
and A are density, velocity, pressure, total energy, enthalpy 
and cross section area respectively. For the perfect gas, there is 
a unique relation between pressure p, H and internal energy, e 
given as: 
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(3a, 3b, 3c) 

 
The space discretization is done based on the following two 

schemes: 

A. Second Order TVD Scheme 
Based on (1), TVD formulation can be derived as [11],  
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where X is eigenvector in matrix form and Φ is the flux 
limiter. In this paper, three limiter models are used, which are 
Harteen-Yee Upwind TVD, Roe-Sweaby Upwind TVD and 
Davis-Yee Symmetric TVD. The Harteen-Yee Upwind TVD 
can be written as follows; 
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with limiter defined as, 
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where 10-7 ≤ω≤ 10-5. The Roe-Sweaby Upwind TVD can be 
written as follows;  
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 with limiter defined as, 
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The Davis-Yee Symmetric Upwind TVD can be written as 
follows;  
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 with limiter defined as, 
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B. Central And Multistage Scheme 
Time integration in executed by using explicit multistage time-
marching (Runge-Kutta scheme), while central difference 
scheme with artificial dissipation  is used for spatial 
discretization. The artificial dissipation can be written as [12]: 
 

( ) ( ) ( ) ( ) ( )[ ]112
4

211
2

212121 33ˆ
−+++++++ −+−−−Λ= iiiiiiiii

I
ci WWWWWWD εε

 
(13) 

 
The spectral radius at the cell faces as follows; 
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  where V is the velocity and c is the speed of sound. Thus, the 
total convective flux at face (i+1/2) can written as, 

 ( ) ( ) 21212121 ++++ −∆≈∆ iiicic DAWFAF  (15) 

 where W is the average airflow variable. Multistage time 
stepping is the solution in a number of steps, where it will give 
updates on the airflow variable in each stage, from the first to 
the last (m-stage) as follows: 
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III. DIVERGENT NOZZLE 
For divergent nozzle, the investigation deals with two 

airflow problems which are a purely supersonic isentropic 
airflow and a supersonic-subsonic airflow with a normal shock 
standing inside the nozzle. The distribution of the cross section 
along the nozzle in given in Fig. 1, derived from Eq. (17) 
which is found in [11].  
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Fig. 1: Divergent nozzle cross section 

 

IV. CONVERGENT-DIVERGENT NOZZLE 
 For convergent divergent nozzle, the airflow is initially 
subsonic at the convergent part. By assuming the airflow 
condition is reaching the chocked condition, it makes the 
airflow in the remaining airflow domain may go to supersonic 
until at the exit nozzle station or end up with subsonic speed 
due to shock wave occurred somewhere inside the divergent 
part. 
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Fig.2 shows the graphical representation of the cross sectional 
area varations throughout the divergent nozzle, which is 
modeled by using Eq. (18) found in [12]. 
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Fig. 2: Convergent-Divergent nozzle cross section 
 

V. RESULT ANF DISCUSSION 
 
 For divergent nozzle, the setting of airflow condition is 
given as follows:  
 

a. At entry  (inflow)  station : 
i. Mach number, M = 1.75 
ii. Pressure, p = 1800.0 Ib/ft2 
iii. Temperature, T = 500.0 °R       

                
b. At exit (outflow) station:  

i. Supersonic outflow – no data required 
ii. Subsonic outflow – Velocity, v = 566.433 
 

For convergent-divergent nozzle, the setting of the airflow 
condition is given as follows:  
 

c. At entry (inflow) station : 
i.  Total Pressure, P0 = 1.0x105 Pa 
ii.  Total Temperature, T0 = 288.0 K           
            

d.  At exit (outflow) station:  
i. Supersonic outflow – no data required 
ii. Subsonic outflow – Pressure, p = 0.7x105 Pa 

 
By using these airflow conditions, the calculation was 

carried out by three different numerical schemes, with each 
scheme uses three limiter models. The Harten-Yee TVD 
scheme combined with the flux limiter function as defined by 
Eq.7a, Eq. 7b and Eq. 7c. For the Roe-Sweby TVD scheme, 
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the flux limiter function is implanted in the developed 
computer code as given in Eq. 9a, Eq. 9b and Eq. 9c. The 
Davis-Yee TVD scheme with the limiter models as stated in 
Eq. 12a, Eq. 12b and Eq. 12c.  

The Mach number and pressure distributions along the 
divergent nozzle for Davis Yee TVD scheme with three 
different flux limiter functions are shown in Fig. 3a and Fig. 3b 
respectively.  From both plots, it is very clear that all three 
different flux limiters give nearly similar results. In Fig. 3a, we 
notice that the Mach number grows exponentially, started at 
the beginning of the divergent section of the nozzle. The Mach 
number reached 2.4 and it remains constant throughout the 
nozzle.  

This Mach number trend is following the theoretical of 
supersonic flow inside the divergent nozzle. In fact, it is 
compulsory to have divergent nozzle in order to reach the 
supersonic flow. The corresponding airflow pressure is given 
in Fig. 3b where it shows the reduction of pressure in the 
manner that is opposite of the Mach number.   
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Fig. 3a: Comparison of Mach number distribution of 
isentropic airflow by TVD Runge Kutta scheme with Davis-
Yee limiter for Nozzle A inflow. 
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Fig. 3b: Comparison of pressure distribution of isentropic 
airflow by TVD Runge Kutta scheme with Davis-Yee limiter 

for Nozzle A inflow. 
In the upstream side, it is very clear that the Davis-Yee 

TVD schemes are able to provide solutions which are very 
close to the solution obtained through the analytical method. 
However, a quite noticeable difference appeared at far down 
stream airflow section where the Mach number and pressure 
distribution obtained through analytical solution are smaller 
compared to the numerical solution. Similar trend of the result 
is also found for Harten-Yee and  Roe-Sweby TVD schemes. 
This can be seen in Fig. 4 and Fig. 5. 
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Fig. 4a: Comparison of Mach number distribution of 
isentropic airflow by TVD Runge Kutta scheme with 
Harteen-Yee limiter for Nozzle A inflow. 
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Fig. 4b: Comparison of pressure distribution of isentropic 
airflow by TVD Runge Kutta scheme with Harteen-Yee 
limiter for Nozzle A inflow. 
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Fig. 5a: Comparison of Mach number distribution of 
isentropic airflow by TVD Runge Kutta scheme with Roe-
Sweaby limiter for Nozzle A inflow. 
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Fig. 5b: Comparison of pressure distribution of isentropic 
airflow by TVD Runge Kutta scheme with Roe-Sweaby limiter 
for Nozzle A inflow. 

 
Meanwhile, Fig. 6, Fig. 7 and Fig. 8 show the results for 

subsonic outflow of the divergent nozzle. These plots indicate 
that the shock wave occurred at the middle section of 
divergent nozzle. The prediction of shock position as seen in 
these plots is well agreed with the analytical prediction. This 
indicated that shock wave occurred at approximately at 50% of 
the duct length.  

Also depicted in Fig. 7 and Fig. 8, the predictions of the 
flow are quite similar although different flux limiters were 
applied on the schemes. These trends are also similar with the 
analytical predictions. This proves that the numerical approach 
is quite good for shock wave problem. 
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Fig. 6a: Comparison of Mach number distribution of shock 
problem by TVD Runge Kutta scheme with Davis-Yee 
limiter for outflow Nozzle A outflow. 
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Fig. 6b: Comparison of pressure distribution of shock 
problem by TVD Runge Kutta scheme with Davis-Yee 
limiter for Nozzle A outflow. 
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Fig. 7a: Comparison of Mach distribution of shock problem by 
TVD Runge Kutta scheme with Harteen-Yee limiter for 
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Nozzle A outflow. 
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Fig. 7b: Comparison of pressure distribution of shock 
problem by TVD Runge Kutta scheme with Harteen-Yee 
limiter for Nozzle A outflow. 
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Fig. 8a: Comparison of Mach number distribution of shock 
problem by TVD Runge Kutta scheme with Roe-Sweaby 
limiter for Nozzle A outflow. 
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Fig. 8b: Comparison of Mach number distribution of shock 

problem by TVD Runge Kutta scheme with Roe-Sweaby 
limiter for Nozzle A outflow. 

 
Fig. 9, Fig. 10 and Fig. 11 show the result for flow 

predictions in Nozzle B. The flow is subsonic at both inflow 
and outflow. However, the occurrence of shock wave causes 
the airflow becomes supersonic at the middle of the nozzle. 
Both approaches show that the shock wave occurred at the 
location after the throat, at approximately 64% of the nozzle 
length. The comparison with analytical shows that the flux 
limiters given nearly similar results. 

 
 
 

0.00 0.20 0.40 0.60 0.80 1.00
x

0.00

0.50

1.00

1.50

2.00

M

Analytical

Davis-Yee Limiter 12a

Davis-Yee Limiter 12b

Davis-Yee Limiter 12c

 
Fig. 9a: Comparison of Mach number distribution of shock 
problem by TVD Runge Kutta scheme with Davis-Yee 
limiter for Nozzle B inflow. 
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Fig. 9b: Comparison of pressure distribution of shock 
problem by TVD Runge Kutta scheme with Davis-Yee 
limiter for Nozzle B inflow. 
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Fig. 10a: Comparison of Mach distribution of shock problem 
by TVD Runge Kutta scheme with Davis-Yee limiter for 
Nozzle B inflow. 
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Fig. 10b: Comparison of pressure distribution of shock 
problem by TVD Runge Kutta scheme with Davis-Yee 
limiter for Nozzle B inflow. 
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Fig. 11a: Comparison of Mach number distribution of shock 
problem by TVD Runge Kutta scheme with Roe-Sweaby 
limiter for Nozzle B outflow. 

 

VI. CONCLUSION 
 In this paper, the chosen numerical approach, FVM TVD 
Runge-Kutta was successfully implemented for 1-D nozzle 
cases. These include the isentropic airflow, shock wave 
problem for two types of nozzle geometry. The comparison 
with the analytical solution gives a good agreement for all 
types of limiters. In addition, the used of three different 
limiters were result in similar airflow predictions.  

 Varying the flux limiters affects the pressure and Mach 
number in the nozzle, but it is not significant. The applied 
numerical approach is also performed very well in predicting 
the shock wave of the airflow. This numerical approach is an 
appropriate numerical scheme to solve 1-D airflow problem 
inside the duct. The study should be extended to solve the two 
and three dimensional airflow problem of the nozzle. A 
thorough observation of the airflow pattern inside the nozzle is 
very important in preparing the suitable nozzle design for 
various applications.  

ACKNOWLEDGMENT 
 The authors would like to thank to all researchers at Faculty 
of Mechanical and Manufacturing Engineering, UTHM 
University for their contributions in this research. This 
research is funded by the Ministry of Higher Education 
Malaysia, through UTHM Fundamental Research Grant 
Scheme (UTHM/PP/600-5/1/2.0732). 

REFERENCES   
[1]. John D. Anderson. Fundamental of Aerodynamics, 

McGraw Hill, New York, 2012. 
[2]. John J. Bertin. Aerodynamics For Engineers, Prentice Hall, 

2013. 
[3]. Gary M. Ullrich, Mark J. Dusenbury. Aerodynamics, 

Kendall Hunt Publishing, 2012. 
[4]. Chung, T.J. Computational Fluid Dynamics. 2nd Ed. New 

York: Cambridge University Press, 2002. 
[5]. Harten, A.. High resolution schemes for hyperbolic 

conservation laws. Journal of Computational Physics. 49, 
357-393, 1983. 

[6]. Chang, S. H. A numerical study of ENO and TVD schemes 
for shock capturing. NASA Technical Memorandum 
101355, 1988. 

[7]. Sweby, P. K. .High resolution using flux limiters for 
hyperbolic conservation laws. SIAM J. Science and 
Statistics Computation, 21(5), 995-1011, 1983. 

[8]. Choi, H. S. & Baek, J. H. Computations of nonlinear wave 
interaction in shock-wave focusing process using finite 
volume TVD schemes. Computers & Fluids. 25(5), 509-
522, 1996. 

[9]. Shu, C. W. Total-variation-diminishing time 
discretizations. SIAM J. Sci. and Stat. Comput., 9(6), 1073-
1084, 1988. 

[10]. Gottlieb, S. & Shu, C. W. Total variation diminishing 
Runge-Kutta schmes. Mathematics of Computation.  67, 
73-85, 1988. 

[11]. Bagabir, A. & Drikakis, D. Numerical experiments using 
high-resolution schemes for unsteady, inviscid, 
compressible airflows. Computational. Methods 
Appllication Mech. Engineering, 193 4675-4705. 2004. 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 5, Volume 7, 2013

225



 

 

[12]. Park, T. S. & Kwon, J. H. An improved multistage time 
stepping for second-order upwind TVD schme. Computers 
& Fluids. 25(7), 629-645, 1996. 

[13]. Hoffmann, K.A. & Chiang, S.T. Computational Fluid 
Dynamics Volume II. 4th ed. USA, 2002. 

[14]. Blazek, J. Computational Fluid Dynamics: Principles and 
Applications. Elsivier, 2005. 

 
 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 5, Volume 7, 2013

226




