
 

 

  

Abstract—The paper shows an application of Robust Control 

Toolbox for Time Delay Systems implemented in the Matlab system. 

The toolbox is used to solve the problem of uncertain time delay 

using the D-K iteration and algebraic approach. The algebraic 

approach represents a new technique for solving problems arising in 

the robust control. It combines the structured singular value, 

algebraic theory and algorithm of global optimization solving 

remaining issues in structured singular value framework. The 

algorithm of global optimization can be alternated with direct search 

methods such as Nelder-Mead simplex method giving solutions for 

problems with one local extreme. As a global optimization method, 

Differential Migration is used, which proved to be reliable in solving 

this type of problems. The D-K iteration represents a standard 

method in the structured singular value theory. The results obtained 

from the D-K iteration are compared with the algebraic approach. 

 

Keywords—Algebraic approach, robust control, structured 

singular value, time delay systems, uncertainty. 

I. INTRODUCTION 

IME delay systems are a constant issue present in control 

theory. In this paper, the problem of uncertain time delay 

will be solved using Robust Control Toolbox for Time Delay 

Systems implemented in the Matlab system. The essential tool 

is the structured singular value denoted µ (see [11]) giving a 

measure of robustness. The algebraic approach (see [2] and 

[3]) and evolutionary algorithm Differential Migration 

(see [1]) are used treating the problem of multimodality of the 

cost function and impossibility of deriving controller for 

performance weights with poles on the imaginary axis. This 

implies that the final controller provides zero steady-state error 

which is impossible in the scope of the standard tools using 

DGKF formulae for obtaining H∞ (sub)optimal controllers or 

other methods such as linear matrix inequality (LMI) approach 

leading to numerical problems in most of real world cases (see 

[6], [7] and [8]). Besides this, the algebraic approach 

overcomes some difficulties connected with the D-K iteration, 

namely the fact that it does not guarantee convergence to a 

global or even local minimum (see [13]). Controllers obtained 

via the algebraic approach can have simpler structure due to 

the fact that there is no need of scaling matrices absorbance 

into generalized plant, and hence no need of further 

 
M. Dlapa is with the Department of Automation and Control Engineering, 

Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 

4511, 760 05 Zlin, Czech Republic (fax: +420 57 603 5279; e-mail: 

dlapa@fai.utb.cz).  

simplification causing deterioration of the frequency properties 

of the resulting controller. Moreover, the controller structure 

can be chosen in advance, which is not possible in the scope of 

currently used methods. 

Optimization is performed via evolutionary algorithm. 

Evolutionary algorithms belong to the new branches of 

engineering  (see [9], [10], [14] and [15]) providing solution to 

the problems which were not solvable using traditional 

optimization tools.. In this paper, a new evolutionary algorithm 

– Differential Migration is used having some favourable 

properties compared to the existing ones. Namely the fact that 

lower computational time is needed for obtaining a suitable 

solution. 

Pole placement is performed via solving the Diophantine 

equation in the ring of Hurwitz-stable and proper rational 

functions (RPS). The structured singular value assesses the 

robust stability and performance of the controller. 

For comparison reasons, the results obtained from the D-K 

iteration (see [5]) demonstrate the differences between the 

standard and proposed method. The overall performance is 

verified by simulations of step response for different values of 

time delays with simple feedback loop and two-degree-of-

freedom structure (1DOF and 2DOF, see [12]). 

The following notation is used: || ⋅ ||∞ denotes H∞ norm, 

)(⋅σ  is maximum singular value, R and C
n×m

 are real numbers 

and complex matrices, respectively, In is the unit matrix of 

dimension n and RPS denotes the ring of Hurwitz-stable and 

proper rational functions. 

II. PRELIMINARIES 

Define ∆∆∆∆ as a set of block diagonal matrices 
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where  S is the number of repeated scalar blocks, 

 F is the number of full blocks, 

 r1,…, rS and m1,…, mF are positive integers defining 

dimensions of scalar and full blocks. 

For consistency among all the dimensions, the following 

condition must be held 
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Definition 1: For M ∈ C
n×n

 is µ∆∆∆∆(M) defined as 
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If no such ∆ ∈ ∆∆∆∆ exists making I – M∆ singular, then 

µ∆∆∆∆(M) = 0. 

 

Consider a complex matrix M partitioned as 
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and suppose there is a defined block structure ∆2 which is 

compatible in size with M22 (for any ∆2 ∈ ∆∆∆∆2, M22∆2 is 

square). For ∆2 ∈ ∆∆∆∆2, consider the following loop equations 

 

e = M11d + M12w 

z = M21d + M22w (5) 

w = ∆2z 

 

If the inverse to I – M22∆2 exists, then e and d must satisfy 

e = FL(M, ∆2)d, where 

 

FL(M, ∆2) = M11 + M12∆2(I – M22∆2)
–1

M21 (6) 

 

is a linear fractional transformation on M by ∆2, and in a 

feedback diagram appears as the loop in Fig. 1. 

The subscript L on FL pertains to the lower loop of M and is 

closed by ∆2. An analogous formula describes FU(M, ∆1), 

which is the resulting matrix obtained by closing the upper 

loop of M with a matrix ∆1 ∈ ∆1. 

 

Theorem 1: Let β > 0. For all ∆2 ∈ ∆∆∆∆2 with 
β

σ
1

)( 2 <∆ , the 

loop shown in Fig. 1 is well-posed, internally stable, and 

β≤∆
∞

),( 2MF
L

 if and only if 

 

βωµ
ω

≤∆
ℜ∈

)]([sup jM  (7) 

 

Proof: Proof is the same as in [4] and [11] except for the fact 

that perturbations are complex matrices, which simplifies the 

proof and complies with the definition of µ. 

III. ALGEBRAIC µ-SYNTHESIS 

The algebraic µ-synthesis can be applied to any control 

problem that can be transformed to the loop in Fig. 2, where G 

denotes the generalized plant, K is the controller, ∆del is the 

perturbation matrix, r is the reference and e is the output. 

For the purposes of the algebraic µ-synthesis, the MIMO 

system with l inputs and l outputs has to be decoupled into l 

identical SISO plants. The nominal model is defined in terms 

of transfer functions: 
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For decoupling the nominal plant Pnom (Pnom invertible) it is 

satisfactory to have the controller in the form 

 

1
)]([

)(

1
)](det[)()(

−= s
sP

ssKs nom

xy

noml PPIK  (9) 

 

where Pxy is an element of adj[Pnom(s)] = det[Pnom(s)][Pnom(s)]
–1

 

with the highest degree of numerator {adj[Pnom(s)] denotes 

adjugate matrix of Pnom}. The choice of the decoupling matrix 

prevents the controller from cancelling any poles or zeros from 

the right half-plane so that internal stability of the nominal 

feedback loop is held. The MIMO problem is reduced to finding 

a controller K(s), which is tuned via setting the poles of the 

nominal feedback loop with the plant 
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Define 
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Transfer function Pdec can be approximated by a system *
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P  
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Fig. 1. LFT interconnection 
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with lower order than Pdec 
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which can be rewritten in terms of its coefficients and 

transformed to the elements of RPS 
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The controller K = NK/DK is obtained by solving the 

Diophantine equation 

 

ADK + BNK = 1 (14) 

 

with A, B, DK, NK ∈ RPS. Equation (14) is often called the 

Bezout identity. All feedback controllers NK/DK are given by 
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where 
0KN , PS0

R∈KD  are particular solutions of (14) and T 

is an arbitrary element of RPS. 

 

 The controller K satisfying equation (14) guarantees the 

BIBO (bounded input bounded output) stability of the 

feedback loop in Fig. 3. This is a crucial point for the theorems 

regarding the structured singular value. If the BIBO stability is 

held, then the nominal model is internally stable and theorems 

related to robust stability and performance can be used. The 

BIBO stability also guarantees stability of ),( KGF
L

 making 

possible usage of performance weights with integration 

property implying non-existence of state space solutions using 

DGKF formulae (see [6]) due to zero eigenvalues of 

appropriate Hamiltonian matrices. Such methodology results 

in zero steady-state error in the feedback loop with the 

controller obtained as a solution to equation (14). This 

technique is neither possible in the scope of the standard 

µ-synthesis using DGKF formulae, nor using LMI approach 

(see [7]) leading to numerical problems in most of real-world 

applications. 

The aim of synthesis is to design a controller which satisfies 

the condition: 
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where n + n1 + n2 is the order of the nominal feedback system, 

n1 is the order of particular solution K0, ti are arbitrary 

parameters in 
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 and µ ∆∆∆∆ denotes 

the structured singular value of LFT on generalized plant G 

and controller K with 
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where ∆del denotes the perturbation matrix and ∆F is a full-

block matrix corresponding with the robust performance 

condition. 

Tuning parameters are positive and constrained to the real 

axis since parameters of the transfer function have to be real 

and due to the fact that non-real poles cause oscillations of the 

nominal feedback loop. 

A crucial problem of the cost function in (16) is the fact that 

many local extremes are present. Hence, local optimization 

does not yield a suitable or even stabilizing solution. This can 

be overcome via evolutionary optimization, which solves the 

task very efficiently. 

IV. PROBLEM FORMULATION 

The problem to solve is general 1st order system with 

uncertain time delays: 
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The control objective is to find a controller that guarantees the 

robust stability and performance for every plant from the set P. 

The time delay is treated by multiplicative uncertainty 
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Let the nominal plant be 
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then for the weighting function W2 the following inequality 
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Fig. 3. Nominal feedback loop 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 6, Volume 6, 2012 378



 

 

must be held 
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which is equivalent with 

 

)(1 2 ωωτ
jWe

j <−−
, +ℜ∈∀ω , ];0[ 0T∈τ  (22) 

 

The weight W2 is defined as an envelope curve of 1−− ωτ je . 

For τ = 10, W2 can have the Bode plot depicted in Fig. 4. 

 

V. PROBLEM SOLUTION 

A. Structured Singular Value Framework 

The problem defined in previous section can be solved 

using interconnection in Fig. 5. Here, G denotes the 

generalized plant partitioned to 
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where the block structure of G corresponds with the input and 

output variables in Fig. 5: 
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The design objective is to find a stabilizing controller K such 

that 
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is minimal, where 
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is the lower linear fractional transformation on generalized 

plant G and controller K (see Fig. 5). 

B. Algebraic Approach 

The controller 
M

N
K =  is obtained by solving the 

Diophantine equation 

 

AM + BN = 1 (27) 

 

The Diophantine equation (27) is known as Bezout identity 

and all feedback controllers N/M are given as 
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where N0, M0 ∈ RPS represent a particular solution of (27), and 

T is an arbitrary element of RPS such that the denominator of 

(28) is non-zero. 

By the analysis of the polynomial degrees of a and b, the 

transfer functions A, B, M and N were chosen so that the 

number of closed loop poles is minimal and the asymptotic 

tracking is achieved: 

 

∏
=

+

=
n

i

is

a
A

1

)( α

, 

∏
=

+

=
n

i

is

b
B

1

)( α

 (29) 

∏
+=

+

=
n

ni

is

ms
M

2

1

)( α

, 

∏
+=

+

=
n

ni

is

n
N

2

1

)( α

 (30) 

 

where n is the actual degree of polynomial a obtained by 

omitting zero parameters ai. 
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Fig. 4 Bode plot of W2 and 110 −− ωje  
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Fig. 5 Closed-loop interconnection for µ-synthesis 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 6, Volume 6, 2012 379



 

 

The resulting controller has the general PID structure: 
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VI. USER INTERFACE 

The main window of the toolbox consists of three parts (see 

Fig. 7): 

- System Definition 

- Controller Design 

- Simulation and Verification 

A. System Definition 

System definition has the button for displaying the dialog 

for entering parameters of the control plant. Here, the 

parameters of transfer function and the maximum value of time 

delay can be entered (Fig. 8). 

 

Another button displays the dialog for entering the 

parameters of the weight W2 treating uncertain time delay 

(Fig. 9). In the dialog, there is a button for showing the Bode 

plot of the weight W2 compared to the left side of (22) (see 

Fig. 6). 

 

In the last part of system definition, buttons showing dialogs 

for entering parameters of the performance weight W1 are 

placed. There are separate weights for the D-K iteration and 

algebraic approach. Each dialog has a button for showing the 

Bode plot of the particular weight. 

 

B. Controller Design 

The controller design part is divided into two sections – D-

K iteration and algebraic approach. In the first row, there are 

the buttons for entering parameters for both the D-K iteration 

 

 

 
Fig. 9 Dialog for entering the parameters of the weight W2 

 

 

 
Fig. 7 The main window 

 

 

 
Fig. 8 Dialog for entering parameters of the control plant 

 

 

 
Fig. 6 Bode plot of the weight W2 compared to the left side 

of (22) 
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and algebraic approach. 

In the second row, there are buttons for performing the 

design of controllers. The design is interactive and uses the 

command line window of the Matlab system for 

communication with user. 

The D-K iteration asks the user for the starting mu-iteration. 

Then, the first gamma for the suboptimal controller is searched 

using the bisection method. Then, the user is prompted for the 

change of frequency range and bounds or tolerances. Then, the 

current step of the D-K iteration is finished and the µ-plot is 

displayed. In the next step, the µ-plot is approximated using 

scaling matrices D and D
-1

. To this effect, the user is prompted 

for his choice. Command apf can be used for auto-prefit, 

which automatically finds the parameters for this step. After 

exiting this part using e command parameters for gamma 

search can be set. Then, the user is again prompted for change 

of the frequency range and bounds or tolerances. Finally, the 

µ-plot is calculated and displayed. These steps are repeated 

until the user terminates the whole process. Then, the resulting 

controller is obtained and displayed in the Matlab window. 

The algebraic approach launches the evolutionary search, 

which performs the predefined number of migration loops 

defined in the parameters dialog for the algebraic approach. 

The search can be interrupted by pressing Ctrl+C. The 

controller can be obtained by pressing Approximate and get 

controller button. 

Besides the evolutionary search, Nelder-Mead simplex 

method can be used for the tune up of the controller by 

pressing the button Tune up with simplex method. 

C. Simulation and Verification 

Simulation and verification part has two columns of buttons 

each for the particular design method, i.e. D-K iteration and 

algebraic approach. 

In the first row, buttons for displaying the µ-plots are 

present. If the Mu-plot button in the algebraic approach is 

pressed then a comparison of both approaches can be viewed 

in terms of the µ-plots for both the D-K iteration and algebraic 

approach in one figure. 

Under the µ-plot buttons, buttons for performing simulation 

in Matlab Simulink are placed. The simulation can be 

performed for both simple feedback loop and two-degree-of-

freedom (2DOF) feedback loop (see Fig. 10 and 11).. 

Finally, buttons for showing the simulation in one plot are at 

the bottom of the main window. 

 

VII. EXAMPLE OF TIME DELAY SYSTEM CONTROL 

The plant family is defined as follows: 
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The control objective is to find a controller that will guarantee 

the robust stability and performance for every plant from the 

set P. The time delay is treated by multiplicative uncertainty 
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Let the nominal plant be 
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Then, for the weighting function W2 the following inequality 

must be held 
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The weight W2 can be defined as envelope curve of 

1−− ωτ je  for τ = 4 (see Fig. 6): 
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The performance condition is of the form: 
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where S is the sensitivity function and weight W1 is designed 
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Fig. 10 Simple feedback loop 
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Fig. 11 2DOF feedback loop 
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so that the asymptotic tracking is achieved: 
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Multiplicative uncertainty (33) and performance condition 

exactly fit in the LFT framework. The closed-loop 

interconnection for the µ-synthesis is shown in Fig. 5. 

The generalized plant G can be partitioned to 
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where block structure of G correspond with the input and 

output variables in Fig. 5: 
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The design objective is to find a stabilizing controller K such 

that 
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is minimal, where 
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is the lower linear fractional transformation on generalized 

plant G and controller K (see Fig. 5). 

The transfer matrix M can be partitioned to 
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where the relationship between inputs and outputs is the 

following 
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Then the transfer function from d to e is the upper linear 

fractional transformation on M and ∆ 
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For performance and stability the following corollary of 

Theorem 1 holds. 

 

 

Corollary 1: Closed loop in Fig. 5 is stable for all ∆ ∈ C, 

1)( <∆σ , the performance condition (38) holds, and 
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M
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for all frequencies. 

 

The term ∆~µ  in (47) corresponds with the perturbation set in 

the form 
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and takes into account performance condition (38). 

A. Algebraic Approach 

The controller 
M

N
K =  is obtained by solving the 

Diophantine equation (27). By the analysis of the polynomial 

degrees of a and b, the transfer functions A, B, M and N were 

chosen so that the number of closed loop poles is minimal and 

the asymptotic tracking is achieved: 
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and degrees of polynomials m, n are: 

∂m = 1, ∂n = 2 (51) 

 

The resulting controller has the PID structure: 
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By the optimization of the poles αi via the Differential 

Migration and subsequent tuning by the Nelder-Mead simplex 

method, resulting poles were obtained: 

 

α1 = 1.70, α2 = 0.097, α3 = 0.63, α4 = 33.70 (53) 

 

yielding the controller 
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B. Comparison Study 

As a reference, D-K iteration is used, which is a common 

method for µ-synthesis. In order to satisfy state-space formulae 

assumptions for H∞ suboptimal controller the weight W1 has to 

be modified so that it does not have integrating behaviour: 
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The controller obtained from the D-K iteration was 

approximated by 3
rd

 order transfer function: 
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The µ-plot in Fig. 14 shows that both controllers have the 

supremum of µ below one and the robust stability and 

performance condition is satisfied. 

 

 

 

Simulations for the full and half time delay in Fig. 12, 13, 

15, 16, 18 and 17 show that the algebraic approach has no 

steady state error which is not true for the D-K iteration. The 

controllers are stable for both full and half time delay and the 

algebraic approach gives faster set point tracking. 
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Fig. 14 Mu-plot for the controllers obtained by the D-K 

iteration and algebraic approach 
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Fig. 12 Simulation for simple feedback loop with T0 = 4 s – 

D-K iteration 
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Fig. 13 Simulation for simple feedback loop with T0 = 4 s 

– algebraic approach 
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Fig. 15 Simulation for 2DOF feedback loop with T0 = 4 s 

– D-K iteration 
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Fig. 16 Simulation for 2DOF feedback loop with T0 = 4 s 

– algebraic approach 
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VIII. DOWNLOAD 

The Robust Control Toolbox for Time Delay Systems 

toolbox can be downloaded from: 

http://web.fai.utb.cz/?id=0_5_2_8_1&lang=cs&type=0 

IX. CONCLUSION 

The paper showed usage of the Robust Control Toolbox for 

Time Delay Systems for the Matlab system. An outline of the 

algebraic approach was given with application to time delay 

system. An example of control using the presented Matlab 

toolbox showed the benefits of the algebraic approach in 

comparison with the standard method for robust control design 

using structured singular value. 
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Fig. 18 Simulation for 2DOF feedback loop with T0 = 2 s – 

algebraic approach 
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Fig. 17 Simulation for 2DOF feedback loop with T0 = 2 s – 

D-K iteration 
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