
 

 

  

Abstract—The aim of this paper is to show an application of 

Matlab toolbox “Robust Control Toolbox for Time Delay Systems 

with Time Delay in Numerator and Denominator”. The solved 

problem is robust control of time delay system with time delay in 

numerator and denominator of the controlled plant. This type of 

problem is usually solved in the ring of retarded quasipolynomial 

(RQ) meromorphic functions. This approach can solve the task for 

nominal plants but it is not easy to apply this technique if the plant 

has uncertain time delays. In this paper, the plant is defined as a 

system with uncertain time delays which can vary in predefined 

intervals. A method handling this problem in the robust sense is 

derived and implemented using both the D-K iteration and algebraic 

approach. The D-K iteration is a standard method in the structured 

singular value framework. However, some remaining issues are 

present, such as nonzero steady-state error and the necessity of 

approximation of the resulting controller with low order system due 

to its high complexity. A solution the algebraic approach combining 

the structured singular value, algebraic theory and global 

optimization method can give. Here, Differential Migration is used 

providing high efficiency in finding the global extreme and reliable 

results. 

 

Keywords—Algebraic approach, robust control, RQ-

meromorphic functions, structured singular value, Uncertain time 

delay systems. 

I. INTRODUCTION 

HE paper is focused on control of uncertain time delay 

systems with time delay in numerator and denominator of 

the controlled plant. This type of plants is currently solved in 

the ring of retarded quasipolynomial (RQ) meromorphic 

functions (see [15] and [16]). However, the robustness is not 

easy to derive using this approach. 

The toolbox presented in this paper implements a method 

handling the robustness and uncertainty in an easy way giving 

simple and easy to implement controllers. Typically, for a 1
st
 

order system the controller can be described as 4
th

 order 

transfer function compared to awkward and hard to implement 

controllers obtained from the design in the ring of RQ-

meromorphic functions, which can treat the uncertainty with 

difficulties. 

The presented method takes into account the uncertainty 

using the procedure described in [3], which fully covers the 
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varying time delays and guarantees the robust stability and 

performance. In order to obtain controllers that satisfy 

bounded-input bounded-output (BIBO) stability algebraic 

theory is used for pole placement. The task is accomplished 

via solving the Diophantine equation in the ring of Hurwitz-

stable and proper rational functions (RPS). As a measure of 

robust stability and performance, structured singular value 

denoted µ is employed (see [11]). 

Due to the multimodality of the cost function in the 

algebraic approach an algorithm of global optimization is 

used. For this task evolutionary algorithm (see [9], [10], [13] 

and [14]) proved reliable results. Differential Migration (see 

[1]) appears to be one of the most effective. Therefore, its 

application was chosen together with Nelder-Mead simplex 

method as a tool for the final tune-up of the pole placement. 

As a reference method, the D-K iteration (see [5]) is 

implemented in the toolbox with entropy, LMI or DGKF 

formulae as the options in the D-K iteration part (see [6], [7] 

and [8]). The D-K iteration controller is compared with the 

proposed method in the simulations of the response to the step 

of the reference for different values of uncertain time delays. 

The controllers are connected in simple and two-degree-of-

freedom feedback loop (1DOF and 2DOF, see [12]). 

The following notation is used: || ⋅ ||∞ denotes H∞ norm, 

)(⋅σ  is maximum singular value, R and C
n×m

 are real numbers 

and complex matrices, respectively, In is the unit matrix of 

dimension n and RPS denotes the ring of Hurwitz-stable and 

proper rational functions. 

II. PRELIMINARIES 

Define ∆∆∆∆ as a set of block diagonal matrices 
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where  S is the number of repeated scalar blocks, 

 F is the number of full blocks, 

 r1,…, rS and m1,…, mF are positive integers defining 

dimensions of scalar and full blocks. 

For consistency among all the dimensions, the following 

condition must be held 
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Definition 1: For M ∈ C
n×n

 is µ∆∆∆∆(M) defined as 
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If no such ∆ ∈ ∆∆∆∆ exists making I – M∆ singular, then 

µ∆∆∆∆(M) = 0. 

 

Consider a complex matrix M partitioned as 
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1211

MM

MM
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and suppose there is a defined block structure ∆2 which is 

compatible in size with M22 (for any ∆2 ∈ ∆∆∆∆2, M22∆2 is 

square). For ∆2 ∈ ∆∆∆∆2, consider the following loop equations 

 

e = M11d + M12w 

z = M21d + M22w (5) 

w = ∆2z 

 

If the inverse to I – M22∆2 exists, then e and d must satisfy 

e = FL(M, ∆2)d, where 

 

FL(M, ∆2) = M11 + M12∆2(I – M22∆2)
–1

M21 (6) 

 

is a linear fractional transformation on M by ∆2, and in a 

feedback diagram appears as the loop in Fig. 2. 

The subscript L on FL pertains to the lower loop of M and is 

closed by ∆2. An analogous formula describes FU(M, ∆1), 

which is the resulting matrix obtained by closing the upper 

loop of M with a matrix ∆1 ∈ ∆∆∆∆1. 

 

Theorem 1: Let β > 0. For all ∆2 ∈ ∆∆∆∆2 with 
β

σ
1

)( 2 <∆ , the 

loop shown in Fig. 2 is well-posed, internally stable, and 

β≤∆
∞

),( 2MF
L

 if and only if 
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Proof: Proof is the same as in [4] and [11] except for the fact 

that perturbations are complex matrices, which simplifies the 

proof and complies with the definition of µ. 

III. ALGEBRAIC µ-SYNTHESIS 

The algebraic µ-synthesis can be applied to any control 

problem that can be transformed to the loop in Fig. 1, where G 

denotes the generalized plant, K is the controller, ∆del is the 

perturbation matrix, r is the reference and e is the output. 

For the purposes of the algebraic µ-synthesis, the MIMO 

system with l inputs and l outputs has to be decoupled into l 

identical SISO plants. The nominal model is defined in terms 

of transfer functions: 

 

For the purposes of the algebraic µ-synthesis, the MIMO 

system with l inputs and l outputs has to be decoupled into l 

identical SISO plants. The nominal model is defined in terms 

of transfer functions: 
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For decoupling the nominal plant Pnom (Pnom invertible) it is 

satisfactory to have the controller in the form 
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where Pxy is an element of adj[Pnom(s)] = det[Pnom(s)][Pnom(s)]
–1

 

with the highest degree of numerator {adj[Pnom(s)] denotes 

adjugate matrix of Pnom}. The choice of the decoupling matrix 

prevents the controller from cancelling any poles or zeros from 

the right half-plane so that internal stability of the nominal 

feedback loop is held. The MIMO problem is reduced to finding 

a controller K(s), which is tuned via setting the poles of the 

nominal feedback loop with the plant 
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Define 
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Fig. 2. LFT interconnection 
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Fig. 1. Closed loop interconnection. 
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Transfer function Pdec can be approximated by a system *

dec
P  

with lower order than Pdec 
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which can be rewritten in terms of its coefficients and 

transformed to the elements of RPS 
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The controller K = NK/DK is obtained by solving the 

Diophantine equation 

 

ADK + BNK = 1 (14) 

 

with A, B, DK, NK ∈ RPS. Equation (14) is often called the 

Bezout identity. All feedback controllers NK/DK are given by 
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where 
0K

N , PS0
R∈

K
D  are particular solutions of (14) and T 

is an arbitrary element of RPS. 

 

 The controller K satisfying equation (14) guarantees the 

BIBO (bounded input bounded output) stability of the 

feedback loop in Fig. 3. This is a crucial point for the theorems 

regarding the structured singular value. If the BIBO stability is 

held, then the nominal model is internally stable and theorems 

related to robust stability and performance can be used. The 

BIBO stability also guarantees stability of ),( KGFL
 making 

possible usage of performance weights with integration 

property implying non-existence of state space solutions using 

DGKF formulae (see [6]) due to zero eigenvalues of 

appropriate Hamiltonian matrices. Such methodology results 

in zero steady-state error in the feedback loop with the 

controller obtained as a solution to equation (14). This 

technique is neither possible in the scope of the standard 

µ-synthesis using DGKF formulae, nor using LMI approach 

(see [7]) leading to numerical problems in most of real-world 

applications. 

The aim of synthesis is to design a controller which satisfies 

the condition: 
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where n + n1 + n2 is the order of the nominal feedback system, 

n1 is the order of particular solution K0, ti are arbitrary 

parameters in 
)()(
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 and µ ∆∆∆∆ denotes 

the structured singular value of LFT on generalized plant G 

and controller K with 
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where ∆del denotes the perturbation matrix and ∆F is a full-

block matrix corresponding with the robust performance 

condition. 

Tuning parameters are positive and constrained to the real 

axis since parameters of the transfer function have to be real 

and due to the fact that non-real poles cause oscillations of the 

nominal feedback loop. 

A crucial problem of the cost function in (16) is the fact that 

many local extremes are present. Hence, local optimization 

does not yield a suitable or even stabilizing solution. This can 

be overcome via evolutionary optimization, which solves the 

task very efficiently. 

IV. PROBLEM FORMULATION 

The problem to solve is general 1
st
 order system with 

uncertain time delays: 
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This family of plants has uncertain retarded quasi-polynomial 

in the denominator. The delays vary in the intervals of zero to 

a predefined value representing the upper bound for each time 

delay. 

This set of plants is treated via LFT using the scheme in 

Fig. 4. The weights Wdel1 and Wdel2 are obtained from the 

inequalities: 
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The perturbation matrix has the form: 
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Fig. 3. Nominal feedback loop 
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and performance weight is a 3
rd

 order transfer function: 
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The weights Wdel1 and Wdel2 should satisfy (19) with very low 

conservatism. 

The performance condition is of the form: 

 

11 <
∞

SW  (22) 

 

where S is the sensitivity function and weight W1 is designed 

so that the asymptotic tracking is achieved. 

V. PROBLEM SOLUTION 

A. Structured Singular Value Framework 

The problem defined in previous section can be solved 

using interconnection in Fig. 6 and 5. Here, G denotes the 

generalized plant partitioned to 
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where the block structure of G corresponds with the input and 

output variables in Fig. 1: 
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Then the transfer function from d to e is the upper linear 

fractional transformation on M and ∆ 
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and perturbation matrix corresponding with Fig. 6 is of the 

form 
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For performance and stability the following corollary of 

Theorem 1 holds. 

 

Corollary 1: Closed loop in Fig. 6 is stable for all 
deldel ∆~∈∆  
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for all frequencies. 

 

The design objective is to find a stabilizing controller K 

such that 
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is the lower linear fractional transformation on generalized 
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Fig. 4 LFT model of plant 
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Fig. 6 Closed-loop interconnection for µ-synthesis 
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plant G and controller K (see Fig. 6) and 
∆
~µ  corresponds with 

the perturbation matrix from the set 
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taking into account performance condition (22). 

B. Algebraic Approach 

The plant for which the controller is derived is the nominal 

system: 
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Nominal plant P0 can be transformed to: 
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The controller is obtained as a solution to the Diophantine 

equation 

 

AM + BN = 1 (33) 

 

with BIBO stable feedback controller NK/DK given by 
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The denominator of (34) is divisible by s so that asymptotic 

tracking for the stepwise reference signal can be achieved. 

The aim of synthesis is to design a controller which satisfies 

condition 
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The controller has the form: 
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In order to overcome the problem of non-integration structure 

of the D-K iteration controller a scheme with integrator that 

incorporates the integration property into the controller was 

used (see Fig. 8). The controller has the transfer function: 
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VI. USER INTERFACE 

The main window of the toolbox consists of three parts (see 

Fig. 7): 

- System Definition 

- Controller Design 

- Simulation and Verification 

A. System Definition 

System definition has the button for displaying the dialog for 

entering parameters of the control plant. Here, the parameters of 

transfer function and the maximum value of time delay can be 

entered (Fig. 9). 

Next two buttons display the dialogs for entering the 

parameters of the weight Wdel1 and Wdel2 treating uncertain time 

delay τ01 and τ02 (Fig. 10). In the dialogs, there is a button for 

showing the Bode plot of the weights Wdel1 and Wdel2 compared 

to the left side of (19) (see Fig. 11). 

In the last part of system definition, button showing dialog 

for entering parameters of the performance weight W1 is 

placed. The weight is the same for the D-K iteration and 

algebraic approach. The dialog has a button for showing the 

Bode plot of the weight. 
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Fig. 8 Closed loop interconnection with integrator cascade 

 

 

 
 

Fig. 7 The main window 
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B. Controller Design 

The controller design part is divided into two sections – D-

K iteration and algebraic approach. In the first row, there are 

the buttons for entering parameters for both the D-K iteration 

and algebraic approach. 

In the second row, there are buttons for performing the 

design of controllers. The design is interactive and uses the 

command line window of the Matlab system for 

communication with user. 

The D-K iteration asks the user for the starting mu-iteration. 

Then, the first gamma for the suboptimal controller is searched 

using the bisection method. Then, the user is prompted for the 

change of frequency range and bounds or tolerances. Then, the 

current step of the D-K iteration is finished and the µ-plot is 

displayed. In the next step, the µ-plot is approximated using 

scaling matrices D and D
-1

. To this effect, the user is asked for 

his choice. Command apf can be used for auto-prefit, which 

automatically finds the parameters for this step. After exiting 

this part, using e command parameters for gamma search can 

be set. Then, the user is again prompted for change of the 

frequency range and bounds or tolerances. Finally, the µ-plot 

is calculated and displayed. These steps are repeated until the 

user terminates the whole process. Then, the resulting 

controller is obtained and displayed in the Matlab window. 

The algebraic approach launches the evolutionary search, 

which performs the predefined number of migration loops 

defined in the parameters dialog for the algebraic approach. 

The search can be interrupted by pressing Ctrl+C. The 

controller can be obtained by pressing Approximate and get 

controller button. 

Besides the evolutionary search, Nelder-Mead simplex 

method can be used for the tune up of the controller by 

pressing the button Tune up with simplex method. 

C. Simulation and Verification 

Simulation and verification part has two columns of buttons 

each for the particular design method, i.e. D-K iteration and 

algebraic approach. 

In the first row, buttons for displaying the µ-plots are 

present. If the Mu-plot button in the algebraic approach is 

pressed then a comparison of both approaches can be viewed 

in terms of the µ-plots for both the D-K iteration and algebraic 

approach in one figure. 

In the second row, buttons for simulation in Matlab 

Simulink are placed. The simulation can be performed for both 

simple feedback loop and two-degree-of-freedom (2DOF) 

feedback loop (see Fig. 14 and 13). 

Finally, buttons for showing the simulation in one plot are at 

the bottom of the main window. If the button for algebraic 

approach is pressed then the simulation for D-K iteration is 

displayed in the same plot for comparison. 

VII. TIME DELAY SYSTEM CONTROL FOR UNCERTAIN TIME 

DELAY IN NUMERATOR AND DENOMINATOR 

Consider the set of anisochronic systems with time delay in 

the numerator and denominator: 
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Fig. 11 Bode plot of the weight Wdel1 compared to the 

left side of (19) 

 

 

 
 

Fig. 9 Dialog for entering parameters of the control plant 

 

 

 
 

Fig. 10 Dialog for entering the parameters of the weight Wdel1 
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This set of plants is treated via LFT using the scheme in 

Fig. 4. Weights Wdel1 and Wdel2 can be obtained from the 

inequalities: 
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It follows from Fig. 15 and 12 that 
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satisfy (19) with very low conservatism. 

Now, it is easy to create an open-loop interconnection with 

weighted sensitivity function as a performance indicator. 

Recall the closed-loop interconnection depicted in Fig. 6 with 

the open loop in dashed rectangle denoted G. The perturbation 

matrix has the form: 
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and performance weight is a 3
rd

 order transfer function: 
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The weight W1 has a small factor for s
0
 in the denominator so 

that the DGKF formulae can be used. 

The plant for which the controller is derived is the nominal 

system: 
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The instability of P0 does not contradict stability of the 

nominal feedback loop. This is guaranteed by controller K 

satisfying (14). 

Nominal plant P0 can be transformed to: 
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The controller is obtained as a solution to the Diophantine 

equation (14) with all BIBO stable feedback controllers NK/DK 

given by (15). 

For plant (31), the controller is a 4
th

 order transfer function 

derived from (14) given as 
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The denominator of (34) is divisible by s so that asymptotic 

tracking for the stepwise reference signal can be achieved. 

The aim of synthesis is to design a controller which satisfies 

condition (16). Evolutionary optimization by Differential 
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Fig. 12. Bode plot Wdel2 (dashed) and the right side of (19) 

(solid) 
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Fig. 14 Simple feedback loop 
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Fig. 13 2DOF feedback loop 

 

  

10
-3

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
0

10
1

Frequency (rad/s) 

 
Fig. 15. Bode plot Wdel1 (dashed) and the right side of (19) 

(solid) 
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Migration gave the poles and arbitrary parameters as follows: 

 

α1 = 0.023, α2 = 31.973, α3 = 23.264, α4 = 1.771 (46) 

t1 = 24.50, t2 = 44.89 (47) 

 

and controller 
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The D-K iteration for the interconnection in Fig. 6 yields the 

controller 

 

5234

234

10219.23.24826.35

003.0203.11.1053.21094.21
)(

−−
⋅++++

++++
=

ssss

ssss
sK

KD
 (49) 

 

Both controllers satisfy condition (16) (see Fig. 16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to overcome the problem of non-integration 

structure of the D-K iteration controller a scheme with 

integrator incorporating the integration property into the 

controller was used (see Fig. 8). The controller has the transfer 
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Fig. 16. Mu-plot for the D-K iteration (dashed) and 

algebraic approach (solid) 
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Fig. 20. Simulation for D-K iteration with G
*
 and 2DOF structure 

(τ1 = 2, τ2 = 0.4). 
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Fig. 19. Simulation for 2DOF structure (τ1 = 2, τ2 = 0.4) 
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Fig. 22. Simulation for with 2DOF structure (τ1 = 4, 

τ2 = 0.8). 
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Fig. 21. Simulation for D-K iteration with G
*
 and 2DOF 

structure (τ1 = 4, τ2 = 0.8) 
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Fig. 18. Simulation for 1DOF structure (τ1 = 4, τ2 = 0.8) 
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Fig. 17. Simulation for D-K iteration with G
*
 and 1DOF 

structure (τ1 = 4, τ2 = 0.8) 
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function: 
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Simulations have been performed for 1DOF and 2DOF 

feedback loop with real-plant P, i.e. with transport delays 

present in the simulation model. Two-degree-of-freedom 

controller for the D-K iteration has been obtained by putting 

nR equal to the parameter with zero exponent of s, i.e., 

nR = 0.003. The interconnection of 2DOF system is in Fig. 13. 

For details on 2DOF controllers in RPS see [12]. 

Simulation for both controllers with 1DOF structure and 

stepwise reference signal is in Fig. 18. Simulation for 2DOF 

structure and the same reference signal is in Fig. 22. It is 

apparent that the D-K iteration has a non-zero steady-state 

error for both 1DOF and 2DOF interconnection, which is not 

the case of the algebraic approach. Set point tracking is faster 

for the algebraic approach with lower overshoot for 1DOF 

controller structure. The steady-state error is not present for 

the D-K iteration and generalized plant G
*
 with integrator 

cascade included (Fig. 17 and 21). The standard procedure 

yields faster tracking, however, the complexity of the 

controller is higher than for the algebraic approach and D-K 

iteration with no internal model. 

The same simulations but with lower time delays are 

depicted in Fig. 19 and 20. It can be observed that the 

properties of feedback loop do not degrade if the time delays 

vary in the intervals of 0 to 4 s and 0 to 0.8 s for τ1 and τ2, 

respectively. For the 2DOF structure no overshoot is present, 

which is not true for 1DOF feedback loop. 

VIII. DOWNLOAD 

The Robust Control Toolbox for Time Delay Systems with 

Time Delay in Numerator and Denominator toolbox can be 

downloaded from: 

http://web.fai.utb.cz/?id=0_5_2_8_2&lang=cs&type=0 

IX. CONCLUSION 

An application of the Robust Control Toolbox for Time 

Delay Systems with Time Delay in Numerator and 

Denominator to unstable time delay system with uncertain time 

delays in both numerator and denominator of the controlled 

plant has been presented. The simulation proved functionality 

of the algebraic approach and the method of treating uncertain 

time delays using linear fractional transformation and 

structured singular value even in the case of uncertain time 

delay in the denominator of the control plant. 
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