
 

 

 

Abstract— FO2L is a novel First-Order Logic programming 

Language. Although FO2L can be used as a traditional logic 

programming language, such as Prolog, it represents an initial step 

towards the development of a complete environment for knowledge-

based system (KBS) design and implementation. The choice of 

predicate calculus is dictated by the fact that it allows the use of 

variables in the definition of rules, and represents one of the keys to 

powerful knowledge bases development, i.e. the most important 

component of any KBS. Parsing is done using recursive descent for 

easy implementation. Additionally, a friendly graphical user interface 

(GUI) is provided allowing both the user and the expert to easily 

interact with the system by introducing and/or modifying their 

knowledge bases.   

 

Keywords— Theory of languages, Parsing, Propositional logic, 

First-order logic, Knowledge base system.  

I. INTRODUCTION 

HE present paper reports the design and implementation 

of a first-order logical language, called FO2L, as a first 

step in the implementation of a complete environment for a 

knowledge-based system (KBS). Knowledge is considered as 

human understanding of a subject matter that has been 

acquired through proper study and lifelong experience. From a 

computational point of view, knowledge is derived from 

information in a more complex way than information is 

derived from data. It also includes a description about both 

real world entities and relationships between them. 

Knowledge base systems (KBSs) are computational systems 

that use organized information, or knowledge, instead of raw 

data, and an inference process instead of procedural programs 

[9].  
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In rule-based systems, knowledge is usually divided into 

rules and facts. The inference can be undertaken in forward or 

backward chaining. In forward chaining, the inference process  

checks the validity of a rule starting with the premises and 

then infers the validity of the conclusion part; this process is 

inversed in the case of backward chaining. According to 

Turing Test, knowledge representation is one of the key 

components of any intelligent system. Therefore, when 

designing artifacts, knowledge has to be represented in a 

codifiable and maintainable way. Different approaches have 

been used to code the human experts’ knowledge. We find 

knowledge represented as a set of IF-THEN rules. These rules 

can eventually be affected by probabilities to manage 

uncertainty with Bayesian reasoning. They can also be written 

with fuzzy words and then use the fuzzy reasoning for 

approximate reasoning. Frames, association of syntax with 

semantic, are also used to represent objects and concepts of 

the knowledge as classes – the main concept in object oriented 

programming (OOP) paradigm. Frames can highlight 

inheritance relationship between elements of knowledge. 

Alternatively, as a (very) coarse mimicry of the human brain 

neural structure, knowledge can also be represented by 

artificial neural networks (ANNs). These structures permit to 

the system not only to reason but also to learn from different 

experiences or to discover unpredicted patterns in large 

datasets.  

To allow machines to acquire knowledge, several 

knowledge representation-oriented programming languages 

have been developed over the last five decades, or so. For 

instance, Prolog, developed about four decades ago, but 

popularized much later, uses propositions and first-order logic 

(FOL), and can derive conclusions from known premises 

using backward chaining [17] and the closed world 

assumption. The Japanese Fifth Generation project, a 10-year 

research effort beginning in 1982, was completely based on 

Prolog as the means to develop intelligent systems.  

KL-ONE, developed in the eighties, is more specifically 

aimed at knowledge representation per se, followed by Dublin 

Core standard of metadata. In electronic document processing, 

vital for the Internet, languages concentrate on the structure of 

documents. Languages such as SGML, a precursor of HTML, 

and later XML play a vital role in information retrieval and 

data mining processes. The advances made by the Semantic 
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Web has included development of XML-based knowledge 

representation languages and standards, including Web 

Ontology Language (OWL), Ontology Inference Layer (OIL), 

DARPA Agent Markup Language (DAML), RDF, RDF 

Schema, and Topic Maps [16]. When XML or similar, as low-

level syntax language is used, the output of knowledge 

representation languages is made easy for machines to parse 

but with a problematic human readability and often 

challenging space-efficiency. Thus, to avoid excessive space 

complexity, first-order or predicate calculus is commonly used 

as a mathematical basis for knowledge representation.  

However simple predicate systems might appear to be, they 

can nonetheless be used to represent data that is well beyond 

the processing capability of current computer systems [3]. 

Predicate-based systems have been successfully used in 

theorem proving with the spectacular result obtained by the 

automatic proof of Robbins’ conjecture not proved by humans 

for decades [12]. In addition, predicate calculus through 

productions or rule base systems has been used in various 

expert systems in medicine since Mycin, in legal advice and 

innumerable other applications [15].  Owing to its structure, 

FO2L can be integrated within this body of knowledge with 

the characteristic of being open source, easily upgradeable, 

and made available online with a user-friendly interface.  

In the next section we describe related works and concepts. 

Section 3 summarizes the design of the proposed language. In 

Section 4 and Section 5, we use FO2L to represent knowledge 

for a simple example followed by a second example 

incorporating both propositional logic and FOL. Section 6 is 

devoted to the description of a friendly graphical user interface 

(GUI). The paper ends with a conclusion summing up the 

main results and pointing towards some potential future 

developments.  

II. RELATED WORKS AND CONCEPTS 

A. From syllogism to inference 

Historically, the first type of inference most carefully 

studied by logicians since Classical Antiquity is the syllogism. 

Extensively investigated by Greek and early mathematics, the 

syllogism included elements of FOL, such as quantification, 

although restricted to unary predicates. The axiomatic style of 

exposition, using Modus Ponens plus a number of logically 

valid schemas, was employed by a number of logicians. 

Inference rules, as distinct from axiom schemas, were the 

focus of the natural deduction approach [13].  

The invention of clausal form was a crucial step in the 

development of a deep mathematical analysis of FOL. 

Although the use of FOL was primarily suggested in the late 

1950’s for representation and reasoning in artificial 

intelligence (AI), the first such systems were developed by 

logicians interested in mathematical theorem proving.  

B. Post-resolution period 

After the development of resolution, work on FOL 

proceeded in various directions. In AI, resolution was adopted 

for question-answering systems as implemented, in a 

somewhat less formal approach, in PLANNER language 

which was a precursor to logic programming and included 

directives for forward and backward chaining and considering 

negation as failure. A subset known as MICRO-PLANNER 

was implemented and used in the SHRDLU natural language 

understanding system.  

C. Production systems 

Because AI applications usually rely on a large number of 

rules, it is therefore important to develop efficient rule-

matching methods along with the underlying ad-hoc 

technology, particularly for efficient incremental updates. The 

technology for production systems was developed in the early 

1970’s to support such applications and forward chaining has 

been used since then to become a well established technique in 

AI as an easily understandable alternative to resolution. As a 

result, forward chaining has been used in a wide variety of 

systems, ranging from Nevins's geometry theorem prover to 

the R1 expert system for DEC-VAX™ computers 

configuration. The production system language OPS-5 [4] was 

used for R1 and for the SOAR cognitive architecture [11]. 

OPS-5 incorporated the rete match process. SOAR, which 

generates new rules to cache the results of previous 

computations, was able to handle very large rule sets over 

8,000 rules in the case of the TACAIR-SOAR system for 

controlling simulated fighter aircraft. CLIPS, followed by 

FuzzyCLIPS [20] is another popular example of production 

system as a C-based language developed at NASA. CLIPS 

allowed better integration with other software, hardware, and 

sensor systems and was used for spacecraft automation and 

several military applications.  

D. Deductive databases 

The deductive databases, as an area of research aims to 

integrated relational database technology, mainly designed for 

retrieving large sets of facts, with Prolog-based inference 

technology, which typically processes one fact at a time. This 

approach has also contributed a great deal with forward 

inference [14]. In terms of expressibility, deductive databases 

are half-way between relational databases and logic 

programming. Indeed, deductive databases are more 

expressive than relational databases but less expressive than 

logic programming systems. In recent years, deductive 

databases such as Datalog have found new application in data 

integration, information extraction, networking, program 

analysis, security, and cloud computing [5]. 

Logical inference complexity has mainly come from the 

deductive database community. In [7], it was first showed that 

matching a single non-recursive rule, or a conjunctive query in 

database terminology, can be NP-hard. In [10] data 

complexity is defined as a function of database size, viewing 

rule size as constant and showed that it can be used as a 

suitable measure for query answering. In [2], the authors make 

use of ontology for intelligent database describing the 

concepts, operations and restrictions of these databases with 

an implementation using Protégé. 
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E. Theorem provers 

Research into mathematical theorem proving began even 

before the first complete first-order systems were developed. 

Since the late 1950’s, Gelernter's Geometry Theorem Prover 

used heuristic search methods combined with diagrams for 

pruning false sub-goals and was able to prove some quite 

elaborate theorems in Euclidean geometry. The authors in [8] 

describe the early SAM theorem prover, which helped to solve 

an open problem in lattice theory. In [19], an overview is 

given about the contributions of the AURA theorem prover 

toward solving open problems in various areas of mathematics 

and logic. In [9)], the authors follow up on this, recounting the 

accomplishments of AURA’S successor, called OTTER, in 

solving open problems. The work in [18] describes SPASS, 

one of the strongest current theorem provers.  

III. DESIGN OF THE FO2L ENVIRONMENT 

In the design of the new language, we concentrate on the 

grammar used and on the internal representation of the 

proposed language. Recursive descent is used for parsing, 

allowing easy implementation. Furthermore, the interface is 

user-friendly and allows KBS both users and experts to easily 

interact with the environment. In this regard, FO2L plays a 

key role in knowledge representation on the basis of 

production rules. The relation between FO2L and the complete 

KBS is described in Figure 1 below representing the class 

diagram.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure 1 Class Diagram of the overall KBS 

 

Based on the architecture presented in Figure 1 above, we 

describe FO2L and follow the steps of its implementation 

from grammar writing to programming of its lexical and 

syntactic analyzers. 

A. Logical language characteristics 

   Knowledge bases are written using different formalisms 

such as frames, production rules and neural networks, among 

others. Production rules are the most natural way to represent 

knowledge whenever it can be understandably expressed in 

the form of IF-THEN rules. A production rule can be written 

using propositional (zero-order logic) or predicate calculus 

(FOL). In FO2L, the user can write knowledge bases using 

both types of logic.  

We have adopted the rule-based solution for the following 

reasons: 

- Readability: the use of a rule can be intuitively 

explained to the system user. 

- Flexibility:  Developers and users can modify some rules 

without breaking the entire system. 

- Extensibility: new knowledge can be incorporated into 

the system simply by adding new rules without any 

concern of how these might fit into the overall 

knowledge base. 

 

Moreover, the separation or independence of knowledge from 

processing allows us to postpone implementation of the 

inference engine. 

B. Grammar 

A grammar is defined a as the quadruple G = (N, T, P, S) 

where N is a finite set of non-terminal symbols, T is a finite 

set of terminal symbols P is a finite set of production rules and 

S is called the start symbol and is a distinguished symbol in N. 

Programming languages can be expressed using two kinds of 

grammars: regular and context free grammars (CFGs). We 

express the grammar of FO2L in Backus-Naur form as 

follows.  

 
 

<KB>   <Declaration>{<KB>}* 

<Declaration>  <RDeclaration> | <FactDeclaration> 

<RDeclaration>  rule <Id> <Rule> |  <Rule> 

<Rule>  if <Conds> then <Concls> 

<Conds>  [not](<Predicate>){<Conds>}* 

<Predicate>   

 

         PredicName>{<Elements>}*{<Operation2>}*                 

         | <Operation> 

<PredicName>  <Id>  

<Operation2>  <ArithOp> {?<Id>3|Num}
+2
 

<ArithOp>  +|-|*|/|% 

<Operation>  <LogicOp> {<Operands>}
+2
 

<LogicOp>  <|>|<=|>=|==|!= 

<Operands>  ?<Id>3{?<Id>3 |<Id>3 |<Num>} 

<Elements>  <Id>3 |?<Id>3 | ?- | &- | <Num> 

<Concls> <FactRule> |<FactRule> <OtherConclusions> 

<OtherConclusions> {add|infere|remove}                                  

                 <FactRule><OtherConclusions> 

           | execute <Statement><OtherConcls> 

<FactRule>(<Id>4{<Id>3|?<Id>3|<Num>|?-|&-}* 

) 

<Num> integer or decimal with two digits 

after the decimal point 

<FactDeclaration>  facts <Fact> {< Fact>}* 

<Fact>  ( <Id>4 { <Id>3 |<Num>}*) 

FO2L 

FILE PARSER 

INFERENCE 

ENGINE 

KNOWLEDGE 

BASE 

GUI 
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<Statement>  print <List To Be Printed> 

              | read ?<Id> 

<List To Be Printed> {“anything”|?<Id>}{+ 
{“anything”|?<Id>}} 
 

 

The language is not case sensitive. Identifiers are written 

under the ordinary rules of many programming language, i.e. 

first letter of predicate names must be capital. The notation 

<id>n means an identifier with at most n characters. 

Although, our language is based on FOL, its use is transparent 

to the user. This characteristic allows its usability in a wide 

variety of applications.  

 

C. Parser 

A compiler is a program that translates a given program 

from one source language to a target language. This 

translation requires that the input program is syntactically and 

lexically correct. The compiler outputs some plausible errors if 

the source program is not written in the required lexical and 

syntactical rules of the source language. This translation goes 

through lexical, syntax, semantic analyzers, intermediate code 

generator, code optimizer with a handler for errors and a 

manager for user defined symbols. As FO2L belongs to the 

logical languages paradigm, the notion of semantics and of 

variables, as defined by Von-Newman, has no meaning.  

Rather, in our case, the compiling step is reduced to the 

transformation of the knowledge base (our program) from 

FO2L language into a form (data structure) understandable by 

the inference engine. Therefore, only lexical and syntactic 

analysis steps are required here. The code generation required 

in classical compilers is replaced, in our case, by a generation 

of the equivalent data structure. We need a compiler-like 

feature for the lexical phase on the basis of different automata 

for different lexical entities. For the syntactical phase, the 

parser is responsible for the pre-compilation phase.  

There are different methods for parsing such as top-down, 

bottom-up and recursive descent. This latter is used in the 

implementation of FO2L. The advantage of this approach is 

that it can be directly written based on the grammar [1]. In this 

approach, there is a function for each non-terminal. For 

example, this approach has been successfully applied in the 

development of the so-called ESPL programming language as 

a support for the development of real-time distributed 

applications, designed for embedded systems and proposes a 

comparative study between real-time features of many already 

existing programming languages [6].  

However, the application of additional compiler techniques, 

such as type inference, made Prolog programs competitive 

with C programs in terms of execution speed.  

 

D. Internal representation 

In imperative programming languages, the result of 

compiling a program is an optimized object code written in the 

machine language for the machine where it will be executed. 

Because FO2L is a logical language, therefore the result of the 

pre-compiling step is an internal representation of the 

knowledge base into some form acceptable by the inference 

engine, as shown in Figure 1.  

1. Operations 

FO2L uses the following operations:  

i) add: when executed, the add operation allows the 

addition of a fact inside the knowledge base. Its 

syntax is add(fact).  

ii) infer: when executed, the infer operation allows 

the addition of a fact, not present in the Fact Base, 

to the working space (temporarily). Its syntax is 

infer(fact). 

iii) remove: the inverse operation of the add operation. 

When executed, the Remove operation allows the 

removal of a fact from the knowledge base. Its 

syntax is remove(fact). 

iv) execute: this operation starts a portion of program in 

another programming language. Its syntax is 
execute(statement) 

 

2. Statement and argument 

 i) statement: instructions following execute  

operation.  

ii) argument: any item used in a predicate, or a fact.  

E. Data structures 

1. Linked lists as basic data structures 

Linked lists are the main data structure used in the 

implementation. Linked lists are characterized by their 

dynamicity and updating flexibility. These characteristics 

allow using just the required space while keeping modularity 

of production rules. The Rule Base is a linked list of rules, 

initially empty. Any new rule is added at the end of the list, 

based on the modularity of the rules. Usually the order of 

introducing rules in the KBS is irrelevant. But, if the order of 

rules is important, then the expert has to enter them in the 

required order. A node in the Rule Base is four-field structure 

comprising the following:  

 

- name of the rule,  

- list of conditions,  

- list of conclusions, and  

- link to next rule.  

 

Figure 2 below shows a simple representation of the Rule 

Base. 

 

 
  

Fig. 2 List of rules in the Rule Base 

•if  Conditions 

•then  

•conclusions 

Rule_1 

•if  Conditions 

•then  

•conclusions 

Rule_2 
•if  Conditions 

•then  

•conclusions 

Rule_n 
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2. Rule Base internal representation 

Figure 3 shows the detailed structure of one rule in the 

memory. A Rule is an IF-THEN structure representing one of 

the most important pieces of knowledge and incorporates two 

lists for condition and conclusion parts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Internal representation of a rule 

 

 

 

 

 
 

 

 

 

 

Fig. 3 Internal representation of a Rule 

 
Fig. 3 Internal representation of a Rule 

3. Fact Base internal representation 

The Fact Base is also stored in memory as a list of facts.  In 

Figure 4, a fact is a list with two fields; the first is the 

predicate and the second is a list of different attributes of the 

predicate. 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Internal representation of a Fact 

4. Condition part of a Rule  

Each node in the condition list is structured as follows: 
struct  ICondition 

{ bool not; // for negation 

string condName; // condition name 

IElement* pIElement; //  element list 

IOperation*pIOperation;// logical operation  

IListStmt* PIStm; // ListToBePrinted  

IOperation2* PIOp2; // arithmetic operation. 

ICondition* next; // next condition  

}; 

5. Conclusion part of a Rule  

Each node in the conclusion list is structured as follows: 

 
struct  IConclusion 

{    IFact* pIFact; // fact data structure. 

    IOtherCon* pIOtherCon; // 

OtherConcolusion  

 }; 

IV. EXAMPLE 

Let us consider the following sentence: 

“If an animal flies and lays eggs then it is a bird”.  

This sentence represents a unit piece of knowledge to be 

stored in the knowledge base. Suppose as a fact that a given 

animal has the two required characteristics. Translation of 

both rule and fact give the following knowledge base content 

with their corresponding internal representation. 

A. Knowledge Base content 

 

Rule Base content 
rule r1 if ( FLIES  ?x )  ( LAYS  ?x  eggs  )  

then add ( IS ?x bird ) 

 

Fact Base content 
facts (FLIES  z  )  (LAYS z  eggs) 

 

B. Internal representation 

1. Internal representation of the Rule  

Figure 5 shows the internal representation of the Rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Internal representation of the above rule 
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2. Internal representation of the Fact  

Figure 6 shows the internal representation of the Fact  

Fig. 6 Representation of the above Fact 

V. FURTHER EXAMPLE OF KNOWLEDGE BASE IN FO2L 

As FO2L supports both propositional and predicate logic, 

we show how this can be done through an additional example. 

First, we give a brief description of the problem and then we 

write some rules in both types of logic as done by FO2L. 

A. Wumpus world 

The Wumpus world consists of a cave with 16 rooms, 

arranged as a 4x4 matrix and where an intelligent agent is 

initially in bottom-left room, labeled Room11 [15]. There are 

3 pits but only one Wumpus in an unknown room and it 

doesn’t move. One room contains gold to be discovered by the 

agent avoiding the Wumpus and all pits. Different percepts 

allow the agent to infer these dangerous locations. For 

example, if the agent perceives a breeze in one room, it can 

infer that there is one pit in at least one of the directly adjacent 

rooms, i.e. sharing walls with the actual agent’s room, but not 

diagonally. Also, perception of stench in one room indicates 

the presence of the Wumpus in one of the adjacent rooms. For 

example, S12 indicates stench in Room 12 and therefore 

inferring the presence of the Wumpus in either Room 22 

(W22??) or Room 13 (W13??) where the “??” represents a 

plausibility. Similarly, when the agent is breezy Room 21, 

(B21) then the possible inferences are either a Pit in 22 (P22??) 

or a Pit in Room 31 (P31??), or perhaps in both rooms. The 16-

room initial world is described as follows: 

 

14 24 34 44 

13  

Wumpus 

W22?? 

23 33 43 

12 

Stench 

(S12) 

22 

Pit (P22)?? 

Wumpus W22?? 

32 42 

11   

Initial 

position of 

agent 

OK 

21 

Breeze (B21) 

31 

Pit P31?? 

41 

 

Fig. 7 The Wumpus world 

B. Propositional logic 

In propositional logic, propositions are sentences that can be 

assigned either a value “True” or “False” and nothing else. We 

start by writing rules in propositional logic describing one type 

of the general rules of such an agent. Some of the rules are 

expressed in the following table. In this example, we suppose 

that breeze can be perceived by the agent and therefore breeze 

is considered first as a premise.  

 

Rule 

# 

Rule form Premise 

part of 

the rule 

Conclusion 

part of the 

rule 
Rule 

r1 

 

)( 211211 PPB   (B 1 1) Add (P 1 2) 

Add (P 2 1) 

… … … … 

Rule 

r7 
)( 4222333132 PPPPB 

 

(B 3 2) 

 

Add (P 3 1) 

Add (P 3 3) 

Add (P 2 2) 

Add (P 4 2) 

 

…  … …. 

Rule 

r16 
)( 344344 PPB   (B 4 4) Add (P 4 3) 

Add (P 3 4) 

 

These propositions tell the agent that when breeze is 

perceived in a room, at least a pit exists in one of the adjacent 

rooms.  

C. Predicate Logic 

As propositional logic fails in the description of general 

properties with variables and mathematical quantifiers, 

predicate logic provides a more concise description. We can 

rewrite the previous rules (from r1 to r16) above using 

predicates as described in the following table.  

 
Rule

# 
Rule in logical form Premise 

part of the 

rule in 

FO2L 

Conclusion 

part of the 

rule expressed 

in FO2L 
r1 

 
)( ,11,, yxyxyx PPB    

x=1 

y=1 

(B ?x ?y) 

(= ?x 1) 

(= ?y 1) 

Add 

(P ?x ?y+1) 

(P ?x+1 ?y) 

… ... … … 

r7 

 
)( ,1,11,1,

,

yxyxyxyx

yx

PPPP

B

 



 

1<x<4 

1<y<4 

(B ?x ?y)  

(> ?x 1) 

(< ?x 4) 

(> ?y 1) 

(< ?y 4) 

Add 

(P ?x ?y+1) 

(P ?x  ?y-1) 

(P ?x+1 ?y) 

(P ?x-1 ? y) 

… ... … … 

r9 

 
)( ,11,, yxyxyx PPB    

x=4 

y=4 

(B ?x ?y) 

(= ?x 4) 

(= ?y 4) 

Add 

(P ?x ?y-1) 

(P ?x-1 ?y) 

 

For instance, Rule r7 replaces 4 propositional rules describing 

the Wumpus’ position in the 4 central rooms, i.e those 

surrounded by rooms in all directions. There are 9 FOL rules 

instead of 16 in propositional logic.  
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VI. GRAPHICAL USER INTERFACE 

Our implementation relies on advanced tools for graphical 

user interface (GUI). The available tools greatly helped in the 

implementation of the architectural concepts exposed above. 

The GUI is used in comparing, storing, retrieving, modifying 

and deleting different versions of knowledge bases. We show 

how a user can interact with our system via the proposed GUI. 

The figures are self-explanatory. See Figure 8 below, 

illustrating the main window, up to Figure 14.  

 

Fig. 8 Main Window 

 

 
Fig. 9 Open-Save-Close-New / File menu 

 

 

 

 
 Fig. 10 Edit Menu 

 

 
Fig. 11 Knowledge Base Main Menu  

 

 
Fig. 12 Editor for writing a new knowledge base 

 

 
Fig. 13 Pre-compiling step 
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Fig. 14 Example with syntax errors 

VII. CONCLUSION 

We have described the most important methodological steps 

needed to design and implement a programming language and 

more specifically a logical language. As it stands now, FO2L 

is a language that offers powerful assistance to both experts 

and users in writing, parsing, compiling, storing, retrieving, 

modifying or deleting knowledge bases of concern. Although 

FO2L is a relatively simple language, it is powerful enough to 

allow knowledge base systems management in either 

propositional or in predicate logic. It also allows, via its 

simple set of arithmetic and logical operations, to combine 

between the declarative and the procedural approaches. The 

main features are based on an improved grammar and internal 

representation, an efficient parsing method, and a friendly 

GUI. Adding a reasoning component integrating both forward 

and backward chaining is under process to bring about a novel 

user-friendly complete knowledge base system development 

environment. Further, to allow the system to deal with gradual 

human perception, we aim to add a fuzzy logic component.  
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