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Abstract — A controller generates suitable control signals for 
exhibiting desired response of any physical system. Control of 
electrical power generators has always remained very critical in 
power systems’ operation and control. The continuously 
changing load demand at the generators terminals and 
restructuring of power systems have immensely increased the 
need of an optimally tuned controllers. Automatic Voltage 
Regulator (AVR), mounted on the generators plays pivotal role in 
power systems’ smooth operation during steady-state and 
transient mode as well. Proportional integral and derivative 
(PID) controller is the most commonly used controller for AVR. 
Bio-inspired optimization algorithms have been reported to give 
revolutionary results in field of power systems operation and 
control. This research work has used Enhanced Artificial bee 
colony (EABC) optimization algorithm to optimally tune PID-
AVR. EABC capitalizes on three different mutation equations 
simultaneously to yield the optimal solution of an optimization 
problem. This research work has compared the performance of 
EABC with other ABC variants for optimizing PID-AVR using 
five different fitness functions. The results show the best 
convergence of EABC algorithm.  

Keywords—Enhanced ABC, PID-AVR optimization, Optimization 
algorithms, Evolutionary computing, Power systems.  

I. INTRODUCTION  

The trend of planning to operate power systems at ever 
lesser margins - to maximize the profit in the era of 
restructured power systems - has put the system stability at 
stake [1, 2]. Stability of a power system can be explained as its 
ability to regain a state of operating equilibrium after being 
subjected to a physical disturbance [3]. The stability of a 
power system is related to stability of a synchronous generator 
[4]. Automatic Voltage Regulators (AVRs), mounting on the 
generator play pivotal role in smooth running of the power 
systems [5, 6]. AVR keeps terminal voltage constant at preset 
voltage level. Deviation of terminal voltage from rated voltage 
eminently affects the performance of all equipments 
associated with the system, not only in terms of efficiency but 
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also from equipments' life perspective as well [7, 8]. Therefore 
AVRs are of immense importance during transient as well as 
steady state operation of power systems [3, 5, 9]. Proportional 
Integrator Derivative (PID), a linear controller is the most 
commonly used controller to regulate outputs of AVR.  

Various advanced control methodologies such as 
conventional control, neural control and fuzzy control have 
been studied and applied [4, 6, 10-12]. PID controller is a 
linear controller and is the most widely used controller in 
industry even today owing to its important features such as 
wide operating range, fewer parameters to tune, elimination of 
steady-state offset and anticipation of the future [2, 13]. 
Despite very few tuning parameters, it is difficult to tune PID 
gains properly because of higher order industrial plants, time 
delays and nonlinearity [14]. An experimental study has 
revealed that more than 40% of installed controllers in 
industry are poorly tuned [13]. Ziegler-Nichols (ZN) is the 
most commonly used classical method for PID controller 
tuning. However, it is often difficult to get optimal or near 
optimal PID gains using ZN method [15, 16].  

On the other hand, bio-inspired optimization algorithms 
are well known for producing optimal solutions of numerous 
engineering problems [10, 13, 15-17]. Nevertheless 
application of bio-inspired optimization algorithms for online 
tuning of controllers is limited due to lesser convergence 
speed [18]. Furthermore, the review of intelligent systems 
based solutions to enhance power system stability has revealed 
that due to speedy response and error resilience, intelligent 
systems produce better performance than conventional 
systems [2].  

Artificial Bee Colony (ABC) is a bio-inspired optimization 
algorithm which has captured much attention due to its 
superior convergence and lesser number of control variables 
[19-21]. ABC algorithm emulates foraging phenomenon of 
honeybees to generate solutions of complex problems and has 
been proposed in 2005 [19]. Nonetheless, ABC algorithm 
suffers from slow convergence [22], poor exploitation 
capability [23, 24] and prone to local optima traps [25]. To 
overcome the flaws, various researchers have proposed 
different amendments [17, 22, 24-30]. A variant of ABC 
optimization algorithm was proposed by the authors [25]. The 
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proposed variant was named Enhanced ABC (EABC) 
algorithm. The proposed variant had been rigorously 
compared with various existing ABC variants on a few high 
dimensional benchmark functions. The results have proved 
significantly improved performance of EABC.  

The objective of this research work is to analyze the 
performance of EABC on a real world application i.e. PID-
AVR optimization. The performance of EABC has been 
compared with a number of existing ABC variants. PID-AVR 
system used in this research work has been adapted from 
research works published in reputable journals. Afterword 
different fitness functions, proposed in reputable journals, 
have been collected to thoroughly analyze the performance of 
the optimization algorithms. An optimization algorithm may 
exhibit different performance as the fitness function changes.  

This paper has been organized in seven sections. The 
immediate section presents model of PID-AVR which has 
been optimized in this research work. The third section 
discusses EABC optimization algorithm. The fourth section 
describes the simulation set-up and parameters setting of the 
compared optimization algorithms. The fifth section discusses 
the results. The sixth section compares the performance of the 
optimized PID-AVR models and finally conclusion is 
presented in the conclusion section.  

II. PID-AVR MODEL  

Model of PID-AVR which has been used to assess the 
performance of the optimization algorithm is depicted in 
Figure 1. This model has also been used by [10, 14-16]. The 
transfer-functions and gain-values of the model components 
are given in Table 1. 

 

 

 

 

 
 

Figure 1. Block diagram of PID-AVR model used in this research. 

Table 1. Transfer function of the PID-AVR model their values. 

Components Transfer Function Parameter Values 

Amplifier  TF Amplifier = Ka/1+τas Ka = 12    τa = 0.1 

Exciter TF Exciter   = Ke/1+τes Ke =  1     τe = 0.4 

Generator TF Generator = Kg/1+τgs Kg =  1     τg =  1 

Sensor TF Sensor  = Ks/1+τss Ks =  1     τs =  0.01 

Controller TF Controller = (kps+ki+kds2)/s 

As illustrated in Figure 1, the controller generates control-
signal on the basis of error-signal (∆V e) [32-34]. The error-
signal is deviation of generator’s output voltage from the 

preset-voltage. Function of the proportional (P) controller is to 
minimize the magnitude of the error-signal [32]. The steady-
state-error is reduced by the integral (I) component of the 
controller [33]. Furthermore, the derivative (D) element of 
controller is to damp out the oscillations [34]. 

Fitness functions which have been used by different 
researchers [10, 14-16, 31] to optimize PID-AVR are 
presented in Table 2. The first, second and third fitness 
functions carry correlated objectives and hence, the fitness are 
difficult to optimize. The fourth and fifth fitness functions are 
known as Integral of Time-weighted Square Error (ITSE) and 
Integral of Time-weighted Absolute Error (ITAE) 
respectively. ITSE and ITAE are the commonly used fitness 
functions for PID controller optimization. In Table 2, Osh is an 
overshoot, Ess represents a steady-state error, ts is the settling 
time, tr shows the rise-time, max_dev represents the 
maximum-deviation of voltage, e(t) shows the difference 
between calculated and desired value, β=1.5 and max(t)=1sec. 

Table 2. Fitness functions to optimize PID-AVR. 

Label Fitness function Reference 

f1 (1 - e-β) × (Osh+Ess) + e-β(ts - tr) [14, 16] 

f2 

t-β se
max(t) -β+e O +Esssht-β r(1-e ) 1-

max(t)

×

×

×

 [15] 

f3 
0.0012 2(O  10000) + t +

sh s 2(max_dev)
×  [10] 

f4 
max 2t  (e(t))

0

t t
dt

t

=
×∫

=
 [31] 

f5 
max

t  |e(t)| 
0

t t
dt

t

=
×∫

=
 [15] 

III. ENHANCED ARTIFICIAL BEE COLONY (EABC) 
OPTIMIZATION ALGORITHM 

EABC algorithm simulates foraging phenomenon of 
honeybees similar to the standard ABC algorithm [35]. Flow 
chart of EABC algorithm is given in Figure 1. EABC 
algorithm divides the population of honeybees into three 
different classes. One is called employed-bees, which are 
assigned randomly-initialized food-sources at the start of the 
algorithm. The employed-bees assess nectar amount and 
neighborhood of the assigned food-sources. Later on, the bees 
pass the information to onlooker-bees. The nectar-amount of a 
food-source symbolizes the fitness of a possible-solution. The 
second type of honeybees is named onlooker-bees. Onlooker-
bees explore neighborhood of only high-quality food-sources. 
The neighborhood of the food-sources is explored by a 
mutation equation. 

PID Amplifier Exciter Generator 

Sensor 

 ∑ 

∆Vref 
  

 

   

 

     ∆Vt 
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Assign a randomly 
generated food source to 

each employed-bee

Start

Is termination criterion 
satisfied ?

Calculate fitness of each food-
source using equation (4) 

Assign a food-source to scout-
bee to replace the abandoned 

food source using equation (4)

Memorize the best food position

Terminate

Yes

No

Select the best among above 
three modified food-sources

Explore neighborhood of food-
source by employed-bees using 

zij = yij + φij (yij-y second-best, j) 

Explore neighborhood of food-
source by employed-bees using 

zij = yij + φij (yij-y best, j) 

Explore neighborhood of food-
source  by employed-bees using 

zij = yij + φij (yij-y kj) 

Calculate fitness of modified 
food-source

Calculate fitness of modified 
food-source

Calculate fitness of modified 
food-source

Apply greedy selection

Explore neighborhood of food-
source by onlooker-bees using 
zij = yij + φij (yij-y second-best, j) 

Explore neighborhood of food-
source by onlooker-bees using

 zij = yij + φij (yij-y best, j) 

Explore neighborhood of food-
source  by onlooker-bees using

zij = yij + φij (yij-y kj) 

Calculate fitness of modified 
food-source

Calculate fitness of modified 
food-source

Calculate fitness of modified 
food-source

Select the best among above 
three modified food-sources

Apply greedy selection

Pass on food-sources to 
onlooker-bees, having 
higher nectar amount.

 

Figure 2 Flow chart of Enhanced Artificial Bee Colony Optimization Algorithm (EABC) 
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Mutation equation of an optimization algorithm determines 
its performance. On the other hand, no free lunch theorem 
states that no single mutation equation can yield equally-better 
performance on different types of optimization problems. 
Mutation equation of an optimization algorithm set rules of 
engagement among honeybees. Besides, the interaction among 
the population elements emerges self-organized patterns. 
Additionally, the neighborhood exploration of any food-source 
using the gbest food-source increases convergence rate 
however, it may lead towards premature convergence. On 
other hand, the neighborhood exploration of any food-source 
based on a randomly chosen food-source curtails convergence 
rate but, it inducts capability to avert local optima. Therefore, 
EABC algorithm capitalizes on three different mutation-
equations to avail benefits of each mutation-equation, unlike 
the standard ABC algorithm. The mutation-equations of 
EABC are given below; 

       zij = yij + φij (yij-ybest, j)                                               (1) 

       zij = yij + φij (yij-ysecond-best, j)                                      (2) 

       zij = yij + φij (yij-yk j)                                                   (3) 

where yij symbolizes jth dimension of ith food-source, ykj 
represents jth dimension of kth food-source, zij corresponds to 
candidate-solution of jth dimension of ith food-source, y best, j is 
the jth index of the global-best (gbest) food-source,  y second-best, j 
is the jth index of the global-second-best food-source, i and k 
are the mutually-exclusive food sources, j Є [1,2,…. D], D is 
the dimension of search space, j and k are randomly chosen 
numbers and φ is a random number within [-1, 1].  

Equations (1) and (2) capitalize on the gbest and the 
second-gbest food-source for the neighborhood exploration of 
a food-source, respectively. Hence, the proposed algorithm 
capitalizes on multiple gbest food-sources. This way, the 
proposed algorithm explores around multiple so-far best-found 
areas of a search-space. Hence, EABC algorithm has the 
ability to converge faster while avoiding local-optima traps. 
Moreover, equation (3) capitalizes on a randomly chosen 
food-source and it further strengthen local-optima avoiding 
capability of the proposed algorithm. The proposed algorithm 
explores the neighborhood of every food-source based on the 
three equations (1), (2) and (3). After calculating nectar 
amount of the three new food-sources, the best among the 
three is selected for further processing. Thus the proposed 
algorithm uses three different mutation-equations however, it 
updates every food-source only twice in an iteration similar to 
the standard ABC algorithm. 

The third type of bees is known as scout-bees. If nectar 
amount of any food-source is sucked then, the associated 
employed-bee becomes scout-bee. The scout-bee directly goes 
to the dancing area of a hive where employed-bees share the 
information, with onlooker-bees, of the evaluated food-
sources. The scout-bee collects information about the gbest 
food-source then, the scout-bee directly flies to the food-
source for exploring its neighborhood. EABC algorithm 

assigns a food-source to scout-bee using the following 
equation;  

                   Znj = (y best, j) × βnj                                        (4) 

where znj is the jth dimension-magnitude of the newly assigned 
food-source, ybest,j is the jth dimension-magnitude of the gbest 
food-source, j Є [1,2,…. D], D is the dimension of search 
space and βnj is random number within [0.90, 1.10]. 

The limits of β are chosen keeping in view that the 
transformation process may not distort the gbest food-source 
much. The other stages of EABC and the standard ABC 
algorithm are similar. For further explanation, please refer to 
[25].  

IV. SIMULATION SET-UP AND PARAMETER SETTINGS 

The performance of the optimization algorithms has been 
analyzed using PID-AVR model presented in Figure 1. PID-
AVR model has been optimized using fitness functions 
presented in Table 2. The algorithms have been run for 30 
generations with population-size equal to 10. The value of 
“limit” control variable has been limited to 15. As these are 
the common control variables therefore, their values have been 
set to the same value for all algorithms for unbiased 
comparison. P for IABC has been set to 0.25 and ASF for 
MABC has been set to 0.90. These are algorithm specific 
control variables and their values have been set according to 
the suggestions given in their respective research works. 

The performance of EABC has been analyzed in 
comparison to ABC [19], BABC [28], IABC [27], MABC 
[22] and BSFABC [26] algorithms. Each algorithm has been 
run 30 times on each fitness function to analyze the robustness 
and the convergence of the optimization algorithms. The 
performance of the algorithms has been analyzed on the basis 
of the average convergence over thirty runs and standard 
deviation among thirty outputs. Afterword, PID-gains yielding 
the least fitness function value, among thirty runs, have been 
taken to compare the performance of the controller optimized 
by the algorithms. The PID-AVR components are given in 
Table 1 and the values are well within limits specified in [10, 
14, 16].  

V. RESULTS AND DISCUSSION 

Figures 3 to 7 show convergence rates of the optimization 
algorithms on the five fitness functions (f1, f2, f3, f4 and f5). The 
presented plots clearly show that BSFABC and MABC have 
resulted in inferior convergence than the standard ABC 
algorithm. Mutation equation employed by BSFABC during 
onlooker-bees stage is highly local in nature whereas MABC 
suffers from poor neighborhood exploration. On the other 
hand, BABC and IABC have resulted in better convergence on 
f1 and f2 initially. However, the algorithms could not converge 
more on the fitness functions as, the algorithms generates new 
solutions around gbest possible solution. Any algorithm which 
heavily relies upon the gbest possible solution for the 
convergence similar to BABC may exhibit superior 
convergence on benchmark functions. However, the 
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performance of such algorithm deteriorates on real world 
applications. 

From the presented plots of convergence rates, it can be 
deduced that EABC optimization algorithm has resulted in the 
best convergence on all the fitness functions. On f3, f4 and f5, 
EABC has successfully averted local optima traps where other 
algorithms could not converge beyond a certain level. It shows 
that EABC algorithm is an appropriately balanced algorithm 
in terms of exploration and exploitation.  

 

Figure 3. Convergence rates of the algorithms on f1. 

 
Figure 4. Convergence rates of the algorithms on f2. 

 
Figure 5. Convergence rates of the algorithms on f3. 

 

Figure 6. Convergence rates of the algorithms on f4. 

 
Figure 7. Convergence rates of the algorithms on f5. 

Table 3 presents the convergence results of the 
optimization algorithms on the fitness functions used to 
optimize PID-AVR model. The results prove that EABC 
algorithm has resulted in the least value of average 
convergence among all the optimization algorithms. 
Furthermore, EABC has also produced the least value of 
standard deviation on all the fitness functions. It shows that 
the algorithm is the most robust among the compared 
algorithms. 

Table 3 also presents rank of the algorithms on each fitness 
function. The table gives overall rank of every algorithm at the 
end. The presented results suggest that BSFABC algorithm 
has performed better than MABC algorithm. Moreover, the 
standard ABC algorithm has performed better than MABC 
and BSFABC algorithms. Between IABC and BABC 
algorithms, IABC algorithm has performed marginally better 
than BABC algorithm. Among the existing ABC variants, 
GABC algorithm has exhibited the best convergence results. 
Moreover, the proposed algorithm has outperformed all the 
compared optimization algorithms in optimizing PID-AVR 
controller mounted on synchronous generator. This shows that 
EABC algorithm possesses well balanced exploration and 
exploitation capabilities among compared ABC variants. 
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Table 3  Convergence results of the optimization algorithms. 

Label Algorithm Average Std Deviation Rank 

f1 

EABC 0.0506 0.0267 1 
GABC 0.0586 0.0256 2 
IABC 0.0900 0.0599 3 

MABC 0.2745 0.1615 7 
BSFABC 0.2455 0.1524 6 

BABC 0.0972 0.1247 4 
ABC 0.1850 0.0732 5 

f2 

EABC 0.0371 0.0136 1 
GABC 0.0388 0.0144 2 
IABC 0.0460 0.0159 3 

MABC 0.0898 0.0317 7 
BSFABC 0.0648 0.0262 6 

BABC 0.0473 0.0201 4 
ABC 0.0607 0.0228 5 

f3 

EABC 0.6935 0.8775 1 
GABC 1.2499 1.6372 2 
IABC 3.4096 3.3025 3 

MABC 11.0155 9.5893 7 
BSFABC 6.6881 11.3777 6 

BABC 5.5139 7.7941 5 
ABC 3.5842 3.4841 4 

f4 

EABC 2.3841 0.2665 1 
GABC 2.4190 0.3097 2 
IABC 2.5006 0.0009 3 

MABC 2.5063 0.0044 7 
BSFABC 2.5055 0.0111 5 

BABC 2.5022 0.0043 4 
ABC 2.5059 0.0146 6 

f5 

EABC 12.1103 2.6303 1 
GABC 12.6085 2.8296 2 
IABC 13.7538 1.7386 4 

MABC 14.1060 1.8577 7 
BSFABC 14.0094 2.4470 6 

BABC 13.2784 2.4697 3 
ABC 13.8078 1.7273 5 

Overall Rank  
of  

Algorithms  

EABC 5 
GABC 10 
IABC 16 

MABC 35 
BSFABC 29 

BABC 20 
ABC 25 

VI. PERFORMANCE ANALYSIS OF OPTIMIZED PID-AVR 

In this section, the PID gains yielding the least fitness 
function value among thirty runs have been taken for 
comparing the performance of optimized PID-AVR. PID gains 
yielding the least value are called the best convergence. 
Hence, this section compares the performance of the best 
convergence of each algorithm on each fitness function. 
Performance of PID-AVR gains, optimized using different 

algorithms, has been analyzed using time-domain analysis. 
Time-domain analysis considers four different parameters for 
assessing the performance of the controller i.e. rise-time (RT), 
settling-time (ST), overshoot (Osh) and steady-state-error 
(SSE). The terms are defined below;  

1. Rise-time: The time required to increase the value from 
10% to 90% of final value. 
 

2. Settling-time: The time required to damp out oscillations 
with 2% or 5% of final value. In this research work 2% of 
oscillations have been considered to calculate settling 
time. 

 

3. Overshoot: The amount of system output response 
proceed beyond the desired response. Normally overshoot 
is given in percentage values.  
 

4. Steady State Error: The difference between output value 
and real output at final time. Steady-state-error in this 
research work has been calculated at ten seconds.  

Table 4 gives the time-domain-analysis results obtained 
using all the considered optimization algorithms. On f4 MABC 
has resulted in the best optimized PID-AVR. However, on the 
rest of the fitness-functions, MABC has failed to produce even 
satisfactory PID-AVR gains. Moreover, the average 
convergence shown in Figure 7 is considerably inferior to 
EABC algorithm. The proposed algorithm (EABC) has 
yielded satisfactory results on f4 whereas on the rest of the 
fitness-functions, EABC has produced the best response 
among all the compared algorithms. 

Table 4 Time domain analysis results of PID-AVR model. 

Label Algorithm RT ST OSh SSE 

f1 

EABC 0.3131 0.4917 0 1.65E-07 

IABC 0.3436 0.5372 0 7.05E-07 

MABC 0.4967 0.7943 0 1.98E-05 

BSFABC 0.3486 0.5520 0 5.75E-07 

BABC 0.3225 0.5019 0 8.00E-07 

ABC 0.4246 0.7041 0 3.48E-06 

f2 

EABC 0.3178 0.5001 0 5.51E-07 

IABC 0.3284 0.5108 0 4.86E-07 

MABC 0.4138 0.6742 0 8.41E-06 

BSFABC 0.3497 0.5525 0 5.36E-07 

BABC 0.3253 0.5058 0 8.01E-07 

ABC 0.3481 0.5526 0 4.43E-07 

f3 

EABC 0.3242 0.5102 0 3.26E-07 

IABC 0.3792 0.6098 0 4.96E-06 

MABC 0.5314 1.0017 0 3.08E-05 

BSFABC 0.4111 0.6619 0 1.47E-05 

BABC 0.3241 0.5138 0 6.96E-07 

ABC 0.4464 0.7097 0 4.43E-05 

f4 EABC 0.1124 0.7733 21.2852 4.94E-07 
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IABC 0.0958 0.945 28.448 3.85E-06 

MABC 0.1227 0.7099 23.7873 2.51E-07 

BSFABC 0.0964 0.948 27.9845 4.79E-06 

BABC 0.0956 0.9504 28.4668 3.12E-06 

ABC 0.0961 0.9496 28.3742 2.91E-06 

f5 

EABC 0.1193 0.7007 17.0385 3.63E-07 

IABC 0.1308 0.7314 24.052 9.20E-08 

MABC 0.1495 0.7832 22.5297 2.02E-08 

BSFABC 0.1354 0.7472 22.6767 1.07E-07 

BABC 0.1884 0.9189 10.4254 4.14E-07 

ABC 0.1227 0.7115 23.1991 3.32E-07 

VII. CONCLUSION  

This research work has compared the performance of six 
variants of ABC optimization algorithm on PID-AVR model 
optimization. The performance of the algorithms has been 
evaluated on five different fitness functions. PID-AVR model 
and the fitness functions have been adapted from research 
works published in reputable journals. The performance 
analysis reveals that BSFABC and MABC algorithms have 
produced inferior average convergence than the standard ABC 
algorithm. BABC and IABC are prone to local optima traps, 
as the algorithms have initially shown better convergence on 
f1 and f2 but could not converge more on the functions. 
Moreover, on the other fitness functions BABC and IABC 
algorithms could not exhibit superior convergence. On the 
other hand, EABC algorithm which was proposed by the 
authors in reference [25] has shown superior convergence on 
all the fitness functions. This shows that the algorithm 
possesses properly balanced exploration and exploitation 
capabilities. Proper balancing of the capabilities is the prime 
condition for an optimization to yield equally-well 
performance over a wide range of optimization problems.  
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