
 

 

 
Abstract—This contribution presents the usability of the 

mathematical software MATLAB ® (MATrix LABoratory) in 
the field of simulation of the steady-state, dynamic behaviour 
and adaptive control of the Continuous Stirred Tank Reactor 
(CSTR). These types of chemical reactors belong to the class 
of nonlinear lumped-parameters systems mathematical model 
of which is described by one or more Ordinary Differential 
Equations (ODEs). The simple iteration method was used for 
steady-state analysis of the system while the Runge-Kutta’s 
method was employed for the numerical solution of the set of 
ODE. Both methods are simple, provides sufficient results 
and they are easily programmable which was important in our 
case. The presented adaptive approach used for controlling of 
the system provides sufficient results although the system has 
negative properties from the control point of view. The 
benefit of this paper can be found in the simulation program 
made in MATLAB with the use of Graphical User Interface 
(GUI) that provides user possibilities to examine simulations 
without changing of the program code. 
 
Keywords—Matlab, modeling, simulation, adaptive control, 

recursive identification.  

I. INTRODUCTION 
HE most of processes in the real world, not only in the 
industry has nonlinear behaviour. On the other hand, 

chemical reactors belong to the most often equipments in the 
chemical and biochemical industry [1] and that is why this 
paper is focused on one particular member of this family – the 
Continuous Stirred Tank Reactor (CSTR) with exothermic 
reaction inside.  
Specific design of the controller is usually proceed by few 
very important steps. Not every property of the controlled 
system is known before we start and that is why we perform 
simulation experiments on the system. There are two main 
types of the investigating of the system’s behaviour – (1) 
experiment on the real model and (2) computer simulation. 
Computer simulation is very often used at present as it has 
many advantages over an experiment on a real system, which 
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is not feasible and can be dangerous, or time and money 
demanding. 
Simulation and modelling possibilities rise with the 
increasing impact of the digital technology and especially 
with the computer technology which grows exponentially 
every moment.  
The mathematical model of this particular CSTR is described 
by the set of two nonlinear Ordinary Differential Equations 
(ODEs) which are constructed with the use of material and 
heat balances inside. Examples for deriving such 
mathematical models can be found in [2]. The steady-state 
analysis investigates behaviour of the system in the steady-
state which from the mathematical point of view means 
numerical solving of the set of nonlinear algebraic methods. 
The simple iteration method [3] was used in this case because 
the system fulfills the convergence condition. The next step is 
the dynamic analysis which practically means numerical 
solving of the nonlinear set of ODEs. A lot of numerical 
solution methods have been developed, especially for the 
ODE, such as Euler’s method or Taylor’s method [4]. Runge-
Kutta’s methods are very popular because of their simplicity 
and easy programmability [5].  
Although there could be used several modern control methods 
[6], [7], the adaptive approach is used here. The basic idea of 
adaptive control is that parameters or the structure of the 
controller are adapted to parameters of the controlled plant 
according to the selected criterion [8]. The adaptive approach 
in this work is based on choosing an external linear model 
(ELM) of the original nonlinear system whose parameters are 
recursively identified during the control. Parameters of the 
resulted continuous controller are recomputed in every step 
from the estimated parameters of the ELM.  
The polynomial method introduced by Kucera [9] used for 
designing of the controller here together with the pole-
placement method ensures basic control requirements such as 
stability, reference signal tracking and disturbance 
attenuation. The basic control system configurations with one 
degree-of-freedom (1DOF) and two degrees-of-freedom have 
been used. The proposed controller is hybrid because 
polynomial synthesis is made for continuous-time but 
recursive identification runs on the -model, which belongs to 
the class of discrete-time models. 
The MATLAB (MATrix LABoratory) [10] is mathematical 
software often used for computation and simulation [11], 
[12]. Although this software has it own programming 
language, it also provides the tool for creating window-like 
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programs which can be used for testing and simulation 
without changing of the program and knowledge about this 
programming language. This tool called GUIDE was used 
here for creating of the simulation program as a practical 
output of this contribution. 
The main goal is to provide MATLA program which provides 
basic simulation of one nonlinear system. Created program  
is available for free. People, who are interested, please contact 
author on his email address – vojtesek@fai.utb.cz. 

II. MODEL OF THE PLANT 
The proposed control strategy was tested on the mathematical 
model of Continuous Stirred Tank Reactor (CSTR). This 
model has simple exothermic reaction inside the tank which 
is cooled via cooling coil – see Fig. 1. 
Mathematically speaking, this plant is represented by the 
mathematical model which describes all quantities is of 
course very complex and we need to introduce some 
simplifications. First, we expect that reactant is perfectly 
mixed. Then, we also assume that volume, heat capacities and 
densities do not change rapidly during the control.  

 

Fig. 1 The schematic representation of CSTR 

These assumptions results in the mathematical model 
represented by the set of two Ordinary Differential Equations 
(ODE) [12] which are derived from the material and heat 
balances of the reactant and cooling, i. e. 
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where a1-4 are constants computed as 
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The fixed values of the system are shown in Table 1. 
The nonlinearity of the model is hidden mainly in the 
computation of the reaction rate, k1, which is nonlinear 
function of the temperature, T, and it is computed from 
Arrhenius law: 

1 0 e
E

R Tk k

   (3) 

TABLE 1.  
FIXED PARAMETERS OF THE REACTOR 

Quantity Symbol and value 
Reactor’s volume 
Reaction rate constant 
Activation energy to R 
Reactant’s feed temperature 
Inlet coolant temperature 
Reaction heat 
Specific heat of the reactant 
Specific heat of the cooling 
Density of the reactant 
Density of the cooling 
Feed concentration 
Heat transfer coefficient 

V = 100 l 
k0 = 7.2∙1010 min-1 
E/R = 1∙104 K 
T0 = 350 K 
Tc0 = 350 K 
ΔH = -2∙105 cal.mol-1 
cp = 1 cal.g-1.K-1 
cpc = 1 cal.g-1.K-1 
ρ = 1∙103 g.l-1 
ρc = 1∙103 g.l-1 
cA0 = 1 mol.l-1 
ha = 7∙105 cal.min-1.K-1 

III. STEADY-STATE AND DYNAMIC ANALYSES 
The pre-control simulation often includes steady state and 
dynamic analyses which help us with the understanding, how 
system works in different states and behaves after various 
changes on the input. 

A. Steady-state Analysis 
The steady-state analysis shows behaviour of the system in 
the steady-state, i.e. in t  ∞ and results in optimal working 
point in the sense of maximal effectiveness and concentration 
yield. Mathematical meaning of the steady-state is that 
derivatives with respect to time variable are equal to zero, 
d(∙)/dt = 0.  
The previous studies [14] have shown interesting steady-state 
feature of this reactor. It is clear, that the reactant and cooling 
heat must be equal in the steady-state, i.e. Qr = Qc, which 
means that the equation (1) in steady-state is rewritten to:  
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and results in relations for these heats Qr and Qc: 
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If we compute Qr and Qc for various values of the temperature 
T = <300, 500> K for working point q = 100 l.min-1 and  
qc = 80 l.min-1, we obtain three steady-states – see Fig. 2. 
As you can clearly see, this system has two stable steady-
states (S1 and S2) and one unstable steady state (N1). The 
steady-state values of the state variables in these points are: 

1
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It is clear, that the second operating point S2 has better 
efficiency (95.6 % reacts) for the same input settings than on 
the point S1 (3.8 % reacts).  
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Fig. 2 Heat balance inside the reactor 

So the steady-state model is finally described by the set of 
nonlinear functions 
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which are easily solved numerically by the simple iteration 
method. 

B. Dynamic Analysis  
This analysis means that we observe course of the state 
variables in time after the step change of some input variable. 
The step changes of volumetric flow rates q and qc are input 
variables in our case and the steady-state values in Equation 
(6) are initial conditions for the set of ODE (1). The Runge-
Kutta’s fourth order method was used for numerical solving 
of the set of ODE. 

IV. ADAPTIVE CONTROL 
There could be used several so called “modern” techniques to 
control of this process such as robust control, predictive 
control, fuzzy control etc. In our case, the adaptive control 
was used mainly because of its strong theoretical background 
and usability for such kind of processes. 
The Adaptive control is based on the quality of real 
organisms which can change behavior according to 
environmental conditions. This process is usually called 
“adaptation”. There are several ways of use of the adaptation. 
It can be done for example by the modification of the 
controller's parameters by the change of the controller’s 
structure or by generating an appropriate input signal, which 
is called “adaptation by the input signal”.  
The adaptive approach in this work is based on choosing an 
external linear model (ELM) of the original nonlinear system 
whose parameters are recursively identified during the 
control. Parameters of the resulted continuous controller are 
recomputed in every step from the estimated parameters of 
the ELM. The advantage of this method is that we do not care 
about the system nonlinearity. First we do the dynamic 
analysis that shows us the dynamic behavior of the output 

variable which is then used for the choice of the ELM which 
describes the output in the most accurate way. The possible 
change of the ELM parameters is taken into account by the 
recursive identification of ELM during the control. 
 

A. External Linear Model (ELM) 
 
The ELM could be generally described by the transfer 
function: 
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The presence of the variable s in the Equation (8) indicates 
continuous-time (CT) model. The online identification of 
such processes which is necessary in this case is not very 
easy.  
One way, how we can overcome this problem is the use of so 
called δ–model. These special types of models formally 
belong to discrete models but it was proofed for example in 
[15] that their parameters are close to the continuous ones for 
very small sampling period. 
The δ–model introduces a new complex variable γ ([16]):  
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Where  is a parameter from the interval  
0 ≤  ≤ 1 and Tv means a sampling period. It is clear that we 
can obtain infinite number of -models for various .  A so 
called forward δ-model for  = 0 was used and γ operator is 
then  
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The continuous model (8) is then rewritten to the form 
       a y t b u t     (11) 

where polynomials a() and b() are discrete polynomials 
and their coefficients are different, but for the small sampling 
period very close to those of the CT model a(s) and b(s).  
These parameters identified recursively, which means that 
they are computed by the Recursive Least Squares (RLS) 
method from differential equation 

       1Ty k k k e k        (12) 

Where   stands for known regression (data) vector,   
represents vector of parameters and  e(k) is a general random 
immeasurable component.  
 

B. Recursive Identification 
 
As it is written above, the well known and easily 
programmable Recursive Least-Squares (RLS) method is used 
for the on-line identification. This method is usually modified 
with some kind of forgetting; exponential or directional [17] 
mainly due to specific features of the identified system like 
nonlinearity etc.  
The basic RLS method is described by the set of equations: 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 530



 

 

       
       

       

 
 

         
       

       

1

1 1

ˆ 1

1 1

1

1 11 1
1 1 1

ˆ ˆ 1

T

T

T

T

k y k k k

k k k k

k k k k

k k k k
k k

k k k k k

k k k k

P

P

P P
P P

P

L

L







 





   

      
   

    
         

  

 

 



 
 

 

 (13) 

Where the “forgetting” could be affected by the choice of the 
forgetting factor 1. 
The identification methods used in the program are: 

Without forgetting, e.g. no forgetting factor is inserted. 
Constant exponential forgetting is for1 < 1 and
2 = 1. The values of forgetting factor 1 are from the range 
<0.95; 0.99>.  Parameter λ1 influences gradual forgetting of 
the old values and the most weight is put on the last values. 
This relation can be described by criterion 
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This algorithm can be used for systems with changing 
parameters. 
Increasing exponential forgetting has forgetting parameters  
2 = 1 and 1 is computed from  

   1 0 1 01 1k k        (15) 
Typical values of the forgetting parameters are 

 1 00 0.95,0.99   . The value of this forgetting factor 
is asymptotically approaching to 1, which means that the old 
data is forgotten.  
Changing exponential forgetting has again the value of 
forgetting parameter    2 = 1 and exponential forgetting 1 is 
recomputed in every step as 

     2
1 1k K k k       (16) 

where K is a very small value (e.g. 0.001).   
Directional forgetting. This algorithm forgets information 
only in the direction from which it comes. General 
description of this method can be formulated by the following 
equations: 
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where 1 can be chosen similarly as in exponential forgetting. 
-  

C. Control System Synthesis 
The control system configuration with one degree-of-freedom 
(1DOF) was used this work – see  Fig. 3. 

 
v 

- 
e u w y 

 

Fig. 3 1DOF control configuration 

G in Fig. 3 denotes transfer function (8) of controlled plant, w 
is the reference signal (wanted value), v is disturbance, e is 
used for control error, u is control variable and y is a 
controlled output. 
The feedback part of the controller are designed with the use 
of polynomial synthesis: 
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where parameters of the polynomials p(s) and q(s) are 
computed by the Method of uncertain coefficients which 
compares coefficients of individual s-powers from 
Diophantine equation [9]: 
         a s s p s b s q s d s      (19) 

The resulted, so called “hybrid”, controller works in the 
continuous time but parameters of the polynomials a(s) and 
b(s) are identified recursively in the sampling period Tv.  
The feedback controller Q(s) ensures stability, load 
disturbance attenuation for both configurations and 
asymptotic tracking. 
The polynomial d(s) on the right side of (19) is an optional 
stable polynomial. Roots of this polynomial are called poles of 
the closed-loop and their position affects quality of the 
control.  
This polynomial could be designed for example with the use 
of Pole-placement method. The degree of the polynomial d(s) 
is in this case 

     deg deg deg 1d s a s p s    (20) 
A choice of the roots needs some a priory information about 
the system’s behaviour. It is good to connect poles with the 
parameters of the system via spectral factorization. The 
polynomial d(s) then for our ELM (8) can be rewritten for 
aperiodical processes to the form 
     deg degd nd s n s s      (21) 

where α > 0 is an optional coefficient reflecting closed-loop 
poles and stable polynomial n(s) is obtained from the spectral 
factorization of the polynomial a(s) 

       * *n s n s a s a s    (22) 
 

V. USED NUMERICAL METHODS 
The main numerical methods used in the program are the 
Simple iteration method in the steady-state analysis and the 
Standard Runge-Kutta’s method used for the solving of 
ordinary differential equations in the dynamic analysis and 
also in the hybrid adaptive control where the action value (i.e. 
output from the controller) is computed also from the 
ordinary differential equation for the continuous-time.  
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A. Simple Iteration Method 
 
Consider nonlinear system in the form of state equation 
     ,t t t   x f x u with initial condition  0 sx x and 

the vector of state variables is 1 2, ,
Ts s s s

nx x x   x . 

Components of this vector are unknown and they could be 
computed by solving of equations of the model in steady-state: 

 , 0s s f x u  (23) 

where us = [u1
s, u2

s,… um
s]T is vector of assigned (known) 

input variables which comes from basic steady-state. 
Unknown variables in the equation (23) are components of 
the state vector xs, which creates n state variables in basic 
steady-state. Computation of the initial conditions xs is for 
nonlinear system important not only for computation of the 
dynamics but also it is used for creating of a linearized 
mathematical model of the process in working point. It is 
known that parameters of this model depend on values of 
state variables in the working point. 
Equation (23) can be now rewritten to  
  0f x  (24) 

for unknown values of xi for i = 1,2,…n. 
Next step in the solution is following. The equivalent set of 
equations to the set (24) is 

 x = x  (25) 
where φ is nonlinear vector function φ = [φ1, φ2,… φn]T and 
which leads to iterative equation in the form of 

 1k k x x  for  k = 0,1, … (26) 

The iterative method leads to the exact solution only if it 
converges. The convergence condition of the iterative process 
(26) then can be formulated as: 
Let the vector function φ is defined in the closed convex 
region D   n and if Dx  so D too. Moreover, let 
functions φ has continuous partial differential derivations of 
all variables 1 nx x  in the region D, then there exists matrix 
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  (27) 

If matrix (27) complete condition   1 x  for any Dx , 

there are only one solution D*x  of the equation (26). 
There could be of course thousands of iterations during the 
computation but from practical point of view is convenient to 
stop the computation in the case that difference between 
values of actual and previous iteration is sufficiently small, 
i.e. condition 

   1k k
ss x x  (28) 

is fulfilled for accuracy ss > 0, value of which depends on 
supposed absolute dimension of computed variables. 
 

B. Standard Runge-Kutta’s Method 
 
The second main group of the numerical solving is solution of 
the ordinary differential equations (ODE) which can be found 
mainly in the dynamic analysis as the numerical solution of 
the set of ODE (1) but there are used in the adaptive control 
as it is mentioned above too.  
We supposed the general differential equation be in the form 
of  
     ,t t t   y g x u  (29) 

with the initial condition   
 0 0y t y  (30) 

There are a lot of methods which can be used for numerical 
solving of this problem. General division is into the two main 
groups – one-step and multi-step methods. 
The popular Runge-Kutta's standard method was used in this 
work. This method is very often used because of its simplicity. 
Runge-Kutta's methods belong to the class of high-order 
methods, they can be used for computation of the initial 
values or for the final result and they are easily 
programmable. The (standard) fourth-order Runge Kutta's 
method uses first four parts of the Taylor's series: 

     1 2 3 4
11 2 2
6

y k y k g g g g        (31) 

where coefficients g1-4 are computed from: 
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The Runge-Kutta's methods are in some cases build-in 
functions in mathematical softwares. For example in 
MATLAB, which is used for simulation in this work, are 
Runge-Kutta's methods in functions ode23 (the second order 
Runge-Kutta formula) or ode45 (the fourth order Runge-
Kutta's formula described above). One of advantages of these 
methods is that they have flexible integration step hi, which 
recomputes every step according to the actual computation 
error. The standart Runge-Kutta method has a several 
modifications like Runge-Kutta-Fehlberk method, Runge-
Kutta-Nyström method etc. 
 

VI. SIMULATION PROGRAM 
The simulation program which deals with the simulation of 
the steady-state, dynamics and of course adaptive control of 
the CSTR was made in mathematical software MATLAB 
(MATrix LABoratory), version 7.0.1 from Mathworks [10] 
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using Graphical User Interface (GUI). The use of this tools 
enable programmer to make program user-friendly and close 
to the users who do not know or do not like programming. 
They can use all features of Matlab as a simulation tool by 
just changing of the most important variables and pressing 
buttons for computing. 
The MATLAB has special tool for creating of programs with 
GUI. This tool is called simply by typing of the command 
guide in the Command window and the sample window is 
shown in Fig. 4. 
 

 
Fig. 4 The MATLAB’s tool GUIDE 

The usage of this tool is very simple and understandable. It 
has two main parts – I. workspace for program’s sketch and 
II. toolbar on the left side which provides all common objects 
used in the program design like text and edit boxes, buttons, 
radio buttons, list boxes etc. 
Each object could be of course edited via property inspector 
where you can edit color, font, size, position etc. of the object. 
The output from the GUIDE are two files – e.g. sample.fig 
where the sketch of the program and all object is saved and 
sample.m where are defined actions to individual objects 
mainly procedures to the buttons. 
The program can be start by the typing the command go in 
the program’s directory. It is divided into two main windows 
mainly because of the space. The first window (Fig. 6) 
involves simulation of the steady-state and dynamics of the 
system. The user can set the working point of the reactor 
which is defined by volumetric flow rates of the reactant and 
the cooling, qr and qc, input temperatures of the reactant and 
the cooling, Tr0 and Tc0, and input concentration of the 

reactant, c0. The next part gives user choice between two 
stable states S1 or S2 which closely described in chapter III.  
 

 
Fig. 5 Property inspector in GUIDE 

 

 
Fig. 6 GUI for the simulation of the steady-state and 

dynamics of CSTR 
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The third part is dedicated to the steady-state analysis where 
two analyses could be done – the steady-state analysis for 
different volumetric flow rate of the reactant qr and different 
volumetric flow rate of the coolant qc where the starting and 
end values could be set in the edit boxes. The steady-state 
analysis for both input variables together is represented by the 
push-button “Compute 3D” and results in 3D graphs. The 
sample results of the steady-state analysis are shown in Fig. 7. 
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Fig. 7 Sample results of the steady-state analysis 

The last part is focused on the dynamic analysis which could 
be done for step changes of both input variables qr and qc. 
Both dynamic analyses can be done for more step changes 
(e.g. six step changes -60, -40, -20, 20, 40 and 60 as it can be 
seen in Fig. 6). The simulation time and the integration step 
in Runge-Kutta’s method could be set via appropriate edit 
boxes. Again, the sample results of the dynamic analysis are 
shown in Fig. 8.  
The buttons in the bottom of the window used for opening the 
next window for control (push-button “Control”), displaying 
the help to the program (push-button “Help”) and closing of 
this window and all graphs (push-button “Close”). 
The second sub-program called by the pressing of the push-
button “Control” or by the command go_control from the 
Matlab’s command window deals with the simulation of the 
adaptive control. The window is displayed in Fig. 9. 
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Fig. 8 Sample results of the dynamic analysis 

The first two parts related to the working point and the choice 
of the steady-state are the same as in previous case. The new 

part here is the choice of the external linear model and 
settings for the control where the user could set the position 
of the root , sampling period Tv, definition of step changes 
of the reference signal w(t) which represents wanted value 
and time when they occur.  
 

 
Fig. 9 GUI for the simulation of the adaptive control of CSTR 

The final simulation time is recomputed according to the 
number of steps and time for each step. The last part in this 
sub-window is dedicated to the choice of recursive methods 
(see Fig. 10) for identification. 
 

 
Fig. 10 The choice of the identification method 

The buttons below has the same functions as in previous case 
except the first push-button on the left which will call the 
program for simulating of the steady-state and dynamics in 
this case. Simulation results of the adaptive control can be 
seen in Fig. 11. 
As a result of the simulation, program shows the final value 
which indicates what computation was done and in which 
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MAT-file are data saved in. The name of this file differs with 
the computation – see Fig. 12. 
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Fig. 11 Sample results of the adaptive control 

 

 
Fig. 12 GUI with the results of the computation 

 

VII. CONCLUSION 
This contribution shows procedure which is connected with 

the modeling and simulation of the system’s behaviour that 
usually precede the design of the controller. The steady-state 
and dynamic analyses uncover nonlinearity of the examined 
continuous stirred tank reactor. The designed adaptive 
controller is based on the recursive identification of the 
external linear model as a linear representation of the 
originally nonlinear system. This controller could be tuned 
via the choice of the parameter  where increasing value of 
this parameter results in quicker output response but more 
shaking course of the input variable. The main goal of this 
contribution is to show usability of the mathematical software 
MATLAB for creating simulation programs which could help 
users to investigate the behaviour of the nonlinear system 
represented by the CSTR. The resulting program has two 
main windows – the first provides the simulation of the 
steady-state and dynamics of the system for different values of 
input quantities. Results are displayed in the separate figures 
and the data were also saved in the MAT-files. The second 
program deals with adaptive control of this system and user 
can again set different input variables and choose various 
computations. The benefit of this program can be found in the 

GUI which provides changing of the most important values 
by the edit windows instead of the change of the program 
code. The program is available also for free at the author 
email. 
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