

Abstract—This paper describes a created application

SimWebLink.NET, which allows remote control and monitoring of
technological processes using Simulink. SimWebLink.NET
application enables remote monitoring and control processes using an
common Web browser supporting JavaScript. Remote monitoring
and control can be just a simulation or control of a real system. The
TCP/IP block sends out data from MATLAB/Simulink model using
the TCP/IP. The new developed SimWebLink.NET and instructions
for building this system are described here. This new version has
been completely rewritten and now uses modern techniques on
Microsoft platform as Window Communication Foundation and MS
SQL server instead of Linux and open source.

Keywords— ASP.NET, Simulink, , Socket, thread, WCF.

I. INTRODUCTION
N emerging strategy for application software is to

provide web access to software previously distributed as
local applications. Depending on the type of application, it
may require the development of an entirely different browser-
based interface, or merely adapting an existing application to
use different presentation technology. In software engineering,
a web application is an application that is accessed via web
browser over a network such as the Internet or an intranet. It is
also a computer software application that is coded in a
browser-supported language (such as HTML, JavaScript, etc.)
and reliant on a common web browser to render the
application executable. Web applications are popular due to
the ubiquity of a client. The ability to update and maintain web
applications without distributing and installing software on
potentially thousands of client computers is a key reason for
their popularity. One of the possible application which offers
advantage of high performance tools for calculation and
simulation is program MATLAB/Simulink.
The aim of this work is to create a web interface for remote
control labs created in Matlab/Simulink. This work builds on
earlier work [1]-[6].

A. MATLAB Web Server
MATLAB Web Server was the first application taking

Martin Sysel works at the Tomas Bata University in Zlín, Faculty of

Applied Informatics, Department of Computer and Communication Systems.
Address: nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic,
(corresponding author to provide phone: 420-57-603-5180; e-mail:
Sysel@fai.utb.cz).

Michal Vaclavsky collaborates with the the Tomas Bata University in
Zlín, Department of Computer and Communication Systems.

significant advantage as web applications. The MATLAB Web
Server enables the creation MATLAB applications that use the
capabilities of the World Wide Web to send data to MATLAB
for computation and to display the results in a Web browser.
The MATLAB Web Server depends upon TCP/IP networking
for transmission of data between the client system and
MATLAB. The required networking software and hardware
must be installed on the system prior to using the MATLAB
Web Server. This toolbox contains tools to connect MATLAB
programs and HTML pages. The MATLAB Web Server
requires MATLAB Release 11 or later. Unfortunately as of
Release 2006b, this toolbox was discontinued and is no longer
available for purchase. It is necessary continue using existing
MATLAB Web Servers with MATLAB R2006a.
The application development process for MATLAB Web
Server requires a small number of simple steps defined by
Mathworks [7]:

1. Create the HTML documents for collection of the input
data from users and display of output. It can be used a text
editor to input HTML directly, or it can be used one of the
commercially available HTML authoring systems.

2. List the application name and associated configuration
data in the configuration file matweb.conf.

3. Write a MATLAB m-file that:
• Receives the data entered in the HTML input form.
• Analyzes the data and generates any requested graphics.
• Places the output data into a MATLAB structure.
• Calls htmlrep to place the output data into an HTML

output document template. The maximum amount of HTML
received data from MATLAB is 256 kB.

MATLAB Web Server applications are a combination of M
files, Hypertext Markup Language (HTML), and graphics.
Knowledge of MATLAB programming and basic HTML are
the only requirements, Mathworks [7].

B. Web Deployment of MATLAB Applications
Going forward, there are several options for making

MATLAB applications available via the Web. Each of the
cases below contains brief describe the approach to create the
web application.

It is possible to choose to create Web applications that
access MATLAB directly (hosting MATLAB on the
application server), or by building executables or components
using the MATLAB deployment products (MATLAB
Compiler, MATLAB Builder JA and MATLAB Builder NE).
Deployed applications do not require MATLAB, and may be
deployed royalty-free to as many servers as user wish [8].
The table 1 lists recommended deployment options for each

Remote Control and Monitoring in the Simulink
Martin Sysel, Michal Vaclavsky

A

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 83

platform, but other options are possible.

Platform Application
Server Does Not
have MATLAB

Application Server Does
have MATLAB

Windows MATLAB
Builder NE
MATLAB
Builder JA

MATLAB COM
Automation

Linux
Unix

MATLAB
Builder JA

CGI with MATLAB as
an Executable

MAC CGI with an
Executable Built
by MATLAB
Compiler

CGI with MATLAB as
an Executable

Table 1. Web deployment options

1) MATLAB Builder NE
This part describes using MATLAB Builder NE to create a

server-side COM or .NET component. Builder NE requires
MATLAB, the MATLAB Compiler. The code using .NET or
COM components from Builder NE with ASP.NET requires
Internet Information Server (IIS).

Here are some pointers for ASP.NET deployment,
particularly for transitioning from MATLAB Web Server [8]:

• In M-code, it needs to use the print command to save the
figure to a JPEG format as opposed to wsprintjpeg.

• It should be ensured that IIS points to the correct version
of ASP.NET (as selected during compilation). After
publishing the ASP.NET application to the web using the
Publish to Web option in Visual Studio. If this step is not
performed, the application displays an error pointing to the
web.config file (depends on application).

• MATLAB Web Server HTML tags needed modification
for ASP.NET/design mode compatibility: tags caused errors
for design mode, and the page would not display in this mode.
Errors were very helpful in providing guidance on needed
changes. It is required to convert HTML controls to ASP
control format (drop-down menus, text fields, etc.).
• If prohibiting client write access for the virtual directory
containing the ASP.NET web application, pre-extraction of the
CTF-archive file is necessary. Component Technology File
(CTF). This file is independent of the final target type
(standalone application or library) and specific to each
operating system platform. This file, which is named with a
.ctf suffix, contains the MATLAB functions and data that
define the application or library and is embedded in the
binaries of shared libraries and standalones by default.

2) MATLAB Builder JA
MATLAB Builder JA allows integrate MATLAB

applications into the organization's Java programs by creating
MATLAB based Java classes that can be deployed royalty free
on desktop machines or Web servers [8]. The MATLAB
Builder JA product creates the Java classes by encrypting
MATLAB functions and generating a Java wrapper around
them.

It can be referenced MATLAB based Java classes the same
way as any other Java class, for easy integration into servlets
or JavaServer Pages (JSP). The Java classes created by the
builder run against the MATLAB Compiler Runtime (MCR),
which is the full set of shared libraries that support MATLAB.
The MCR is provided with MATLAB Compiler for
distribution with the Java classes. Both the Java classes created
in MATLAB and the MCR can be deployed royalty free.

For Web-based applications, the builder provides AJAX
based zoom, pan, and rotate controls for figures created in
MATLAB. The builder also provides an API for automatically
converting between Java and MATLAB data types. Using the
builder's Remote Method Invocation (RMI) interface, the class
can also be run as a persistent service, or spread processing
across multiple processes [8]. Java classes created with the
builder can be distributed at no additional charge.

3) Calling MATLAB functions via CGI
MATLAB can be called directly as an executable via CGI,

or executables created with the MATLAB Compiler can be
created and deployed. Using MATLAB Compiler it can be
created a shared library which can be called from an
executable written in C. This executable can be called by web
server using the Common Gateway Interface (CGI). Using this
solution requires the following steps [8].

• Compile the M-file into a shared library. (mcc B
csharedlib:mylib myfile.m)

• Compile the C-file into an EXE-file which links to the
created library. (mbuild mycfile.c mylib.lib)

• Copy the DLL, EXE, and CTF files to the web server.
• Install the MCR on the web server.

4) Direct access from the Web, using COM automation
It is possible to call MATLAB through its COM automation

interface, similarly to how would be called a COM object from
MATLAB Builder NE. Then it is necessary wrap the
MATLAB COM automation interface as a Web service.

Note that the MathWorks Software License Agreement
specifically forbids exposing the MATLAB command line, i.e.
allowing the end users of the Web site to define the XML
string to execute. Instead, this approach must be used in the
context of an application, executing specific user created M
functions.

C. Problems and disadvantages
The problem of the above mentioned solutions lies in

executing Simulink schema, because only final results are
provided. The problem with running results is very serious,
because the simulation of technological processes or real
measurements can take a lot of time, especially in chemical
processes. To avoid the problem with no access to running
results, the development of a new application called
SimWebLink can help to solve this disadvantage.

II. APPLICATION STRUCTURE
The whole system consists of four parts: Simulink Block,

Server, Client and web interface. Server part was originally
written in C + + and operated under Linux. Originally used

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 84

http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_5
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_5
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_3
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_3
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_4
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_4
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_4
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_4
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_4
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_4
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_4
http://www.mathworks.com/support/tech-notes/1600/1608.html#Section_4

database was MySQL. The web part was in the spirit of open
source written in PHP. Client part was intended for end users
and thus worked under Windows; this was created in the
programming language C++.
These parts have been redesigned with the use of technologies
.NET from Microsoft [9] and by using modern techniques such
as WCF (Windows Communication Foundation) [9], [10]. As
a database server MSSQL server was used. The web interface
uses ASP.NET.

Fig. 1: application structure

A. Application Structure
The entire application is divided into logical units.

SimWebLink block embedded in the Simulink block diagram
sends data to the client that runs as a service on the same
computer. Client connected to the Matlab engine controls
Simulink scheme and provide communication with the server.
Server listens on TCP port, and if any of the clients is
connected, receive from the client the configuration and waits
for further instructions. Control of the clients is provided via
the web interface via server part. Data obtained from clients is
stored in a database and can be plotted in real time in the web
interface in the form of graphs. Scheme of application

structure is shown in the figure 1. The whole conception is
based on the idea that it is possible to observe running
simulation or real measurement results in the web browser.

B. SimWebLink Block
This chapter contains simplified description of the source

code of the developed Simulink block. The TCP/IP client
block sends out data from model using the TCP/IP protocol.
This data is sent at fixed intervals during a simulation. The
TCP/IP client block has one input port. The size of the input
port is dynamic, and is inherited from the driving block. This
block has no output ports. The developed TCP/IP output block
is shown in the figure 2.

Fig. 2. The TCP/IP Client Block.

The Sink Block Parameters dialog box can be used for

selecting communication parameters (Figure 3).

Fig. 3. The TCP/IP Client Block Parameters dialog box.

It is possible to specify a remote server address, port and

sample time period. The sample time period is the rate at
which the block send the data to specified port on the server
during the simulation.

The base element of the block is S-function block, which
use C MEX file. Finally, it is necessary compile source code.
Compiling the MEX-Files is similar to compiling with gcc or
any other command line compiler.

S-functions (system-functions) provide a powerful
mechanism for extending the capabilities of the Simulink
environment. An S-function is a computer language
description of a Simulink block written in MATLAB, C, C++,
Ada, or Fortran. S-functions are dynamically linked
subroutines that the MATLAB interpreter can automatically
load and execute. S-functions use a special calling syntax
called the S-function API that enables to interact with the
Simulink engine. By following a set of simple rules, it can be
implemented an algorithm in an S-function and used the S-
Function block to add it to a Simulink model.

Execution of a Simulink model proceeds in stages [12],
[13]. First comes the initialization phase. In this phase, the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 85

Simulink engine incorporates library blocks into the model,
propagates signal widths, data types, and sample times,
evaluates block parameters, determines block execution order,
and allocates memory. The engine then enters a simulation
loop, where each pass through the loop is referred to as a
simulation step. During each simulation step, the engine
executes each block in the model in the order determined
during initialization. For each block, the engine invokes
functions that compute the block states, derivatives, and
outputs for the current sample time. The entire simulation loop
then continues until the simulation is complete.

A MEX S-function consists of a set of callback methods that
the Simulink engine invokes to perform various block related
tasks during a simulation. Because the engine invokes the
functions directly, MEX S-functions must follow standard
naming conventions specified by the S-function API.

MEX S-functions provide many sample time options, which
allow for a high degree of flexibility in specifying when an S-
function executes. If the behavior of S-function is a function of
discrete time intervals, it can be defined a sample time to
control when the Simulink engine calls the S-function
mdlOutput and mdlUpdate.

Traditional network programming implemented in Windows
environment uses Windows Sockets API (Winsock API -
WSA). WSA is similar to Linux Sockets programming with a
few exception such as header files, that provided to suit
Windows environment and enhances the functionalities.
Windows Sockets 2 (Winsock) enables programmers to create
advanced Internet, intranet, and other network capable
applications to transmit application data across the wire,
independent of the network protocol being used. With
Winsock, programmers are provided access to advanced
Microsoft Windows networking capabilities. Winsock
programming previously centered around TCP/IP. [14], [15].

There are two distinct types of socket network applications:
Server and Client. Servers and Clients have different
behaviors; therefore, the process of creating them is different.
The developed Simulink block is a client.

Following MATLAB command links the object code
together with the library WS2_32.lib (or it is possible to use
older library wsock32.lib) [14], [15]. Win32 architecture is
supposed.

>> mex -O client.cpp WS2_32.lib -DWIN32

1) Defines and Includes

The S-function code starts with the define and include
statements. It is necessary to define statement which specifies
the name of the S function.
After defining these two items, the code includes simstruc.h,
which is a header file that gives access to the SimStruct data
structure and the MATLAB Application Program Interface
(API) functions. The simstruc.h file defines a data structure,
called the SimStruct, which the Simulink engine uses to
maintain information about the S-function. The simstruc.h file
also defines macros that enable MEX-file to set values in and

get values (such as the input and output signal to the block)
from the SimStruct. The winsock2.h and ws2tcpip.h should be
added to access sockets under Microsoft Windows. Next parts
describe callback method implementations.

2) mdlInitializeSizes
The Simulink engine calls mdlInitializeSizes to inquire

about the number of input and output ports, sizes of the ports,
and any other information (such as the number of states)
needed by the S-function.

The client implementation of mdlInitializeSizes specifies the
following size information:

ssSetNumSFcnParams(S, 3);

It defines three input parameters:
• Address – (String input parameter) Name address of

the server (IP address) - An Internet Protocol (IP) address is a
numerical identification that is assigned to devices
participating in a computer network.

• Port – (Integer input parameter) - In computer
networking, a port is an application-specific or process-
specific software construct serving as a communications
endpoint used by Transport Layer protocols of the Internet
Protocol Suite such as Transmission Control Protocol (TCP)
or User Datagram Protocol (UDP). A specific port is identified
by its number associated with the IP and the protocol used for
communication.

• Sample time period – Sampling period of the signal
output.

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S,0,DYNAMICALLY_SIZED);

It defines one dynamically sized input port, that’s why TCP

output is in the special format which is easy modifiable.

ssSetOptions(S,

SS_OPTION_WORKS_WITH_CODE_REUSE |
SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_USE_TLC_WITH_ACCELERATOR);

Specifying these options together with exception-free code

speeds up execution of S-function.
It defines one dynamically sized input port, that’s why TCP
output is in the special format which is easy modifiable.

3) mdlInitializeSizes
The Simulink engine calls mdlInitializeSampleTimes to set

the sample times of the S-function. A client block executes in
specified period (the third input parameter).

ssSetSampleTime(S,0, mxGetScalar(ssGetSFcnParam(S,

2)));

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 86

4) mdlStart
Simulink invokes this optional method at the beginning of a

simulation. It should initialize and connect the windows
socket. Input parameters Address and Port are used, TCP
communication is used here.

WSAStartup(MAKEWORD(2,2), &wsaData);
ConnectSocket = socket(AF_INET, SOCK_STREAM,

IPPROTO_TCP);
getaddrinfo(myHost, port, &hints, &result);
connect(ConnectSocket, result->ai_addr, (int)result-

>ai_addrlen);

5) mdlOutputs

The engine calls mdlOutputs at each time step to calculate
the block outputs. The client implementation of mdlOutputs
takes the input signal and writes the data to the created output
socket.

send(mySocket, data, strlen(data), 0);
6) mdlTerminate

The engine calls mdlTerminate to provide the S function
with an opportunity to perform tasks at the end of the
simulation. This is a mandatory S function routine. The client
S-function terminate created socket.

shutdown(ConnectSocket, SD_SEND);
closesocket(ConnectSocket);
WSACleanup();

C. SimWebLink Client
Part SimWebLink Client have to be run on the computer

where is accessible the program Matlab/Simulink and
laboratory task is attached. The main objectives of this part of
the application can be described in four points:

• Contact SimWebLink Server after start and announce
readiness to work.

• Expect control commands from SimWebLink Server.
• In the event that the command comes, SimWebLink

Client runs Simulink schema, configure parameters and runs
the Matlab engine.

• Expect the incoming data from the SimWebLink Block
and then immediately forward them to the SimWebLink
Server.

This part of the application is written as a multithreaded
program. This layer of the entire application is required just
only for remote control and has the benefit of placing
measuring computer in the private network; the public IP
address is not required. In the case of monitoring, TCP/IP
Output Block can send data directly to the SimWebLink
Server or to another application (or device). Client part is
written by .NET technology [9], [11].

D. SimWebLink Server
Server part was originally programmed in C++ and provided

on the Linux platform. The current solution uses the Microsoft
.NET framework and is provided on Windows platform.
Server part was compiled as a WinForm application to debug
an application and reference dump. In real traffic can be run as
a Windows service. Communication between server and client
part is realized by WCF.

1) Server Functionality Description
• After the Server starts, the application sets the maximum

possible number of connected clients using server
configuration file. The initial counter number of connected
clients is set to 0

• Server socket starts and listens on port settings and waits
for client connection.

• The client connects to the server socket and is stored in
the list of connected clients. Client identification is realized by
UID. Increments the counter value of the connected clients. It
also sends data to a WCF service, which maintains a list of
clients to use in part SimWebLinkWeb.

• Connected client sends configuration of the task to the
server. After the correct reception of the XML configuration,
the configuration is forwarded to a SimWebLinkServerCore
where are available for part of the application
SimWebLinkWeb.

• The server waits for further commands from the
SimWebLinkWeb or receives data from SimWebLinkClient,
which subsequently saves the database.

Sample of XML SimWebLink Server configuration:

<userSettings>
<SimWebLinkServer.Properties.Settings>
<setting name=”MaxClientSockets” serializeAs=”String”>
<value>10</value>
</setting>
<setting name=”DbServerName” serializeAs=”String”>
<value>MY-PC\SQLEXPRESS</value>
</setting>
</SimWebLinkServer.Properties.Settings>
</userSettings>

2) Client/Server Data Transferring

Transferring data between client and server is implemented
using XML messages. This method was already used in the
previous version and was maintained. The advantage of this
method of communication is that it is used by all parts of the
application (client, server, web and WCF service) without
problems and also it is suitable for debugging, because this
format is easy to read.

3) SimWebLinkCore
WCF service The previous solution used the direct use of

sockets from the web interface. WCF service allows dividing
the application into separate logical units. As already
described, this service may be linked directly into an
application and can be run as a system service, or calls via IIS.
Selection of the best solution depends on the location of
application components (the network topology and location of
each client). In this case, for debugging purposes, the service

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 87

is encapsulated into the console application. For real-life is
preferable running as Windows service or linking DLL directly
into the server application.

4) SimWebLinkServerCore Class Methods
This class is the basis of the WCF service, which provides

an interface between individual parts of the application. The
methods are accessible from the server and the Web Part.

• AddClient() - method adds an item of type Task to the list
of Tasks. Accepts parameters - IP address, port, and client
identification (CID). Before adding the client is verified that
the list of clients has clients with this CID does not exist. If the
client exists, the method returns false and no record is added.
The return value is a logical (true - the client is added, false -
the client is not added - probably exists in the list)

• DeleteClient() - method delete an item from the list
Tasks. Accepts parameters - CID and compare items from the
list by CID. The method has no return value.

• Echo() - method for testing of service. Accepts parameter
of type string. The return value is a string and returns the same
value as was given in the input parameter.

• FindClient() - private (non-public) method, which looks
for the client in the list. The input parameter is a string (CID -
client identification). The return value is of type Task if the
client exists; if the client is not found, method returns a null
value (null).

• GetClientCount() - method for detecting the number of
connected clients. It has no input parameters. The return value
is of type integer.

• GetClientList() - method for returning a list of connected
clients. The return value is of type String array. It returns list
of the individual connected clients with CID.

• GetConfiguration() - method for returning the selected
client configuration. The input parameter is a string (CID
client identification). The method uses private methods
FindClient(). The return value is of type string. Returns the
XML configuration obtained from client. Server then forwards
the XML to the WCF service.

• GetData() - method for returning the measured data,
which sent klient. Input parameter is a string (CID client
identification). The method uses private methods FindClient().
The return value is of type string. Returns the XML data,
which are obtained from the client. Server then forwards the
value to the WCF service.

• GetIdentifier() - method for returning identifiers (names)
of clients . Input parameter is a string (CID client
identification). The return value is of type string.

• SetConfiguration() - method for task configuration setting
up of the selected client. Input parameters are of type string,
the first parameter specifies the client identification (CID) and
the second parameter is the XML configuration. The method
has no return value.

• SetData() - method for setting up the value of the XML
data of the selected client. Input parameters are of type string,
the first parameter specifies the client identification (CID) and
the second parameter is the XML data. The procedure has no
return value.

• StartMeasure() - method for starting up the task of the
selected client. The input parameter is a string (CID client
identification). The return value is a logical (true - the task was
started, false - the task is not running).

5) Task class description
This class provides passing parameters between individual

modules. Each client has its own instance of this class.
Recognition of individual clients is done via a unique identifier
(CID).

• ClientID - type of string, represents the unique
identification of the connected client. The value is generated
by SimWebLinkServer.

• Identifier – type of string – task name obtained from the
connected client.

• IPAddress – type of string - IP address of connected
client.

• Port - type of string - port of connected client.
To operate the commands sent by a web application is used

a queue. It was designed as a simple structure that contains the
client's CID and XML message.

E. Database
The previous database was implemented in the MySQL

database engine. For compatibility reasons, consistency, and
system tuning options was chosen database engine from
Microsoft [8]. For the operation of system will suffice SQL
Server Express edition.
Connecting to a database uses more application modules. It
was therefore necessary to resolve how to set the parameters.
The changes should take effect for all modules, which have
used. The connection information is set up by using
SimWebLinkServer and hand over to the WCF service that is
part of the application SimWebLinkServerCore. This
information is loaded into the web application part
(SimWebLinkWeb).

F. SimWebLink Web Interface
Web interface was realized using Microsoft ASP.NET [9].

Data communication between ASP.NET and server part is
done via WCF. The content of each page is dynamically
generated from XML data, which provides a WCF service.
Sample of XML configuration (shortened):

<?xml version=”1.0” ?>
<SimWeblinkWeb>
 <Simulink id=” schema_socketout ”>
 <block id=”WWWout”>
 <name>Perioda vzorkovani</name>
 < variable >parameters</variable>
 <value>10</value>
 </ block>

 <block>
 <name>Doba mereni</name>
 <variable>stoptime</variable>
 <value>20</ value>

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 88

 </ block>

 <commands>
 <block>
 <variable>SimulationCommand</variable>
 <value>START</value>
 </block>
 </commands>
</SimWeblinkWeb>

1) Web Part Description

After launching a web browser and entered the correct
address is displayed Title page of ASP.NET web application.
Pages are generated dynamically according to the data
retrieved from a WCF service. If the WCF service is not
running or is not available for any other reason, the application
detects the number of connected clients as a value of 0.

On the Fig. 4 is displayed automatically generated output
from configuration. It is possible set-up initial variables.

Fig. 4. Setting-up initial parameters.

The measurement can be run by button start. The progress

of measurement is continuously updated in the graph.
Communication with the Web application part does not work
in both directions. This means that the information needs in a
certain time interval to reload on the page. Thanks static class
SimWebLinkCore in the Web part, application reads the
current status of the connected client and displayed
information as a web page. Fig. 5 shows a list of archived jobs
stored in the database. Fig. 6 shows final graph loaded from
the database archive.

Fig. 5. List of archived jobs in the database

Fig. 6. Final graph loaded from the database

III. INSTALATION AND RUNNING APP
Installation pack has been created by Inno Setup [16], which

is distributed under the GPL license. The installation was
created in version 5.4.3, which can be downloaded from [6].
The installation is divided into 2 separate parts. The first part
installs the application SimWebLinkServer and WCF service
(SimWebLinkerverCore). To install this applications part is
required installed and configured of SQL Server database.
Second part of the application then installs the ASP.NET
application SimWebLinkWeb for access via web interface.
This requires correctly installed Microsoft Internet Information
Services (IIS). Described application SimWebLink.Net could
be downloaded from [17].

IV. CONCLUSION
An emerging strategy for application software is to provide

web access to software previously distributed as local
applications. It requires the development of an entirely
different browser-based interface and adapting an existing
application to use different presentation technology. This
paper describes options for making MATLAB/Simulink
applications available via the Web and the new developed web
application called SimWebLink. SimWebLink extends
computation possibilities of the MATLAB/Simulink. The
application SimWebLink is a multithreaded and a
multiplatform application.

The whole conception is based on the idea that it is possible
to observe running simulation or real measurement results in
the web browser. The data presentation lag is minimal and
SimWebLink Block does not affect Simulink schema runtime
too much. The main advantage is a remote control and
monitoring from any web browser in the Internet. The
presented data are stored in the database for the later uses.

SimWebLink is suitable for a remote control and monitoring
of the technological process uses MATLAB/Simulink via
Internet. The development of the application still continues
and new operating functions will be implemented.

Developed Simulink TCP/IP Output Block can be used in
Simulink models to communicate with others applications and
devices over TCP/IP network.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 89

REFERENCES

[1] M. Sysel, MATLAB/Simulink TCP/IP Communication. In Proceedings
of the 15th WSEAS International Conference on Computers. Corfu
Island, Greece : WSEAS Press, 2011. s. 71-75.

[2] Sysel, M., Remote Control and Monitoring In the Simulink. In
Proceedings of the 21st International DAAAM Symposium "Intelligent
Manufacturing & Automation: Focus on Interdisciplinary Solutions".
Vienna : DAAAM International Vienna, 2010, pp. 205-206.

[3] M. Sysel, SimWebLink.NET - Remote Control and Monitoring in the
Simulink. In Proceedings of the 11th WSEAS International Conference
on Data Networks, Communications, Computers. Malta, Sliema :
WSEAS Press, 2012. s. 58-62.

[4] Václavský, M., Rozhraní pro vzdálenou správu laboratorních úloh.
UTB ve Zlíně, 2012.

[5] M. Matýsek, M. Adámek, P. Neumann, T. Matulík, The mobile
ordering system with the PDA. In Recent Researches in Automatic
Control. Montreux : WSEAS Press, 2011, s. 268-271. ISBN 978-1-
61804-004-6.

[6] M. Matýsek, M. Adámek, P. Neumann, T. Karafiát, The mobile
monitoring and controlling of real systems via the GSM. In Proceedings
of the 15th WSEAS International conference on Communication (Part
of the 15th WSEAS CSCC Multiconference). Rhodes : WSEAS Press
(GR), 2011, s. 143-146.

[7] J. Vojtesek,P. Dostal, Use of MATLAB environment for simulation and
control of CSTR. International Journal of Mathematics and Computers
in Simulation Volume 5, Issue 6, 2011, Pages 528-535

[8] Mathworks, Matlab [online]. 2012 [cit. 2012-05-17]. Available from:
http://www.mathworks.com

[9] Microsoft, MSDN [online], 2012 [cit. 2012-05-17]. Available from:
www.msdn.com

[10] WCF, www.vyvojar.cz [online]. 2007 [cit. 2012-05-17]. Available from:
http://www.vyvojar.cz/Articles/454-wcf-zakladne-pojmy.aspx

[11] E. Ruffaldi, 1. .2. .3 ways of integrating MATLAB with the .NET.
[online]. 2003-11-19 [cit. 2012-02-02]. Available from:
http://www.codeproject.com/Articles/5468/1-2-3-ways-of-integrating-
MATLAB-with-the-NET

[12] Matlab Inc., MATLAB C and Fortran API reference. The Mathworks
Inc., Natick, USA, 2008

[13] Matlab Inc., Writing S-Functions. The Mathworks Inc., Natick, USA,
2008.

[14] J. Nair, Asynchronous Socket Programming in C#: Part I: Client-Server
Example with Multiple Simultaneous Clients, Available from:
http://www.codeguru.com/csharp/csharp/cs_misc/sampleprograms/articl
e.php/c7695, Accesed: 2009-05-03, 2005.

[15] Nair, J. Asynchronous Socket Programming in C#: Part II : An
advanced C# socket program example with a single server and multiple
simultaneous clients, Available from:
http://www.codeguru.com/csharp/csharp/cs_network/sockets/article.php
/, Accesed: 2009-05-03, 2005.

[16] Inno Setup, www.jrsoftware.org [online]. 2011 [cit. 2012-05-17].
Available from: http://www.jrsoftware.org

[17] M. Sysel, TBU in Zlin, SimWebLink.NET [online] Available from:
http://terra.utb.cz/SimWebLink

Martin Sysel was born in Zlin, Czech Republic in 1975 and studied at the
Brno University of Technology, Facultz of Technology in Zlin. where he got
his master degree in Automation and control technology in 1998. He has
finished his Ph.D. focused on Technical Cybernetics in 2001. He now works
as a associate professor at Department of Computer and Communication
Systems, Faculty of Applied Informatics, Tomas Bata University in Zlin. His
research interest is remote simulation and control of technological processes.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 90

