
 

 

 
Abstract— In recent years, discrete models have emerged to play 

an important role in the study of immune response especially in the 
problem involving human immunodeficiency virus (HIV) infection, 
leading to AIDS. As infection of target immune cells by HIV mainly 
takes place in the lymphoid tissue, cellular automata (CA) models 
thus represent a significant step toward understanding how the 
infected population is dispersed. Motivated by these considerations, 
we introduce a stochastic CA model for HIV dynamics and explore 
the spatiotemporal pattern of infection. The model is successful in 
reproducing typical evolution of HIV which is observed in the 
dynamics of CD4+T cells and infected CD+T cells in infected 
patients. The geographical result on cell distributions illustrates how 
infected cells can be dispersed by spatial communities. We have 
found the pattern formation is based on the relationship among cell 
states, the set of local transition rules, the conditions and the 
parameters in the systems. The main finding is that the emergence of 
dead cells barriers greatly controls the pattern formation in our 
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system, by limiting infections and the manner in which the infection 
dynamics is brought to the last phase after the barrier is destroyed. 
 

Keywords—Cellular automata simulation, HIV, Leukapheresis, 
Monte Carlo, Stochastic process  

I. INTRODUCTION 

INCE the first case was reported in 1981, the infection by 
the human immunodeficiency virus (HIV), which caused 
AIDS (the acquired immunodeficiency syndrome), has 

been actively studied both in the laboratory and with computer 
modeling in order to understand the different aspects that 
regulate the virus-host interaction [1]-[5]. In recent years, 
several mathematical models, mainly based on sets of ordinary 
or partial differential equations (ODE/PDE), have been 
developed to investigate the dynamics of HIV infection [6]-
[8]. However, these approaches are limited in describing the 
spatiotemporal averaged behavior and inaccessible to the 
stochastic properties of HIV dynamics. This is because the 
ODE or PDE approaches describe the system in terms of the 
average behavior as a whole–body level [9], while the 
interaction between the virus and host’s immunological 
response tends to be characterized by geometric communities. 
For example, after HIV enters a human body, the Langheran’s 
cells that reside in the lamina propria subjacent to the vaginal 
epithelium play a key role in both priming the initial virus-
specific immune response and in serving as a carrier for the 
transport of antigen to the nearest lymphoid station. At the 
primary phase, HIV is mostly present in several isolated cells 
and some is exhibited in the germinal centers of a lymph node. 
Moreover; the follicular dendritic cell (FDC) network in the 
germinal centers of a lymph node traps and is dominant over 
the virus in the latency period. These phenomena are 
associated with an early dramatic decrease in the viral load 
and replication in the blood compartment. In contrast, an 
increase in these events is due to the degeneration of this 
compartment architecture in the later phase of the disease.  

Many articles [10]-[13] have developed CA models to 
explain the dynamics of HIV infection. However, few models 
successfully describe the two time scales and three phase 
dynamics of HIV infection. For instance, the first model that 
could be used to describe the three phase dynamics of HIV 
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was presented by Santos and Coutinho [12]. The model used a 
set of 4 different states of CD4 + T cells which could be 
healthy, infected – 1A , infected – 2A and dead. Each state was 
updated according to four simple rules. Although the basic 
Santos and Coutinho’s model produced results that 
quantitatively matched the three-phase HIV dynamics 
observed in clinical data, critics raised one particular issue 
which was that HIVP = 0.05 was too large in comparison to 

clinical findings. Moreover, when HIVP  was too much smaller 

than 0.05, the initial infected peak did not occur in the model, 
and there was no distinct first phase dynamics. Then, based on 
the model of Santos and Coutinho [12], Sloot et al. [14] later 
investigated further about the model in order to discover the 
infectious dynamics when the drug treatment was performed. 
Instead of infecting all eight neighbors of an infected cell, the 
number of neighbors to be infected was set to N ( 0 7N  ) 
with the probability respP , and 8N  with the probability 

 1 respP  in this work. The number N  was used to mimic 

the drug effectiveness and respP  represented the capability 

that the patient responds to the treatment. Sloot et al. 
demonstrated that their simulation results showed the temporal 
behavior of the immune system to drug treatment which 
corresponds qualitatively to clinical data. They also 
commented that the value 0.05HIVP  which was used in 

their work was too large with respect to known clinical data, 
and suggested that a more realistic value should be 

0.005HIVP  instead.  

Moreover, another CA model, based upon realistic 
biological processes, including the virus replication cycle and 
mechanisms of drug treatment, was recently proposed by Shi 
et al. [13]. The novel approach of the model was that they 
incorporated the role of latently infected cells in sustaining 
HIV infection and included the effect of viral load on the 
infection rate in the model.  

Although the previous studies have shown that the typical 
evolution of HIV could be predicted and examined by CA 
models, none has yet investigated in detail the spatial 
distributions of the spread of infection. It therefore becomes 
our primary objective in this paper to construct a combined 
version of stochastic cellular automata models proposed by 
Santos and Coutinho [12] and Shi et al. [15] in order to study 
the dynamics of HIV infection which spreads over the 
lymphoid tissue with parameter values appropriate to the case 
in which the antigens spread among CD4+T cells. (This idea is 
supported by the work of Figueirêdo et al. [10] which 
indicates that interaction within the lymph node occurs on an 
effective surface with a fractional dimension close to two 
instead of three). This paper aims to explore the 
spatiotemporal pattern formation of the spreading population, 
the knowledge of which may improve our understanding of 
the invasion of HIV in a mesh structure and the mechanisms 
underlying its dynamical behavior.  

II. CA MODEL AND SIMULATIONS 

Since a lymphoid tissue, the target and major reservoir of 
HIV [16],[17] has a mesh structure that could be viewed 
approximately as a rough surface  mostly compound with 
lymphocytes, we focus on a patch of the lymphoid tissue and 
represent it as a 2-demensional square lattice of grids. Each 
grid is the position occupied by one state of CD4+T cell whose 
state could be:  healthy (T ), infected stage 1 ( 1A ), infected 
stage 2 ( 2A ), latently infected ( 0A ) or dead ( D ). The 
meaning of each state is defined as below:  
Healthy cell (T ): a cell that stays an uninfected state and is a 
target of HIV. 
Infected cell stage 1 ( 1A ): a cell that has been recently 
infected. It carries new virus particles and has not been 
recognized by the immune cells. Hence, it could infect the 
healthy easily. 
Infected cell stage 2 ( 2A ): an infected cell that has been 
recognized by the immune response. This type of cells thus 
could infect the healthy ones only in cases where the 
concentration is above a certain threshold.  
Latently infected cell ( 0A ): a cell that becomes a cell in the 
latent state right after it is infected, yetal still be activated after 
a long period of dormancy to produce infectious particles.  
Cells in this state cannot transmit the infection to the healthy 
cells. 
Dead cell ( D ): the state of an infected cell that is killed by 
immune response. 

To represent the patch of lymphoid tissue and avoid the 
finite size effect, we use the periodic boundary condition for 
the model and set the initial condition so that the healthy 
CD4+T cells in the system is randomly mixed by a fraction of 
infected cell stage 1 ( 1A ) with probability HIVP . Then, in the 

process of simulation, we generate the entire course of HIV 
progression by changing the state of CD4+ T cells in every 
time step according to the set of local transition rules shown 
below.  
 

Table I Model parameters and conditions. 
 

Description 
 

Parameter 
 

Value/ 
Condition 

 
Boundary condition 
 

- Periodic 

Lattice size, L L  
 

L  100 

Neighboring cells 
 

N  8 

Probability of initial 
T and 1A cells 

HIVP  0.005 

Probability that a 
T cell becomes 
an 1A cell 

infP  0.999 

Probability that a 
T cell becomes an 

0A cell 

1 infP  0.001 
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Table I (Cont.) Model parameters and conditions. 
 

Description 
 

Parameter 
 

Value/ 
Condition 

 
Probability that an 

0A  cell is activated 
actP  0.0025 

Probability that a 
D cell position is 
replenished by a 
T cell 

replP  0.99 

Number of 2A cells 
in neighborhood to 
cause the center cell 
to become infected 

R  4 

Time delay for an 
1A cell to become an 
2A cell 

1  4 

Time delay during 
with an 0A cell stays 
inactive  

2  30 

Number of 
simulations 
 

- 200 

 
Table I lists and all the parameters and conditions used in 

our model. Each time step of simulation corresponds to one 
week. The new state of a cell is dictated by the state of its 
neighbors with the Moore’s neighborhood with the 
neighborhood of range r  = 1. The number of neighbors [5] 

is  22 1 1r   .  

The results obtained from our simulations are shown in 
Fig. 1. We note that although the number of free virus 
particles is seem to be playing a crucial role as proposed by 
Shi et al., we have ignored this parameter in our model. 
However, we have assigned it as proportional to the number 
of infected cells as done by Santos et al. instead. Also, our 
model is operated under the assumption that the percentage of 
healthy CD4+T cells and the percentage of infected CD4+T 
cells in our simulation results represent the cell dynamics in 
the lymphoid tissue and could be related directly to the trend 
in CD4+T cell count and viral load in blood, respectively, of 
an HIV infected patient. 

The updating rules are as follows. 
 

(1) Rule for Healthy cells 
If a healthy cell (T ) is in contact with at least one infected 

cell stage 1 ( 1A ) or at least R cells of infected cell stage 2 
( 2A ), 
(A) The healthy cell becomes an infected cell stage 1 ( 1A ) 
with the probability infP . 

(B) The healthy cell becomes a latently infected cell ( 0A ) 
with the probability1 infP . 

 
(2) Rule for infected cells stage 1 

If an infected cell stage 1 ( 1A ) has lived in the system for 
longer than 1  time steps ( 1t   ), the infected cell stage 1 
( 1A ) becomes an infected stage 2 cell ( 2A ). 
Otherwise, it remains the same state. 
 
(3) Rule for infected cells stage 2 
 An infected cell stage 2 ( 2A ) becomes a dead cell ( D ) at the 
following step. 
(4) Rule for dead cells 
A dead cell ( D ) is replaced by a healthy cell (T ) with the 
probability replP  . 

Otherwise it remains unchanged with the probability 1 replP .  

 
(5) Rule for latently infected cells 
If a latently infected cell ( 0A ) has lived in the system for 
longer than 2  ( 2t   ) time steps, the latently infected cell 
( 0A ) becomes an infected cell stage 1 ( 1A ) with the 
probability actP . 

Otherwise, it stays unchanged.   
 

 
 

Fig. 1 The natural course of HIV dynamics. The results 
obtained from our simulation averaged over 200 samples 
with 100L  , 0.05HIVP  , 0.999infP  , 0.0025actP  , 

0.99replP  , 2 4AR  , 1 4  , 2 30  . The orange curve 

corresponds to healthy cells ( )T  with the standard error of the 

mean (SEM), light blue the infected cells ( 1 2)A A , red the 

dead cells ( D ) and violet the latently infected cells ( 0)A . The 

typical evolution of HIV is represented in two time scales 
(weeks and years) and divided into three phases, distinguished 
by the color shaded areas. 

III. RESULTS AND DISCUSSION 

The simulation results are divided into three sections – 
Phase 1, Phase 2 and Phase 3 according to the three phases in 
the dynamics of HIV infection. 
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Phase 1 – the acute phase of infection (corresponding to the 

time period from 1t to 3t in Fig. 1 and to the spatiotemporal 

patterns seen in Figures 2A-2C) 
The beginning configuration (week 1) corresponding to 

time 1t  depicts a square lattice sheet of healthy CD4+T cells 

which is randomly mixed by a fraction of infected CD4+T 
cells stage 1 ( 1A ) with HIVP = 0.005 (Fig. 2A).  Then, the 

initial 1A  cells are going to spread the virus to their healthy 
neighbors. We could observe the healthy cells surrounding the 
initial 1A cell transforming  into an infected cell stage 1, before 
the initial 1A  cells becoming weak and transforming into 
infected cells stage 2 ( 2A ) (after 1  steps) which 
characterizes the effect of human immunity to the antigens, 
dead state ( D ), and then are replaced by the newly healthy 
cell in a step by step fashion. These events would give rise to 
each initial 1A cell generating a quadratic band of infected 
cells, of width ( 1 1  ), propagating in all directions in the 
subsequent time steps, and would lead to a rapid increase in 
the infected cell population ( ( 1 2)A A ) generally due to a 

high replication of HIV causing a rapid decrease in the 
number of healthy cells (T ). 

In our model, the distribution of initial 1A  cells is 
randomized. We found that if the initial 1A  cell coordinates 
are closer together, the 1A  cells would continually propagate 
to infect the healthy neighbour cells with each time step, and 
the outer rings of infected cells ( 1 2)A A  would overlap 

with each other. The occurrence of these intersections would 
put a limit on the increment in infected population and confine 
the level of infected cells ( 1 2A A ) at the initial peak ( 1c ), 

when 2 1t  . With this typical cell state transitions, we note 
that all cell states appear for the first time concurrently at 
week t  1 +2 (see also Figure 3B which corresponds to time 

2t in Figure 2) in which a cluster of infected cells consists of 

1A  cells at 
infP = 0.999 and 0A  cells at a probability 1- 

infP , 

2A  cells and dead cells which has replaced the initial 1A  
cells. Afterwards, the dead cells located at the center of an 
infectious cluster would be later replenished by the newly 

healthy cells at the probability replP at time t  1 +3. 

In order to investigate in more detail the effect of initial 
distributions of 1A  cells on the level of initial infected peak 

( 1c ), we let the initial configuration be such that the initial 1A  

cells are perfectly distributed among the healthy cells and the 
healthy cells that are infected would only transform to infected 
cell stage 1 ( 1A ). Under the assumption of no collisions 
among the expanding areas before the infection reaches the 
initial peak ( 1c ), the behavior is completely deterministic and 

the number of infected cell ( 1 2A A ) would grow 
quadratically with time. The number of infected cells 
( 1 2A A ) after t  iterations is described as 

     21 2 1 40P t k k P P t k              (1) 

where 0P is the initial number of infected cells stage 1, k  = 0, 

1, 2,…, while  0P t   is defined to be zero. 

 
 

Fig. 2 The lattice snapshots. Each grid in the lattice represents 
one CD4+ T cell position. The orange grid is a healthy (T ) 
position, the blue infected cell stage 1 ( 1A ), the green 
infected cell stage 2 ( 2A ), the violet latently infected stage 
( 0A ) and the red dead cell position ( D ).  

   
The term on the left of (1) is the number of infected cells 

( 1 2A A ) at time t , the first term on the right is the number 
of all cell states in the square cluster of infection and the 
second term on the right is the sum of the numbers of dead 
cell and the newly healthy cell s enclosed in the infectious 
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cluster at that time. For example, suppose that the system 
consists of only one initial 1A  cell ( 0 1P  ) at the first week. 

For 0k  , the deterministic (1) could be written as 

 1 1P t   . Then at week 2 after the virus has spread to 

neighboring cells, it is found that the infected cells living in 
the system would be 9 cells due to 1k  ;  2 9P t   . 

Moreover, at week 7 which is the first time that the newly 
healthy cells replace the dead cells, 6k  ; 

       2
7 2 6 1 2P t P t      .  

So, it was found that the number of infected cells at this time 
step would be equal to 160 cells. 

A comparison of the behavior, during early period, 
between the infected cell dynamics given by our stochastic 
model (the short green dashed line) and the graph of infected 
cell dynamics given by (1) (the blue solid line)  is shown in 
Fig. 4. It can be seen that the level of infected cells at the 
initial infected peak ( 1c ) given by our stochastic model is less 

than that predicted by (1). This is due to the overlap of cells 
over time arising from the close proximity of initial 1A cells. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 The number of infected cells ( 1 2A A ) as a function 
of time during the early phase of infection. A blue line shows 
the infected dynamics according to the deterministic (1), the 
green line is obtained from our stochastic simulations when 
the initial 1A cells were randomly distributed and the red line 
is obtained from our stochastic simulations when the 
initial 1A cells are regularly arranged for which the mean 
distance between initial 1A  cells, d , is slightly greater than 

14 grids.  
This suggests that the level of infected cells at the initial 

peak ( 1c ) given by our stochastic model will be closer to that 

predicted by (1) if the initial 1A  cells are located sufficiently 
far from each other which provides the least chance for the 

clusters of infection to overlap. In practice, this may be done 
by reducing the concentration of initial 1A cells, ( HIVP ), or 

utilizing the well distributed condition for initial 1A  cells.  

We have found that, for a fixed initial 
concentration HIVP of well distributed 1A  cells, in order for 

the infection dynamics to attain the highest initial infection 
peak ( 1c ), the mean distance between initial 1A  cells, d , 

should be not less than 
1

HIVP
.  

With our model, the well distributed initial configuration 
attains the highest initial infection peak when the mean 
distance between two initial 1A cells is at least 14.14d  . 

The eventual pattern of infection is then completely clustered 
and no overlapping occurs. 

To find out what causes T  cells to rebound in our model, 
we consider Fig. 3C which shows the configuration when the 
young 1A cells (located at the rim of a cluster and aged less 
than 1 ) continually threaten the neighboring cells until the 
T  cells level drops to the lowest point in Phase 1 ( 2c ) 

(normally occurring one week after the initial peak of infected 
cells ( 1c ) is reached, 2 1 1t    ). We notice in this step the 

followings.  
1) The initial 1A  cells located at close proximity to each 

other in week 1 have dispersed until some of border dead cells 
are in contact with each other. Moreover, some are fused 
together and disappear. This incident necessitates that the 
newly healthy area would be situated more and more in the 
same territory in subsequent time.  

2) Moreover, the figure also shows the T  cells to be 
separated in two zones: inside and outside the infectious 
cluster. The inner zone is the area bounded by the dead cells, 
while the outer zone is the area bounded by the infected cells 
and would be infected in the next time step. 

The key point of this report is that the wall of dead cells, 
which we have named a dead cell barrier, occurs midway 
between the infected cells and the new T  cell population in 
every step (see Fig. 2C). Due to the Moore’s neighborhood 
with the neighborhood of range r  = 1, we emphasize the 
observation that this dead cell barrier would cause the 1A  
cells to infect only the T  cells which are located around their 
outer boundary (outer zone), but definitely could not 
contaminate the new T  cells enclosed inside the inner zone. 

 Our simulated time course thus shows the decrease in 
infected cells and the regain of T  cells that mimic the initial 
HIV-specific immune responses, particularly due to HIV 
specific cytotoxic T lymphocytes (CTLs) in real observations. 

As our model is a combination of those by Santos and 
Cotinho’s [12] and Shi et  al.’s [13], we thus next compare the 
spatiotemporal pattern formations and the quantitative results 
in Phase 1 [12],[ 13].  

We found that although Santos and Cotinho’s and our 
work represent the first configuration as a square lattice sheet 
of healthy CD4+T cells sparsely mixed by the initial 1A cells 
(referred to as infected - 1A  in [12]) at the probability HIVP , 
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the initial 1A  cells in our model is more widely distributed 
than Santos Cotinho’s. In Santos and Cotinho’s model, the 
configuration holds  initial 1A cells at 5% of the total number 
of cells in the system. Our model contains only 0.5% 
( 0.005HIVP  ). We choose this value in our work because  

the observation that one in 210 to 310  T lymphocyte cells 
harbor viral DNA during primary infection [18]. We thus 
concluded that 0.001 HIVP  0.01 seems to be the correct 

range [19] and chose to set 0.005HIVP  .  

Besides, due to their initial number of 1A  cells being 10 
times greater than ours, the initial 1A  cells thus spread out 
and then cover almost all of the space within a short time. This 
event would lead the infected cells reaching the peak ( 1c ) in 5 

week before the newly healthy cell could have been 
replenished into the system. Their spatiotemporal pattern 
exhibits a period in which the level of healthy cells drops to 
nearly 0 after infection which has no supporting clinical data. 
Unlike their model, at the time when the infected cells level 
reaches the highest value of Phase 1 ( 1c ) in our model, the 

spatiotemporal pattern already shows the occurrence of 
replenishment by newly healthy cells while the spread of 
infected cells has not covered the entire space yet 

(week 3 1t  ). This spatiotemporal pattern formation would 

result in the dynamics of infected cells in our simulation to 
reach the 1c position more slowly and at a lower level than 

given by Santos and Cotinho. Moreover, Shi et al.’s model 
also exhibits a slower progression to a lower peak than in 
Santos et al.’s simulation as well. 

Besides, like in Santos and Cotinho’s model, this event 
(the highest level of infected cells) both in Shi et  al.’s and in 
ours would affect the number of healthy cells that drops to the 
lowest point ( 2c ) in the following step. However, we found 

that at this point ( 2c ) the number of remaining healthy cell is 

 35% of the total number of cells in our work while, in Shi et 
al.’s, there are only  20% remaining. Because the general 
pattern in infected patients [20] it is observed that the number 
of CD4+T cells decreases to approximately 50% of the value 
prior to infection.  

We thus would like to observe that our model can 
reproduce the level of healthy cells at this point that is closer 
to the clinical value than the other models under discussion 
(Santos and Cotinho’s model and Shi et al.’s model). This is 
because, as stated in the literature [14] , Santos and Cotinho 
used a HIVP  which is too large with respect to known clinical 

data. 
 

Phase 2 – the latency/chronic phase of infection 
(corresponding to the time period 4t to 9t  in Fig. 1 and to the 

spatiotemporal patterns in Fig. 2D-2J) 
The beginning of phase 2 is marked by the point in time 

when T  cells and infected cells ( 1 2A A ) intersect, evolving 
to time 4t  (see also Fig. 2D). The broadening of a dead cell 

barrier is associated with the regain of T  cells, while the 

infected cells are shrinking and are soon cleared out from the 
lattice.  

We note that the infected source which originates the wave 
structure in such a fashion (increase of infected cells, followed 
by a rapid clearing out) is called “an acute source”. This is 
because it has the same wave structure which is dominant in 
phase 1. Then, the lattice is left as only a field of healthy cells 
sparsely mixed with a few latently infected cells ( 0A ) (Fig. 
2E). The lattice would return to a completely healthy state if 
there is no latent state in this model).  

The configuration corresponds to time 5t  in the Fig. 1 

which represented the highest level of T  cells (or the highest 
period), of which percentage varies as infP .  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 The local view of a new infected source (the shaded 
coordinate). 0 = T cell, 1 = 1 week old 1A cell, 2 = 2 weeks 
old 1A cell, 3 = 3 weeks old 1A cell, 4 = 4 weeks old 1A cell, 5 
= 2A cell, and 6 = D cell. 
 
A) is the case that a latently infected cell is activated on the 
3 weeks old 1A cells circumference (noticed by there is a state 
“1” grid between two state “3” grids). It would act as a chronic 
source initiating the invasive wave over time leading to AIDS 
(compare t  to 7t  ). 

B) is the case that a latently infected cell is activated on the 2 
weeks old 1A cells circumference. It would act as an acute 
source originating the propagating wave structure in all 
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directions, but then soon clear out from the system (clearly 
seen at 6t t  ). 

 
The period that the T  cells remains on the high plateau is 

defined by the time delay during which the 0A  cell stays 
inactive ( 2 ), together with actP , before they are continually 

reducing again due to the immune response deterioration 
related to several strategies of HIV to evade the immune 
response [21]-[23]. However; in our model, we note that this 
slow decrease in the level in T  cells is only determined by the 
activation of latently infected cells ( 0A ). 

We also notice that the different environment that 0A  cell 
is activated would make the two different kinds of wave 
structure (Fig. 2G and 2H, evolving to time 7t  in Fig. 2). 

The 0A cell, which is activated among the T  cell neighbors 
(indicated by the blue arrow) or activated on a week or two 
weeks old 1A  cells circumference ( 1 1t    ), would act like 
the acute source leading a lattice abundant with T  cells again 
and again (more clearly seen in the infectious cluster at the top 
left corner of Fig. 2I). In contrast, the 0A  cell, which is 
activated either on three (or more) weeks old 1A  cells 
circumference ( 1 1t    ) (indicated by the black arrow), on 

2A  cells circumference or on the dead cells barrier, would be 
able to break the wall of dead cells and originate the infectious 
structure like invasive wave pattern (a repeated wave which is 
continually emanated from a source, then we obtain a pattern 
of concentric waves) which, at every 1 3  time steps, 
propagates the wave structure with its infected wave front of 
width 1 1  in all directions over time. This event would 
result in the continuous decrease in T  cell population in 
contrast with an increase in the infected cell population in our 
simulation over time leading to the last phase of infection 
eventually (more clearly seen in the bottom cluster of Fig. 2I, 

corresponding to time 8t  in Fig. 2). We call the source that 

originates an invasive wave “a chronic source” in our model. 
For more understanding of the activation of 0A  cells 

leading to the two different kinds of wave structure, please, 
see the diagrams in Fig. 4 which shows the local view of a 
new infected source.  

As time progresses, Fig. 2J, corresponding to time 9t , 

shows the step when the infected cells are continually 
invading the T  cells till their levels are overlapping. Then the 
infected cells dominate over the T cells. 

In addition, we found that the dynamics of CD4+T cells 
reaches the highest point at which the level is approximately 
70% of the value prior to infection.  None of the models 
mentioned here- Santos et  al.’s model, Shi et  al.’s model and 
our model – could reproduce the dynamics in which the 
healthy level is equal or close to that at this highest point.  

Besides, in the models of Santos and Cotinho’s, Shi et 
al.’s and in ours, the infection originates from the initial 1A  
cells. However, in Santos and Cotinho’s model, in the later 
phase of progression, a new source of infection arises when 
the dead cell positions can be replaced by healthy cells at the 
probability replP . Moreover, each new healthy cell introduced 

may be synchronously replaced by an infected cell stage 1 
(namely infected- 1A  in Santos and Cotinho’s model) at the 
probability infecP . Hence, the presence of infected cells will be 

dictated by the value newinfec repl infecP P P  [12]. They also 

observed that this phenomenon might result from the 
activation of latently infected CD4+T cells at a random time or 
the introduction of infected cells from other compartments 
[12]. In our work and Shi et al.’s work, a new source of 
infection is introduced by the activation of latently infected 
cells ( 0A ) at the probability actP  at appropriated time 

(probability  1 inf actP P  ).  

We also observe that the new source of infection in the 
later phase, in Santos et al.’s model and in our model, could 
generate two different kinds of structures. 

The first type of structures corresponds to a wave of 
infected cells propagating in all directions and then soon 
disappearing from the lattice, namely an acute source. (For 
instance the bottom right of Fig. 3b and 3c in Santos and 
Cotinho’s [12] and the top left of Fig. 3I in our simulation). 
We also compare the mean distances between the new 
infected sources both in Santos et al.’s model given by 

repl infecP P and in our model given by   1 actP Pinf   and 

the mean distance of initial 1A  sources given by HIVP . Since 

        1 inf act repl infec HIVP P P P P       

we found that the mean distances between the new sources are 
greater than that of the initial sources [12]. Moreover, the 
mean distances between the new sources in our model are 
larger than those in Santos and Cotinho’s work. 

The second special structure is generated by a source 
leading to AIDS, namely a chronic source. In the model of 
Santos et. al.’s, This structure occurs when a newly infected 
cell stage 1 (namely infected- 1A  in Santos et al.’s model) is 
surrounded by at least R  dead cells, and the other neighbors 
are healthy [12], [19]. In contrast, with our model this 
structure is observed when the latently infected cell ( 0A ) is 
activated two weeks (or more) later than 1A cells on the same 
circumference, or activated on the same circumference of 

2A cells or D  cells. Moreover, this chronic source would 
launch an invasive wave front of infected cells with width 
( 1 1  ) at every ( 1 3  ) time steps both in Santos and 
Cotinho’s  model [12] and in our model. Examples of such 
structures are shown in the top left corner of Fig. 3b and 3c in 
Santos and Cotinho’s  [12] and the bottom right corner of Fig. 
2I in our simulation). 
 

Phase 3 – onset of AIDS (corresponding to 10t  in Fig. 1 and to 

the spatiotemporal patterns in Fig. 2K-2L) 
Fig. 2K shows the infectious pattern at the time when the 

number of T  cells has dropped lower than 20% of the total 
number of cells in lattice. We mark this threshold as the 
beginning of phase 3 corresponding to the onset of AIDS, 
evolving to time 10t . The infectious pattern appears like an 

invasive wave that eventually covers the entire lattice in such 
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a way that, at every ( 1 3  ) time steps, it would launch a 
propagating wave front of infected cells of width 1 1  . 
Then, the invasive wave covers the whole lattice (see also Fig. 
2L). The steady state is reached, in which the percentages of 
each cell state are kept relatively fixed and distribution 
patterns are unchanged.  

Finally, we also note that in the last phase of infection the 
spatiotemporal pattern formations show the same pattern in 
both models - Santos et al. and ours, in that the growing 
structures eventually cover the entire lattice, with the number 
of cells tending towards steady states until the final average 
number of the healthy cells is always below the threshold of 
the CD4+T cell count related to AIDS (more precisely, see 
Fig.  3d in Santos and Cotinho’s  [12] and in our Fig. 2L). 

We want to highlight that, as seen in [20], in the last phase 
of infection, the number of CD4+T cells is rapidly decreasing 
in tending toward zero. However, all of the models under 
discussion- Santos and Cotinho’s , Shi et  al.’s and ours,  this 
behavior cannot be reproduced. Especially in Shi et  al.’s 
model, we observe that the cell dynamics evolves into the 
steady state too quickly (within 12 years).  In our opinion, 
such quantitative results might be due to the model’s 
sensitivity to the variation of neighbouring cells. 

 

IV. CONCLUSION 

Because cellular automata (CA) are discrete model that 
could successfully describe the two time scales (short scale in 
weeks, long scale in years) and reproduce the three distinctive 
phases of the HIV infection, we thus have studied the 
stochastic CA model for HIV dynamics with respect to the 
spatiotemporal pattern formation of CD4+T cells. From our 
investigation, we have found the pattern formation is based on 
the relationship among the cell states, the set of local 
transition rules, the conditions and the parameters in the 
system. Due to the Moore’s neighborhood with the 
neighborhood of range 1r  , we have observed that the 
pattern of infectious wave which propagates in all directions is 
quadratic. We also have found that the probability of initial 

1A cells, HIVP , and their distribution effect the percentage of 

infected cells at the initial peak ( 1c ). A large HIVP  would 

affect a higher level of infected cells at 1c than a smaller HIVP . 

However, for one HIVP value, the system in which the initial 

1A cells are well distributed at the first configuration would 
provide a more completely clustered configuration of 
infection, or a less overlapping one. This would lead to a 
higher initial infection peak ( 1c ) in the system than the one in 

which the seed distributions are crowded.  
Moreover, we have found the dead cell barrier is the major 

control factor in the cells dynamics in our simulations. We 
have noted that the wall of dead cells would divide the healthy 
cells (T ) into two zones: inner and outer zones of infectious 
clusters. The outer zone is bounded by infected cells and 
would be infected at each time step, while the T  cells located 
in the inner zone is bounded by the wall of dead cells and 
could not be infected. This event causes the accumulation of 

T  cells within the wall of dead cells constantly over time. 
Specifically, this spatiotemporal pattern formation would 
cause the rebounding of healthy cells at the early phase of 
infection in our simulations (and probably so too in those of 
Santos and Cotinho’s) which resembles the initial immune 
response specific to the antigen after the primary attack from 
HIV. 

Besides, we have found the dead cell barrier is the major 
control dynamics of cells in ours. We have highlighted that 
the wall of dead cell would divide the healthy cell (T ) into 
two zones: inside and outside of infectious cluster. The 
outside zone is bounded by infected cells and would be 
infected at each time step, while the T  cells located inside 
zone is bounded by the wall of dead cell and could not be 
infected. This event causes the accumulation of T  cells 
within the wall of dead cells constantly over time. For the 
graph of cell dynamics point of view, this spatiotemporal 
pattern formation would, especially, cause the rebounding of 
healthy cells at early phase of infection in ours (so might too 
in Santos et. al.) which resembles the initial immune response 
specific for the antigen after primary attack from HIV [24]. 

Moreover, we have found two different kinds of wave 
structure in the system. The first structure is a band of infected 
cells, of width 1 1  , propagating in all directions from the 
source, but when time passes it then soon clears out from the 
lattice. The feature of this wave pattern is dominant in Phase 
1. We thus call the source that originates this kind of wave 
structure an “acute source”. The source of this wave structure 
is the 1A cells which are bounded by theT  neighboring cells, 
or the 0A cells that are activated among the T cells or on a 
week or two weeks old 1A cells circumference. The second 
wave structure is a special kind of structures. It is an invasive 
wave structure which continually propagates a band of 
infected cells of width 1 1   at every 1 3  time steps in 
every direction. The source of this kind of wave structures is 
the 0A cell that is activated on either three or more weeks 
old 1A cells circumstance, on 2A cells circumstance or on the 
dead cell barrier. The activation of this kind of source could 
break the wall of dead cells and then causes the T cells 
located inside the inner zone to be subsequently infected over 
time making the pattern of infection like an invasive wave. 
This spatiotemporal pattern formation results in the 
continuous reducing of T  cell population leading to AIDS in 
our model which represents the severe deterioration of the 
immune system within the body [25]. Because the structure of 
this kind of waves is permanent (from Phase 2 on), we thus 
name it a “chronic source”. 

The knowledge gained from our study may improve our 
understanding about the invasion of HIV in a mesh structure 
and the underlying mechanisms which could provide a 
valuable guide for future research to discover new measures 
for the prevention and treatment of HIV infection. 
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