
 

 

 
Abstract— Acquired immune deficiency syndrome (AIDS) has 

been widely considered as the most devastating epidemic. To 
discover effective therapy for HIV infection, the dynamics of the 
virus-immune system in the human body have been the subject of 
intense studies.  Since the development of the disease typically 
exhibits a three phase evolution, that is, an acute phase (measured in 
days), a chronic phase (measured in weeks) and AIDS (measured in 
years), the use of ordinary or partial differential equations are 
inadequate in our attempt to describe the three different time scales 
in order to simulate the entire course of the HIV infection. Cellular 
automata simulation approach has become well known as a useful 
technique to investigate complex biomedical systems in situations 
where traditional methodologies are difficult or too costly to employ. 
So far, relatively simple cellular automata models have been 
proposed to simulate the dynamics of HIV infection in human. Most 
cellular automata models only considered viral proliferation in the 
lymph node. However, most clinical indications of AIDS progression 
are based on blood data, because these data are most easily obtained. 
Since viral population circulates between lymph node and plasma, 
viral load in the two compartments are important for the description 
of HIV infection dynamics. We present here cellular automata 
simulations of a two-compartment model of HIV proliferation with 
delay. 
 
 

Keywords—Cellular Automata, double compartments 
simulation, HIV proliferation.  

I. INTRODUCTION 

ELLULAR Automata (CA) modeling has been widely 
used in modeling complex systems. Despite of its simple 

structure, CA is well suited to describe the propagation 
phenomena, such as rumor spreading, particle percolation, and 
disease spreading [1]-[4]. In some practical applications, 

 
Manuscript received October 29, 2010: Revised version received October 

29, 2010. This work was supported by the Center of Excellence in 
Mathematics, Commission on Higher Education, and Mahidol University. S. 
Moonchai is with the Department of Mathematics, Faculty of Science, 
Chiangmai University, Thailand.  

Y. Lenbury is with the Department of Mathematics, Faculty of Science, 
Mahidol University, Bangkok, Thailand and the Centre of Excellence in 
Mathematics, Commission on Higher Education, 328 Si Ayutthaya Road, 
Thailand. (corresponding author, phone: 662-201-5340; fax: 662-201-5343; e-
mail: scylb@mahidol.ac.th). 

W.Triampo is with the R&D Group of Biological and Environmental 
Physics, Department of Physics, Faculty of Science, Mahidol University, 
Thailand, Center of Excellence for Vector and Vector-Borne Diseases, 
Thailand and Thailand Center of Excellence in Physics. 

multiple lattices are needed to simulate in parallel multi-
compartmental systems.  
 In particular, Acquired Immune Deficiency Syndrome 
(AIDS) has become indisputably the most devastating 
epidemic so far. The Human Immunodeficiency Virus (HIV) 
causes AIDS, so that the study of the dynamics of the virus-
immune system in the human body is necessary in order to 
discover a proper therapy for HIV infection and how it might 
be controlled. Many researchers have used mathematical 
models to describe the population dynamics of cells involved 
in the immune response system relevant to HIV proliferation 
[5]-[10]. Most of these models are based on systems of 
ordinary differential equations (ODES) and partial differential 
equations (PDES) [11]-[14]. However, since the development 
of the disease typically exhibits three phases of infection, that 
is, an acute phase (measured in days), a chronic phase 
(measured in weeks), and full blown AIDS (measured in 
years), the ODES and PDES are insufficient to describe the 
three different time scales and hard to construct to simulate 
the entire course of the HIV infection.  
 In recent years, cellular automata (CA) models have been 
used in modeling HIV infection model in the lymph node [1], 
[2]. In 2001, a simple CA model was used to simulate the 
evolution of HIV infection in the lymph node by Santos and 
Coutinho (SC-model) [1]. The result of their model was 
capable of simulating the three phase pattern of HIV dynamics 
observed in critical data. Later, Sloot et al. [2] proposed a CA 
model to study the dynamics of drug therapy for HIV 
infection. The CA model was a modification of SC-model. 
Recently, Veronica Shi et al. [3] also formulated a CA model 
based on SC-model for HIV dynamics and drug treatment. 
Viral load, its effect on infection rate in the lymph node was 
included in their CA model.  
 Most of these CA models only considered the dynamics in 
the lymph node. However, most clinical indications of 
progression are based on blood data, because these data are 
most easily obtained. Since viral population circulates 
between the lymph node and plasma compartments, viral load 
in the two compartments are important for the description of 
the dynamics of HIV infection. 
 In this paper, by modifying the CA rules based on SC-
model, we illustrate the use of double latticed CA simulation 
to investigate the dynamics of HIV infection in both the 
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lymph node and blood compartments while the viral loads in 
the two compartments are continuously updated throughout 
the simulation. Our model also takes into account a delay    
in the transformation of a newly infected CD4+ T cell that is 
free to spread the infection, into a final staged infected cell.  

II. CA MODEL OF HIV PROLIFERATION 

A cellular automaton (CA) is a discrete dynamic system in 
which space is divided into regular spatial cells, and time 
progresses in discrete steps. Each cell in the system has one of 
a finite number of states. The state of each cell is updated 
according to local rules, that is, the state of a cell at a given 
time depends on its own state and the states of its neighbors at 
the previous time step [4]. 

In this work, the CA model is defined on two coupled 
square lattices of sizes L L . The Moore neighborhood is 
adopted to define the rules. The states of the cells in each of 
the lattices are updated at each time step in parallel according 
to the rules, with each time step corresponding to one week. 
Each site on the lattice is occupied by a cell which is assigned 
one of the five states that describe the possible states in which 
those cells may be found: non-activated cells, healthy cells 
(representing CD4+ T-cells which are the main target of the 
HIV), infected A1 cells (corresponding to infected cells that 
are free to spread the infection), infected A2 cells (infected 
cells in the final stage before dying due to the action of the 
immune system) or dead cells (infected cells killed by the 
immune response).  

In this work, we construct the CA model of HIV infection 
in two coupled compartments; the lymph node compartment 
and the peripheral blood compartment. For each compartment, 
the simulation steps start with N0 non-activated or non-
proliferating cells, H0 healthy active cells, and a small fraction 

HIVP of infected A1 cells (A10), such that 10 0HIVA P H  , 

distributed randomly. These numbers depend on the initial 

viral load 0V . At each time step, all cells are updated using 

the rules described below. 
The updating rules (modified from SC- model [1]) are as 

follows. 
 
Rule 1: Updates of non-proliferating cells.  
 If a non-proliferating cell has non-proliferating cells as 

neighbors, it may become an active healthy cell at the 
probability Pop, accounting for opportunistic infection, or it 
remains the same at the probability 1- Pop. 

 If it has a neighbor which is A1 or A2 infected, it becomes 
an active healthy cell, by which the body tries to fight the 
infection. 

 
Rule 2: Update of healthy cells. 
(a)  A healthy cell gets infected by coming in contact with 

a virus at the probability 

         * ( )v v tP P f V (1 )aVt
vP e  .                           (1) 

(b) If it has at least one infected A1 neighbor, it becomes 

an infected A1 cell at the probability  
         * *

1 1 (1 )vP r P  .                               (2) 

(c) If it has no infected A1 neighbor, but has at least R (2 < 
R < 8) infected A2 neighbors, it becomes an infected A1 cell at 
the probability 

          * *
2 2 11 (1 )vP r r P   .                              (3) 

(d) Otherwise, it remains a healthy cell at the probability 
                 * * *

1 21 vP P P      

where * * *
1 20 1vP P P    . 

 
Rule 3: Update of infected A1 cells. 
An infected A1 cell becomes an infected A2 cell after   time 

steps. Thus, infected A1 cells become infected A2 cells at 
different time with a delay of  . 

 
Rule 4: Update of infected A1 cells.  
Infected A2 cells become dead cells, corresponding to the 

depletion of infected cells by the immune response. 
 
Rule 5: Updates of  dead cells 
(a) Dead cells can be replaced by healthy cells with the 

probability 
          

i n f e c r e p l(1 )P P   

in the next step, or by an infected A1 cell with  the 
probability  

               infec replP P .  

Otherwise, it remains a dead cell at the probability 
     rep l1 P . 

(b) After step (a), a dead cell can be replaced by an 
inactivated cell with the probability nonaP . Otherwise, it 

remains a dead cell at the probability 
     nona1 P . 

III. VIRAL LOAD SIMULATION 

In this CA model, the viral load influences the dynamics of 

the healthy and infected cells through the probability *
vP . 

After all of the five cell states are updated in the two lattices, 
the viral load in each compartment is calculated using (1)-(2) 
and the following difference equations which represent the 
evolution of viral load in the lymph node compartment (with 

Vt =
L

tV ) and peripheral blood compartment (with Vt =
B

tV ) 

at time t. 
In the lymph node compartment 

1 ( )L L L B L L L
t t L t t L LH t t tV V pS I V V c H V cV             (4) 

L
tI = virus-producing infected cells  

      = 
1 2
L L
t tA A  

 L B
L t tV e V V    

In the blood compartment         

1 ( )B B B B B B B
t t B t B t BH t t tV V pS I V V c H V cV               (5) 
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B
tI = virus-producing infected cells = 1 2

B B
t tA A  

 L B
B t tV e V V    

t  = 1 week ( time step) 

Here, 1
L
tA and 2

L
tA  are the numbers at time t of A1  and A2 

infected cells in the lymph node, respectively, 

while 1
B
tA and 2

B
tA  are the corresponding amounts in the blood 

compartment. L
tH and L

tH are the numbers of healthy cells in 

the respective compartments at time t,  p  is the average viral 
production rate per infected cell , e represents the circulation 
of virus between the two compartments, and c  is the death 
rate of free virus.  

 
Table I  Model parameters in the CA model in the lymph 

node compartment. 
 

Symbol Definition 
Value 

[reference]
L Lattice size 500 
N0  Number of non-activated or 

 non-proliferating cells at 0t   
250,000 

H0 Number of healthy active 
cells at 0t   

150,000 

PHIV Probability or percentage of 
initial infected  cells 

0.05 [1] 

Pop Probability for a  nonpro-liferating cell
to be replaced with a healthy cell 

0.001 
(estimated)

PV Constant in probability for a healthy
cell  to come in contact with a virus 

0.0004 
(estimated)

A Constant in probability  in (1) 151 10  
r1 Constant in  probability  in (2) 0.997   

(estimated)
r2 Constant in probability in (3) 0.997  

(estimated)
 Time delay for an infected A1 cell to

become an infected A2 cell 
4   [1] 

infecP  Probability for a healthy cell to be
replaced with  an infected A1 cell 

51 10  [1]

replP  Probability for a death cell to be
replaced with a healthy cell 

0.99  [1] 

nonaP  Probability for a death cell to be
replaced with non-activated cells 

0.9  
(estimated)

R Number of infected A2 cells in a cell’s
neighborhood to induce a healthy cell
to become an infected A1 cell 

4   [1] 

 
Since the amount of virus in peripheral blood is measured 

in milliliters and that in the lymph node is measured in total 
virus counts, we use conversion factors   (blood to lymph 
node) and   (lymph node to blood) in (4) and (5) to describe 

the exchange between the two compartments. We model 
immune activity in the lymph node and blood with 

LHc and BHc , respectively. In healthy individuals, total CD4+ 

T-cell counts are about 21011 cells in the lymph node, and 
1000 cells/mm3 in the blood [15]. Since each site in the LL 
lattice represents one of the five states of the cells in the two 
compartments, we convert the numbers of the cells from the 
CA models to numbers of cells in the body by using the 
conversion factors S1 and S2 for the lymph node and blood, 
respectively.  

 
Table II Model parameters in the CA model in the blood 

compartment. 
 

Symbol Definition 
Value      

[reference] 
L Lattice size 100 
N0 Number of non-activated or  

non-proliferating cells at 
0t   

10000 

H0 Number of healthy cells at  
0t   

5000 

PHIV Probability or percentage of  
initial infected cells 

0.05 
 [1] 

Pop Probability for a non-   
proliferating cell to be 
replaced with an active 
healthy cell 

0.001 
(estimated) 

PV Constant in probability for 
a healthy cell to come 
in contact with a virus 

0.0004   
(estimated) 

a Constant in  probability in (1) 71 10  
r1 Constant in  probability in (2) 0.997   

(estimated) 
r2 Constant in probability  in (3) 0.997    

(estimated) 
 Time delay for an infected 

 A1 cell to become an infected 
 A2 cell 

4 
[1] 

infecP Probability for a healthy 
cell to be replaced with  an 
infected A1 cell 

51 10   [1] 

replP
 

Probability for a death cell 
to be replaced with a healthy  
cell 

0.99   
[1] 

nonaP Probability for a death cell 
to be replaced with a non- 
activated cell 

0.9 (estimated) 

R Number of  infected A2  
cells in the neighborhood of   
a cell to induce a healthy  
cell to become an infected  
A1 cell 

4 
[1] 

 
To simulate the CA model, all parameters are set up as 

shown in Tables I-III. 
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1(c) 

1(a) 

1(b) 

1(d) 

Table III Model parameters in viral load simulation. 
  Symbol Definition Value [reference]

0
BV

 
Palsma virus concen-
tration at 0t   

10 
[16] 

(can vary) 

0
LV

 
Virus concentration in the 
lymph node  at 0t   

0 

p  Average virion pro-
duction rate per infected 
cell 

480 
[17] 

SL Scaling factor in the 
lymph node 

11
02 10 / H  

SB Scaling factor in the 
blood 

01000 / H  

LHc  Clearance rate of free 
virus in the lymph node 

0.00001 
(estimated) 

BHc  Clearance rate of free 
virus in the blood 

0.00001 
(estimated) 

c Death rate of free virus 0.3 
[17] 

e Circulation fraction of 
virus between lymph node 
and blood 

0.02 
[18] 

 Scaling factor:  
lymph node  blood 

72 10  [16] 

 Scaling factor:  
blood  lymph node 

65 10    [16] 

 

IV. SIMULATION RESULTS 

The result of model simulations shows the evolution of the 
numbers of the non-activated cells, healthy cells, infected A1 
cells, infected A2 cells, dead cells, viral load in the lymph 
node and viral load in the peripheral blood.  

In Fig. 1, the graphs exhibit three phases of the infection, 
acute, chronic, and progression to AIDS. The time evolution of 
healthy cells in the two compartments and the viral load in 
peripheral blood closely simulate clinical data [19]. In addition, 
to simulating the dynamics of HIV infection, the model 
reproduces the two time scales of weeks and years in the 
graphs.   
 The simulation shown in Fig. 1 uses the parametric values 
given in Tables I-III which correspond to the case in which a 
patient eventually succumbs to AIDS in approximately 5-6 
years. With different parametric values, the chronic phase may 
be lengthened. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 1 A simulated evolution of HIV infection without 
treatment indicates a three phase evolution using the 
parametric values in Tables I-III. (a), (b) Plots of the numbers 
of non-activated cells, healthy cells, infected A1 cells, infected 
A2 cells, and dead cells in the lymph node and blood 
compartments, respectively, (c) viral load in the lymph node 
compartment, and (d) viral load in the peripheral blood 
compartment.   
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Fig. 2 A simulation using probabilities r1 = r2 = 0.9. (a), (b) 
Plots of numbers of non-activated cells, healthy cells, infected 
A1 cells, infected A2 cell, and dead cells in the lymph node 
and blood compartments, respectively, (c) viral load in the 
lymph node compartment, and (d) viral load in peripheral 
blood compartment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Evolution of HIV infection averaged over 15 
simulations using the parametric values in Tables I-III.  
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Fig. 4 Evolution of HIV infection averaged over 15 
simulations using the parametric values in Tables I-III. but 
with probabilities r1 = r2 = 0.9. 

 In Fig. 2, we show the result of one simulation using 

1 2 0.9r r  and the model in this case simulates the 

progression of a patient who succumbs to AIDS more or less 
right away. 
 Fig. 3-4 show the average of 15 simulations of our CA 
model of HIV infection, using the parameter values in Tables 
I-III, with r1 = r2 = 0.997 in Fig. 3, and r1 = r2 = 0.9 in Fig. 4. 
We discovered that averaging over a larger number of 
simulations does not significantly change the averaged 
behavior of the time courses of the variables tracked by our 
model. Thus, the number of simulations needs not be greater 
than 15 in what follows. 
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Fig. 5 Evolution of HIV infection from averaging 15 

simulations using r1 = r2 = 0.997 for different values of vP : (a), 

(b) the numbers of non-activated cells in the lymph node and 
peripheral blood, respectively.  
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Fig. 6 Evolution of HIV infection from averaging 15 

simulations using r1 = r2 = 0.997 for different values of vP : (a), 

(b) the numbers of healthy cells in the lymph node and 
peripheral blood, respectively, (c) the number of infected A1 

cells in the lymph node. 
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Fig. 7 Evolution of HIV infection from averaging 15 

simulations using r1 = r2 = 0.997 for different values of vP : (a) 

the number of infected A1 cells in the lymph node, (b), (c) the 
numbers of infected A2 cells in the lymph node and peripheral 
blood, respectively.  
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Fig. 8 Evolution of HIV infection from averaging 15 

simulations using r1 = r2 = 0.997 for different values of vP : (a), 

(b) numbers of dead cells in the lymph node and peripheral 
blood, respectively, (c), (d) the viral loads in the lymph node 
and peripheral blood, respectively.  
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Fig. 9 Evolution of HIV infection from averaging 15 

simulations with different 1 2and  r r . 

 
Fig. 5-8 show the evolution of HIV infection averaged over 

15 simulations using the parameter values in Tables I-III for 

different values of vP which represents varying the chances 

that a cell coming in contact with the virus. We find that a 

higher vP leads to a faster progression to full blown AIDS. 

Fig. 9 (a)-(l) show the evolution of HIV infection averaged 
over 15 simulations using the parameter values in Tables I-III 

for different values of 1 2and  r r which are related to the 

chances that a healthy cell is converted to an infected A1 or A2 

cell. We see that higher 1 2and  r r means a more lengthy latent 

phase. This will sound reasonable if we remember that 

although, with a higher 1r , a healthy cell is infected more 

readily when it comes into contact with one A1 infected cell, 
the chance of its being infected by coming into contact with 2 

or more A2 cells is lower with higher 1r . 

V. CONCLUSION 

The model simulation has been carried out by updating 
each site in two coupled lattices in parallel. Our work is 
expected to extend the knowledge on the dynamics of HIV 
infection discovered by earlier researchers on this devastating 
disease, also see those reported in [20]-[23]. Here, the viral 
load in each compartment is updated at each time step. The 
virus is allowed to circulate from the lymph node 
compartment to the blood compartment whenever the viral 
load in the blood falls below a fraction e of the combined viral 
load. A delay   for a highly infectious A1 cell to become a 
final staged A2 cell has been taken into account to make the 
model more realistic. Moreover, opportunistic infection is 
considered here to play an essential role in allowing the model 
to simulate different cases of infection exhibiting different 
chronic phase durations and eventual progression to full 
blown AIDS that closely simulate general clinical data. 
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