

Abstract— FO2L is a novel First-Order Logic programming

Language. Although FO2L can be used as a traditional logic

programming language, such as Prolog, it represents an initial step

towards the development of a complete environment for knowledge-

based system (KBS) design and implementation. The choice of

predicate calculus is dictated by the fact that it allows the use of

variables in the definition of rules, and represents one of the keys to

powerful knowledge bases development, i.e. the most important

component of any KBS. Parsing is done using recursive descent for

easy implementation. Additionally, a friendly graphical user interface

(GUI) is provided allowing both the user and the expert to easily

interact with the system by introducing and/or modifying their

knowledge bases.

Keywords— Theory of languages, Parsing, Propositional logic,

First-order logic, Knowledge base system.

I. INTRODUCTION

HE present paper reports the design and implementation

of a first-order logical language, called FO2L, as a first

step in the implementation of a complete environment for a

knowledge-based system (KBS). Knowledge is considered as

human understanding of a subject matter that has been

acquired through proper study and lifelong experience. From a

computational point of view, knowledge is derived from

information in a more complex way than information is

derived from data. It also includes a description about both

real world entities and relationships between them.

Knowledge base systems (KBSs) are computational systems

that use organized information, or knowledge, instead of raw

data, and an inference process instead of procedural programs

[9].

C. Kara-Mohamed (alias Hamdi-Cherif) is Assistant Professor at

Computer College, Qassim University, PO Box 6688, 51452 Buraydah, Saudi
Arabia, (email: smhmd@qu.edu.sa)

N. I. Al-Osily is Teaching Assistant at Computer College, Qassim

University, now on leave absence preparing for graduate studies in Cleveland,
OH, USA.

R. A. Al-Marshad is Computer Science Instructor at Buraydah College of

Technology, Qassim, Saudi Arabia.
M. Al-Twijry and J. Al-Robe’an are Computer Analysts at Al-Rajhi Bank,

Buraydah, Qassim, Saudi Arabia.

A. Hamdi-Cherif is Professor at Computer College, Qassim University, PO
Box 6688, 51452 Buraydah, Saudi Arabia, and with Computer Science

Department, College of Science, Ferhat Abbas University, Setif, Algeria

(corresponding author phone: 9666-3500050 e-mail: shrief@qu.edu.sa)

In rule-based systems, knowledge is usually divided into

rules and facts. The inference can be undertaken in forward or

backward chaining. In forward chaining, the inference process

checks the validity of a rule starting with the premises and

then infers the validity of the conclusion part; this process is

inversed in the case of backward chaining. According to

Turing Test, knowledge representation is one of the key

components of any intelligent system. Therefore, when

designing artifacts, knowledge has to be represented in a

codifiable and maintainable way. Different approaches have

been used to code the human experts’ knowledge. We find

knowledge represented as a set of IF-THEN rules. These rules

can eventually be affected by probabilities to manage

uncertainty with Bayesian reasoning. They can also be written

with fuzzy words and then use the fuzzy reasoning for

approximate reasoning. Frames, association of syntax with

semantic, are also used to represent objects and concepts of

the knowledge as classes – the main concept in object oriented

programming (OOP) paradigm. Frames can highlight

inheritance relationship between elements of knowledge.

Alternatively, as a (very) coarse mimicry of the human brain

neural structure, knowledge can also be represented by

artificial neural networks (ANNs). These structures permit to

the system not only to reason but also to learn from different

experiences or to discover unpredicted patterns in large

datasets.

To allow machines to acquire knowledge, several

knowledge representation-oriented programming languages

have been developed over the last five decades, or so. For

instance, Prolog, developed about four decades ago, but

popularized much later, uses propositions and first-order logic

(FOL), and can derive conclusions from known premises

using backward chaining [17] and the closed world

assumption. The Japanese Fifth Generation project, a 10-year

research effort beginning in 1982, was completely based on

Prolog as the means to develop intelligent systems.

KL-ONE, developed in the eighties, is more specifically

aimed at knowledge representation per se, followed by Dublin

Core standard of metadata. In electronic document processing,

vital for the Internet, languages concentrate on the structure of

documents. Languages such as SGML, a precursor of HTML,

and later XML play a vital role in information retrieval and

data mining processes. The advances made by the Semantic

FO2L – A First-Order Logic Language for

Knowledge Base System Implementation

C. Kara-Mohamed (alias Hamdi-Cherif), N. I. Al-Osily, R. A. Al-Marshad, M. S. Al-Twijary, J. Al-

Robe’an, A. Hamdi-Cherif

T

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 5, Volume 7, 2013

247

mailto:smhmd@qu.edu.sa
mailto:shrief@qu.edu.sa

Web has included development of XML-based knowledge

representation languages and standards, including Web

Ontology Language (OWL), Ontology Inference Layer (OIL),

DARPA Agent Markup Language (DAML), RDF, RDF

Schema, and Topic Maps [16]. When XML or similar, as low-

level syntax language is used, the output of knowledge

representation languages is made easy for machines to parse

but with a problematic human readability and often

challenging space-efficiency. Thus, to avoid excessive space

complexity, first-order or predicate calculus is commonly used

as a mathematical basis for knowledge representation.

However simple predicate systems might appear to be, they

can nonetheless be used to represent data that is well beyond

the processing capability of current computer systems [3].

Predicate-based systems have been successfully used in

theorem proving with the spectacular result obtained by the

automatic proof of Robbins’ conjecture not proved by humans

for decades [12]. In addition, predicate calculus through

productions or rule base systems has been used in various

expert systems in medicine since Mycin, in legal advice and

innumerable other applications [15]. Owing to its structure,

FO2L can be integrated within this body of knowledge with

the characteristic of being open source, easily upgradeable,

and made available online with a user-friendly interface.

In the next section we describe related works and concepts.

Section 3 summarizes the design of the proposed language. In

Section 4 and Section 5, we use FO2L to represent knowledge

for a simple example followed by a second example

incorporating both propositional logic and FOL. Section 6 is

devoted to the description of a friendly graphical user interface

(GUI). The paper ends with a conclusion summing up the

main results and pointing towards some potential future

developments.

II. RELATED WORKS AND CONCEPTS

A. From syllogism to inference

Historically, the first type of inference most carefully

studied by logicians since Classical Antiquity is the syllogism.

Extensively investigated by Greek and early mathematics, the

syllogism included elements of FOL, such as quantification,

although restricted to unary predicates. The axiomatic style of

exposition, using Modus Ponens plus a number of logically

valid schemas, was employed by a number of logicians.

Inference rules, as distinct from axiom schemas, were the

focus of the natural deduction approach [13].

The invention of clausal form was a crucial step in the

development of a deep mathematical analysis of FOL.

Although the use of FOL was primarily suggested in the late

1950’s for representation and reasoning in artificial

intelligence (AI), the first such systems were developed by

logicians interested in mathematical theorem proving.

B. Post-resolution period

After the development of resolution, work on FOL

proceeded in various directions. In AI, resolution was adopted

for question-answering systems as implemented, in a

somewhat less formal approach, in PLANNER language

which was a precursor to logic programming and included

directives for forward and backward chaining and considering

negation as failure. A subset known as MICRO-PLANNER

was implemented and used in the SHRDLU natural language

understanding system.

C. Production systems

Because AI applications usually rely on a large number of

rules, it is therefore important to develop efficient rule-

matching methods along with the underlying ad-hoc

technology, particularly for efficient incremental updates. The

technology for production systems was developed in the early

1970’s to support such applications and forward chaining has

been used since then to become a well established technique in

AI as an easily understandable alternative to resolution. As a

result, forward chaining has been used in a wide variety of

systems, ranging from Nevins's geometry theorem prover to

the R1 expert system for DEC-VAX™ computers

configuration. The production system language OPS-5 [4] was

used for R1 and for the SOAR cognitive architecture [11].

OPS-5 incorporated the rete match process. SOAR, which

generates new rules to cache the results of previous

computations, was able to handle very large rule sets over

8,000 rules in the case of the TACAIR-SOAR system for

controlling simulated fighter aircraft. CLIPS, followed by

FuzzyCLIPS [20] is another popular example of production

system as a C-based language developed at NASA. CLIPS

allowed better integration with other software, hardware, and

sensor systems and was used for spacecraft automation and

several military applications.

D. Deductive databases

The deductive databases, as an area of research aims to

integrated relational database technology, mainly designed for

retrieving large sets of facts, with Prolog-based inference

technology, which typically processes one fact at a time. This

approach has also contributed a great deal with forward

inference [14]. In terms of expressibility, deductive databases

are half-way between relational databases and logic

programming. Indeed, deductive databases are more

expressive than relational databases but less expressive than

logic programming systems. In recent years, deductive

databases such as Datalog have found new application in data

integration, information extraction, networking, program

analysis, security, and cloud computing [5].

Logical inference complexity has mainly come from the

deductive database community. In [7], it was first showed that

matching a single non-recursive rule, or a conjunctive query in

database terminology, can be NP-hard. In [10] data

complexity is defined as a function of database size, viewing

rule size as constant and showed that it can be used as a

suitable measure for query answering. In [2], the authors make

use of ontology for intelligent database describing the

concepts, operations and restrictions of these databases with

an implementation using Protégé.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 5, Volume 7, 2013

248

E. Theorem provers

Research into mathematical theorem proving began even

before the first complete first-order systems were developed.

Since the late 1950’s, Gelernter's Geometry Theorem Prover

used heuristic search methods combined with diagrams for

pruning false sub-goals and was able to prove some quite

elaborate theorems in Euclidean geometry. The authors in [8]

describe the early SAM theorem prover, which helped to solve

an open problem in lattice theory. In [19], an overview is

given about the contributions of the AURA theorem prover

toward solving open problems in various areas of mathematics

and logic. In [9)], the authors follow up on this, recounting the

accomplishments of AURA’S successor, called OTTER, in

solving open problems. The work in [18] describes SPASS,

one of the strongest current theorem provers.

III. DESIGN OF THE FO2L ENVIRONMENT

In the design of the new language, we concentrate on the

grammar used and on the internal representation of the

proposed language. Recursive descent is used for parsing,

allowing easy implementation. Furthermore, the interface is

user-friendly and allows KBS both users and experts to easily

interact with the environment. In this regard, FO2L plays a

key role in knowledge representation on the basis of

production rules. The relation between FO2L and the complete

KBS is described in Figure 1 below representing the class

diagram.

Figure 1 Class Diagram of the overall KBS

Based on the architecture presented in Figure 1 above, we

describe FO2L and follow the steps of its implementation

from grammar writing to programming of its lexical and

syntactic analyzers.

A. Logical language characteristics

 Knowledge bases are written using different formalisms

such as frames, production rules and neural networks, among

others. Production rules are the most natural way to represent

knowledge whenever it can be understandably expressed in

the form of IF-THEN rules. A production rule can be written

using propositional (zero-order logic) or predicate calculus

(FOL). In FO2L, the user can write knowledge bases using

both types of logic.

We have adopted the rule-based solution for the following

reasons:

- Readability: the use of a rule can be intuitively

explained to the system user.

- Flexibility: Developers and users can modify some rules

without breaking the entire system.

- Extensibility: new knowledge can be incorporated into

the system simply by adding new rules without any

concern of how these might fit into the overall

knowledge base.

Moreover, the separation or independence of knowledge from

processing allows us to postpone implementation of the

inference engine.

B. Grammar

A grammar is defined a as the quadruple G = (N, T, P, S)

where N is a finite set of non-terminal symbols, T is a finite

set of terminal symbols P is a finite set of production rules and

S is called the start symbol and is a distinguished symbol in N.

Programming languages can be expressed using two kinds of

grammars: regular and context free grammars (CFGs). We

express the grammar of FO2L in Backus-Naur form as

follows.

<KB> <Declaration>{<KB>}*

<Declaration> <RDeclaration> | <FactDeclaration>

<RDeclaration> rule <Id> <Rule> | <Rule>

<Rule> if <Conds> then <Concls>

<Conds> [not](<Predicate>){<Conds>}*

<Predicate>

 PredicName>{<Elements>}*{<Operation2>}*

 | <Operation>

<PredicName> <Id>

<Operation2> <ArithOp> {?<Id>3|Num}
+2

<ArithOp> +|-|*|/|%

<Operation> <LogicOp> {<Operands>}
+2

<LogicOp> <|>|<=|>=|==|!=

<Operands> ?<Id>3{?<Id>3 |<Id>3 |<Num>}

<Elements> <Id>3 |?<Id>3 | ?- | &- | <Num>

<Concls> <FactRule> |<FactRule> <OtherConclusions>

<OtherConclusions> {add|infere|remove}

 <FactRule><OtherConclusions>

 | execute <Statement><OtherConcls>

<FactRule>(<Id>4{<Id>3|?<Id>3|<Num>|?-|&-}*

)

<Num> integer or decimal with two digits

after the decimal point

<FactDeclaration> facts <Fact> {< Fact>}*

<Fact> (<Id>4 { <Id>3 |<Num>}*)

FO2L

FILE PARSER

INFERENCE

ENGINE

KNOWLEDGE

BASE

GUI

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 5, Volume 7, 2013

249

<Statement> print <List To Be Printed>

 | read ?<Id>

<List To Be Printed> {“anything”|?<Id>}{+
{“anything”|?<Id>}}

The language is not case sensitive. Identifiers are written

under the ordinary rules of many programming language, i.e.

first letter of predicate names must be capital. The notation

<id>n means an identifier with at most n characters.

Although, our language is based on FOL, its use is transparent

to the user. This characteristic allows its usability in a wide

variety of applications.

C. Parser

A compiler is a program that translates a given program

from one source language to a target language. This

translation requires that the input program is syntactically and

lexically correct. The compiler outputs some plausible errors if

the source program is not written in the required lexical and

syntactical rules of the source language. This translation goes

through lexical, syntax, semantic analyzers, intermediate code

generator, code optimizer with a handler for errors and a

manager for user defined symbols. As FO2L belongs to the

logical languages paradigm, the notion of semantics and of

variables, as defined by Von-Newman, has no meaning.

Rather, in our case, the compiling step is reduced to the

transformation of the knowledge base (our program) from

FO2L language into a form (data structure) understandable by

the inference engine. Therefore, only lexical and syntactic

analysis steps are required here. The code generation required

in classical compilers is replaced, in our case, by a generation

of the equivalent data structure. We need a compiler-like

feature for the lexical phase on the basis of different automata

for different lexical entities. For the syntactical phase, the

parser is responsible for the pre-compilation phase.

There are different methods for parsing such as top-down,

bottom-up and recursive descent. This latter is used in the

implementation of FO2L. The advantage of this approach is

that it can be directly written based on the grammar [1]. In this

approach, there is a function for each non-terminal. For

example, this approach has been successfully applied in the

development of the so-called ESPL programming language as

a support for the development of real-time distributed

applications, designed for embedded systems and proposes a

comparative study between real-time features of many already

existing programming languages [6].

However, the application of additional compiler techniques,

such as type inference, made Prolog programs competitive

with C programs in terms of execution speed.

D. Internal representation

In imperative programming languages, the result of

compiling a program is an optimized object code written in the

machine language for the machine where it will be executed.

Because FO2L is a logical language, therefore the result of the

pre-compiling step is an internal representation of the

knowledge base into some form acceptable by the inference

engine, as shown in Figure 1.

1. Operations

FO2L uses the following operations:

i) add: when executed, the add operation allows the

addition of a fact inside the knowledge base. Its

syntax is add(fact).

ii) infer: when executed, the infer operation allows

the addition of a fact, not present in the Fact Base,

to the working space (temporarily). Its syntax is

infer(fact).

iii) remove: the inverse operation of the add operation.

When executed, the Remove operation allows the

removal of a fact from the knowledge base. Its

syntax is remove(fact).

iv) execute: this operation starts a portion of program in

another programming language. Its syntax is
execute(statement)

2. Statement and argument

 i) statement: instructions following execute

operation.

ii) argument: any item used in a predicate, or a fact.

E. Data structures

1. Linked lists as basic data structures

Linked lists are the main data structure used in the

implementation. Linked lists are characterized by their

dynamicity and updating flexibility. These characteristics

allow using just the required space while keeping modularity

of production rules. The Rule Base is a linked list of rules,

initially empty. Any new rule is added at the end of the list,

based on the modularity of the rules. Usually the order of

introducing rules in the KBS is irrelevant. But, if the order of

rules is important, then the expert has to enter them in the

required order. A node in the Rule Base is four-field structure

comprising the following:

- name of the rule,

- list of conditions,

- list of conclusions, and

- link to next rule.

Figure 2 below shows a simple representation of the Rule

Base.

Fig. 2 List of rules in the Rule Base

•if Conditions

•then

•conclusions

Rule_1

•if Conditions

•then

•conclusions

Rule_2
•if Conditions

•then

•conclusions

Rule_n

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 5, Volume 7, 2013

250

2. Rule Base internal representation

Figure 3 shows the detailed structure of one rule in the

memory. A Rule is an IF-THEN structure representing one of

the most important pieces of knowledge and incorporates two

lists for condition and conclusion parts.

Fig. 2 Internal representation of a rule

Fig. 3 Internal representation of a Rule

Fig. 3 Internal representation of a Rule

3. Fact Base internal representation

The Fact Base is also stored in memory as a list of facts. In

Figure 4, a fact is a list with two fields; the first is the

predicate and the second is a list of different attributes of the

predicate.

Fig. 4 Internal representation of a Fact

4. Condition part of a Rule

Each node in the condition list is structured as follows:
struct ICondition

{ bool not; // for negation

string condName; // condition name

IElement* pIElement; // element list

IOperation*pIOperation;// logical operation

IListStmt* PIStm; // ListToBePrinted

IOperation2* PIOp2; // arithmetic operation.

ICondition* next; // next condition

};

5. Conclusion part of a Rule

Each node in the conclusion list is structured as follows:

struct IConclusion

{ IFact* pIFact; // fact data structure.

 IOtherCon* pIOtherCon; //

OtherConcolusion

 };

IV. EXAMPLE

Let us consider the following sentence:

“If an animal flies and lays eggs then it is a bird”.

This sentence represents a unit piece of knowledge to be

stored in the knowledge base. Suppose as a fact that a given

animal has the two required characteristics. Translation of

both rule and fact give the following knowledge base content

with their corresponding internal representation.

A. Knowledge Base content

Rule Base content
rule r1 if (FLIES ?x) (LAYS ?x eggs)

then add (IS ?x bird)

Fact Base content
facts (FLIES z) (LAYS z eggs)

B. Internal representation

1. Internal representation of the Rule

Figure 5 shows the internal representation of the Rule.

Fig. 5 Internal representation of the above rule

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 5, Volume 7, 2013

251

2. Internal representation of the Fact

Figure 6 shows the internal representation of the Fact

Fig. 6 Representation of the above Fact

V. FURTHER EXAMPLE OF KNOWLEDGE BASE IN FO2L

As FO2L supports both propositional and predicate logic,

we show how this can be done through an additional example.

First, we give a brief description of the problem and then we

write some rules in both types of logic as done by FO2L.

A. Wumpus world

The Wumpus world consists of a cave with 16 rooms,

arranged as a 4x4 matrix and where an intelligent agent is

initially in bottom-left room, labeled Room11 [15]. There are

3 pits but only one Wumpus in an unknown room and it

doesn’t move. One room contains gold to be discovered by the

agent avoiding the Wumpus and all pits. Different percepts

allow the agent to infer these dangerous locations. For

example, if the agent perceives a breeze in one room, it can

infer that there is one pit in at least one of the directly adjacent

rooms, i.e. sharing walls with the actual agent’s room, but not

diagonally. Also, perception of stench in one room indicates

the presence of the Wumpus in one of the adjacent rooms. For

example, S12 indicates stench in Room 12 and therefore

inferring the presence of the Wumpus in either Room 22

(W22??) or Room 13 (W13??) where the “??” represents a

plausibility. Similarly, when the agent is breezy Room 21,

(B21) then the possible inferences are either a Pit in 22 (P22??)

or a Pit in Room 31 (P31??), or perhaps in both rooms. The 16-

room initial world is described as follows:

14 24 34 44

13

Wumpus

W22??

23 33 43

12

Stench

(S12)

22

Pit (P22)??

Wumpus W22??

32 42

11

Initial

position of

agent

OK

21

Breeze (B21)

31

Pit P31??

41

Fig. 7 The Wumpus world

B. Propositional logic

In propositional logic, propositions are sentences that can be

assigned either a value “True” or “False” and nothing else. We

start by writing rules in propositional logic describing one type

of the general rules of such an agent. Some of the rules are

expressed in the following table. In this example, we suppose

that breeze can be perceived by the agent and therefore breeze

is considered first as a premise.

Rule

Rule form Premise

part of

the rule

Conclusion

part of the

rule
Rule

r1

)(211211 PPB (B 1 1) Add (P 1 2)

Add (P 2 1)

… … … …

Rule

r7
)(4222333132 PPPPB

(B 3 2)

Add (P 3 1)

Add (P 3 3)

Add (P 2 2)

Add (P 4 2)

… … ….

Rule

r16
)(344344 PPB (B 4 4) Add (P 4 3)

Add (P 3 4)

These propositions tell the agent that when breeze is

perceived in a room, at least a pit exists in one of the adjacent

rooms.

C. Predicate Logic

As propositional logic fails in the description of general

properties with variables and mathematical quantifiers,

predicate logic provides a more concise description. We can

rewrite the previous rules (from r1 to r16) above using

predicates as described in the following table.

Rule

Rule in logical form Premise

part of the

rule in

FO2L

Conclusion

part of the

rule expressed

in FO2L
r1

)(,11,, yxyxyx PPB

x=1

y=1

(B ?x ?y)

(= ?x 1)

(= ?y 1)

Add

(P ?x ?y+1)

(P ?x+1 ?y)

… ... … …

r7

)(,1,11,1,

,

yxyxyxyx

yx

PPPP

B

1<x<4

1<y<4

(B ?x ?y)

(> ?x 1)

(< ?x 4)

(> ?y 1)

(< ?y 4)

Add

(P ?x ?y+1)

(P ?x ?y-1)

(P ?x+1 ?y)

(P ?x-1 ? y)

… ... … …

r9

)(,11,, yxyxyx PPB

x=4

y=4

(B ?x ?y)

(= ?x 4)

(= ?y 4)

Add

(P ?x ?y-1)

(P ?x-1 ?y)

For instance, Rule r7 replaces 4 propositional rules describing

the Wumpus’ position in the 4 central rooms, i.e those

surrounded by rooms in all directions. There are 9 FOL rules

instead of 16 in propositional logic.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 5, Volume 7, 2013

252

VI. GRAPHICAL USER INTERFACE

Our implementation relies on advanced tools for graphical

user interface (GUI). The available tools greatly helped in the

implementation of the architectural concepts exposed above.

The GUI is used in comparing, storing, retrieving, modifying

and deleting different versions of knowledge bases. We show

how a user can interact with our system via the proposed GUI.

The figures are self-explanatory. See Figure 8 below,

illustrating the main window, up to Figure 14.

Fig. 8 Main Window

Fig. 9 Open-Save-Close-New / File menu

 Fig. 10 Edit Menu

Fig. 11 Knowledge Base Main Menu

Fig. 12 Editor for writing a new knowledge base

Fig. 13 Pre-compiling step

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 5, Volume 7, 2013

253

Fig. 14 Example with syntax errors

VII. CONCLUSION

We have described the most important methodological steps

needed to design and implement a programming language and

more specifically a logical language. As it stands now, FO2L

is a language that offers powerful assistance to both experts

and users in writing, parsing, compiling, storing, retrieving,

modifying or deleting knowledge bases of concern. Although

FO2L is a relatively simple language, it is powerful enough to

allow knowledge base systems management in either

propositional or in predicate logic. It also allows, via its

simple set of arithmetic and logical operations, to combine

between the declarative and the procedural approaches. The

main features are based on an improved grammar and internal

representation, an efficient parsing method, and a friendly

GUI. Adding a reasoning component integrating both forward

and backward chaining is under process to bring about a novel

user-friendly complete knowledge base system development

environment. Further, to allow the system to deal with gradual

human perception, we aim to add a fuzzy logic component.

REFERENCES

[1] A.V. Aho, and J.D. Ullman, “Principles of Compiler Design”, Pearson
Education, 2007

[2] M. Ana, A. Jose, “A General Ontology for Intelligent Database”, Int. J.

of Comp., 3(1):102-108, 2007
[3] R.J. Brachman, and H.J. Levesque, “Knowledge Representation and

Reasoning”, Morgan Kaufmann, 2004

[4] L. Brownston, R. Farrell, E. Kant and N. Martin, “Programming Expert
Systems in OPS5: An Introduction to Rule-Based Programming”,

Addison-Wesley, 1985

[5] S. Ceri, G. Gottlob and L. Tanca, “Logic Programming and
Databases”, Springer-Verlag, 1990

[6] H. Ciocarlie and CM Vacarescu, “Considerations regarding the

implementation of the ESPL programming language”, Int. J. of Comp.,
4(2):401-410, 2008

[7] A.K. Chandra and P.M. Merlin, “Optimal implementation of conjunctive

queries in relational databases” In Proc. of the 9th Annual ACM Symp.
on Theory of Computing, pp. 77-90, 1977

[8] J. Guard, F. Oglesby, J. Bennett, and L. Settle, “Semi-automated

mathematics”, Journal of the ACM, 16:49-62, 1969
[9] S. Kendal and M. Creen, “An Introduction to Knowledge Engineering”,

Springer, 2007

[10] G.M. Kuper and M.Y. Vardi, “On the complexity of queries in the
logical data model”, Theoretical Computer Science, 116(1):33-57, 1993

[11] J.E. Laird, A. Newell and P.S. Rosenbloom, “SOAR: An architecture for

general intelligence”, Artificial Intelligence, 33(1):1-64, 1987

[12] W. McCune, “Solution of the Robbins problem”, J. of Automated

Reasoning, 19(3), 263-276, 1997
[13] M. Negnevitsky, “Artificial Intelligence. A guide to Intelligent

Systems”, Addisson Wesley, 2nd Ed. 2005

[14] R. Ramakrishnan and J.D. Ullman, “A survey of research in deductive
database systems”, J. of Logic Programming, 23(2), 125-149, 1995

[15] S. Russel and P. Norvig, “Artificial Intelligence – A Modern Approach”,

Prentice Hall, 2nd Edition, pp. 51-54 & pp.310-315, 2003
[16] J.F. Sowa, “Knowledge Representation: Logical, Philosophical, and

Computational Foundations”, Brooks/Cole, New York, 2000

[17] E.S.L. Shapiro, “The Art of Prolog”, Advanced Programming
Techniques”, MIT Press, 2nd Edition, 1994

[18] C. Weidenbach and D. Dimova, A. Fietzke, R. Kumar, M. Suda and P.

Wischnewski, “SPASS Version 3.5”, In 22nd Int. Conf. on Automated
Deduction, CADE 2009, LNCS 5663, pp. 140-145, 2009

[19] L. Wos, R. Overbeek, E. Lusk and J. Boyle, “Automated Reasoning:

Introduction and Applications”, 2nd Ed., McGraw-Hill, 1992
[20] R.M. Wygant, “CLIPS- a powerful development and delivery expert

system tool”, Computers and Industrial Engineering, 17,546-549, 1989

Web Sites accessed as of March 2013

CLIPS: http://clipsrules.sourceforge.net/

Dublin Core: http://dublincore.org/documents/dcmi-terms/

Chafia Kara-Mohamed (alias Hamdi-Cherif) was born in Bordj-Bou-
Arreridj, Algeria. She received “Diplôme d’Ingénieur d’État” in Computer

Science from Ferhat Abbas University, Setif, (UFAS), Algeria, and
“Magister” in Computer Science (Artificial Intelligence) from USTHB,

Algiers, in 1988 and 1994, respectively and “Doctorat d’État” in Computer

Science (Artificial Intelligence) from UFAS in 2012.
She worked as demonstrator at USTHB from 1988 to 1994 and taught at

UFAS Computer Science Department from 1994 to 2001. In 2002, she joined

Computer Science Department, Qassim University, where she is Instructor.
She supervised 15 BS student projects and collaborated in 8 research projects.

Her currents interests are grammatical inference, machine learning and

bioinformatics. Dr. Chafia is member of IEEE and ACM.

Noura Ibrahim Al-Osily was born in Qassim, Saudi Arabia. She received
Bachelor of Science in Computer Science from Qassim University, in 2010

with First Class Honors. She is Teaching Assistant with Computer College at
Qassim University, Saudi Arabia. She is now on leave of absence in

Cleveland, Ohio, USA, preparing for graduate studies. Her actual interests are

knowledge-based systems and programming languages, particularly logical
languages.

Rayy Abdulaziz Al-Marshad was born in Jeddah, Saudi Arabia. She
received Bachelor of Science in Computer Science from Qassim University,

Saudi Arabia, in 2010 with First Class Honors. She is now with Buraydah
College of Technology, Qassim, Saudi Arabia. Her actual interests are

programming languages.

Modhi Saad Al-Twijary received Bachelor of Science in Computer Science
from Qassim University, in 2010. She is now Relationship Manager with

Bank Al-Rajhi, Buraydah, Qassim. Her actual interests are software

engineering and human relations.

Johara Al-Robe’an received Bachelor of Science in Computer Science from

Qassim University, Saudi Arabia, in 2010. She is now Computer Analyst with

Bank Al-Rajhi, Buraydah, Qassim, Saudi Arabia. Her actual interests are
programming languages.

Aboubekeur Hamdi-Cheri was born in Setif, Algeria. He received BSc and
MSc in Electrical Engineering, both from Salford University, Manchester,

England, in 1976 and 1978, respectively, and PhD degree in Computer
Science from Université Pierre et Marie Curie Paris 6, (UPMC) Paris, France,

in 1995.

He worked with Algerian Petroleum Company SONATRACH. He taught at
École Supérieure des Transmissions, Algiers, at Université de Bretagne

Occidentale, Brittany, France, at ESLSCA, Paris, and at UFAS, Algeria.

In 2001, he joined Qassim University, Saudi Arabia, where he is Professor
and Deputy Head of Computer Science Department. He supervised about 95

BS student projects, and 10 master and doctoral students, and directed 12

research projects. He is currently interested in machine learning, intelligent
control and bioinformatics. Dr. Aboubekeur is member of IEEE and ACM.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 5, Volume 7, 2013

254

http://clipsrules.sourceforge.net/
http://dublincore.org/documents/dcmi-terms/

