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Abstract— The active queue management algorithms are designed
for the Internet routers and their goal is to drop incoming packets
before the actual buffer overflow occurs — in this way they notify
the TCP senders about the necessity to reduce their sending rates
and prevent the link from congestion. Most of the known active
queue management algorithms drop incoming packets randomly, with
probability that depends on the queue size observed upon packet
arrival. In this paper we present calculations of the distribution of
the waiting time for such active queue management algorithms, i.e.
algorithms whose dropping probability is a function of the queue size.
In particular, we give a formula for the transform of the waiting time
distribution as well as a formula for the average waiting time. The
mathematical results are accompanied with examples of numerical
calculations.
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I. INTRODUCTION

In the architecture of the current Internet there exists an
incoherence between the congestion control mechanism in the
transport layer and the packet buffering mechanism in the
network layer, [2]. The buffers in the routers are designed
basically for storing random bursts of traffic caused by the
statistical multiplexing. On the other hand, the congestion
control mechanism in TCP probes the maximum available
bitrate by increasing the sending rate until a router buffer
overflows and a packet (or packets) is lost. In other words,
TCP tries to fill the buffers all the time. This causes several
negative effects, like too long queues, too high queueing
delays, synchronization of TCP sources, just to mention a
few. The solution to this problem is a cross-layer optimization
idea, namely the active queue management (AQM), which
is based on the assumption that the router can drop packets
preventively, before the buffer overflow occurs. In this way
the router notifies the TCP sender about the forthcoming
congestion and he can reduce his rate before the queue gets
long.

The research activity on AQM has been initiated by the
famous RED algorithm, [3], followed by several its modified
and improved versions, e. g. [4], [5]. Some other well-known
AQM algorithms include BLUE, [6], REM, [7], PI, [8] and
AVQ, [9]. In order to avoid the synchronization of TCP
sources, most of the AQMs assume that the arriving packets
are dropped randomly, with the probability that is a function
of some statistics collected by the router. In the most popular
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AQMs, the dropping probability is a function of the queue size
— this is also the case studied herein.

Most research done so far on active queue management is
based on simulation experiments (e.g. [10]-[29]) and usage of
discrete-event network simulators, like ns2, Opnet Modeler or
Omnet++ (see [30], [31], [32], respectively). In [33], a wide
set of tests of active queue management algorithms, designed
for simulation purposes, is presented.

Although the active queue management has been around for
a while, there are not many papers devoted to its analysis via
queueing theory methods. In [34], the RED queue model with
batch Poisson arrivals and exponential service time distribution
is considered. In [35], a queue-size based packet dropping
mechanism is analyzed by exploiting an extension of the
GIX/M/1 queue and a technique based on thinning of the
arrival process. In [36], an analysis of the single-server queue
with Poisson arrivals, general service time distribution and
a queue-size based packet dropping has been carried out,
resulting in formulas for the queue size distribution, loss
ratio and throughput. Using these results, the stability of
the queue size in an AQM router has been studied in [37].
Finally, in [38], the usage of dropping functions to control
the performance parameters of a single-server queue has been
demonstrated.

In this papers we deal again with the AQM model with
Poisson arrivals, general service time distribution and the
dropping probability depending on the queue size observed
upon packet arrival. This time, the analysis of the waiting
time (queueing delay), which is one of the most important
performance characteristics, is carried out. In particular, the
joint distribution of the queue size and the remaining service
time upon packet arrival in the steady state is computed first.
Basing on this result, a formula for the Laplace transform of
the steady-state waiting time is shown.

The remaining part of the paper is structured in the follow-
ing way. In section 2, a formal description of the queueing
model is given. In section 3, the actual analysis of the waiting
time, preceded by some preliminary studies, is carried out.
Section 4 presents numerical examples. Finally, in section 5
remarks concluding the paper are presented.

II. THE QUEUEING MODEL

The model considered herein is the classic single-server,
finite-buffer queueing system of M/G/1/b type, extended by
a packet dropping functionality based on so called dropping
function.

Namely, the packets arrive to the queue according to the
Poisson process with average rate A, the service time is
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distributed according to a distribution function F'(z), which
is not further specified. There is a finite buffer of size b for
storing the packets. In other words, the number of packets in
the system, including the one being serviced, cannot exceed
b. Every packet arriving when there are already b packets
present in the system is dropped. An arriving packet can be
dropped also even if the system is not full. This happens
with probability d(n), where n is the queue length observed
upon the arrival of this packet. The function d(n) is called a
dropping function. The dropping function must be must fulfill
the following two assumptions:

d(n) €0,1], for 0<n<b-1,

Besides that, it can have any form. The following notation will
be used:
P - the probability,
X(t) — the queue size at time ¢ (including service
position),
X} — the queue size left by the k-th departing packet
(again, including service position).

The load offered to the system will be denoted by p, i.e.:

p=Am,

where m denotes the mean service time.

III. WAITING TIME DISTRIBUTION

Before the actual waiting time can be computed, we have
to repeat some results on the queue size distribution, obtained
in [36], which are necessary for computation of the waiting
time.

In particular, in [36] it is shown that the steady-state
distribution of the queue length is equal to:

™/ (1 — d(k))

T )
where
Py = lim P(X(t) = k), 0<k<b, 3)

and 7, is the steady-state distribution of the queue length left
behind by the n-th departing packet, i.e.:

11

= lim P(X, =k), 0<k<b—1L. 4)

n—oo

Thus, to calculate Py, the distribution 7, for 0 < k <b—1
have to be calculated first. It can be obtained by solving the
following system of linear equations:

Th = 300 TiDjks O<k=<b-1
b—1 )
with
Pjk =
a1k, if j=0 0<k<0b-1,
0 otherwise,

= /000 Qn.i(w)dF (u). @)

Qn,k(u), which appears in (7), is the conditional probability
that the first departure time is after v and k packets are
allowed into the system in interval (0, u], given that X (0) = n.
Qn,k(uw) can be computed effectively by inverting its Laplace
transform:

tr®) = [ Quulwdu, ®)
0
which has the following form (see [36]):

[T, M1 —d(n + 1))
TT_o(s + A(1 = d(n + 1))’

qn,k(s) =
n>0, k>0. (9

With help of the queue length distribution we can calculate
the loss ratio, LR, which is defined as the long-run fraction
of dropped packets. Namely, it is equal to

1- P
-

LR=1-

(10)

For the waiting time analysis we will use a method similar
to presented in [39], p. 214 (used there for analysis of classic,
finite-buffer models). In the preliminary steps, this method
exploits the remaining and elapsed service times. Namely, we
denote:
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X —the remaining service time upon packet arrival (in the
steady-state),

X_ — the elapsed service time upon packet arrival (in the
steady-state),

A(X_) - the number of packets accepted during the elapsed
service time X _,

¥ k(s) — the joint distribution for the length of the re-
maining service time X and the number of packets accepted
during the elapsed service time X _, given that at the beginning
of the last service period the queue size was n. Namely, we
have:

Uni(s) = En(e™*¥H JA(X.) = k)P(A(X-) = k),

k=0,1,2,.... (11)
We have
1 oo oo s
vurle) = o [ Qualords [ eorary),
m Jo 0
k=0,1,2,..., (12)

with
Fi(y) = F(z +y).

Let X be the queue size in the steady state and let ITj(s)
be the joint distribution of the queue size and the remaining
service time upon packet arrival in the steady state:

(oo}
I, (s) = / e WP(X =k, X, €dy), 1<k<b. (13)
0

For 1 < k < b we have:

Hk(s) =
= pmE(e " HAX )=k - 1D)PAX_)=k—1)
k
+0' > mBy(e X HAX )=k — j)P(A(X_)=k—j). (14)
where

o' =p(l—LR) (15)

12

is the carried load of the system (or, equivalently, the proba-
bility that the server is busy at an arbitrary time).
Therefore, we have:

k
Ik (s) = p'moth1 k—1(s) + o' Z T k—j(8)- (16)

j=1
Now, we introduce the following notation:

W (t) — distribution function of the real waiting time (queue-
ing delay), i. e. the time spent by an accepted packet in the
queue, before processing, in the steady state (rejected packets

are not taken into account).
Denoting
o0
w(s) = / e St dW (1), (17)
0
and

F(s) = /0 T estar), (18)

we can obtain the Laplace transform of the waiting distribu-
tion:

b—1
-1z (Po +3 - d<k>>nk<s><f<s>>k-1> . (19

Now we can use (19) either for obtaining the shape of the
waiting time distribution (a method for inverting the Laplace
transform is needed then — see, for instance, [40]), or for
obtaining directly the average waiting time by means of the
formula:

EW = —w/(0). (20)

If we have given a particular form of the service time
distribution, we may try to simplify the expression for ), 1 (s).
For instance, assuming that the service time is constant and
equal to ¢, we get:

fls) =e™,
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e—SC

Vnk(s) =

/C Qn. i (x)e*Fdx.
0

C

IV. NUMERICAL EXAMPLES

Naturally, the queueing delay observed at the router is
negative effect of statistical multiplexing, therefore we want
to be as small as possible. However, a short delay should n
be obtained by increasing the loss ratio - this would decreas
the router throughput. Therefore, when testing the impact «
different dropping functions on the queueing delay we hay
to keep the same loss ratio in every case.

In all examples we assume b = 10, A = 1 and a consta
service time equal to 1 (which gives also the offered loc

p=1).

A. Example 1

In this example we consider four shapes of the dropping
function, namely:

e RED dropping function (see Fig. 1):

0 if n<3,
d(n) = ¢0.0820928n—0.164185 if 3 <n < 10,
1 if n>10.
@
e REM dropping function (see Fig. 2):
if n<4,
d(n) = 1—elB097TE=1) if 4 <n<10, (2
1 if n>10.
e constant dropping function (see Fig. 3):
0.08032 if n <10,
d(n) = { 1 it n>10
e decreasing dropping function (see Fig. 4):
0.44043 — 0.35n  if n <3,
din)=¢ 0 if 3<n<10,
1 if n>10.
(24)

Each of these dropping functions has been parameterized so
that the resulting los ratio is exactly 10% (which means that
the carried load is p’ = 90%).

Tab. I presents the results, namely the average queueing
delay for four considered dropping functions. It is worth
noticing that even though the system throughput is the same
in every case, the queueing delay may differ significantly,

13
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Fig. 1. The RED dropping function used in Example 1.
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Fig. 2. The REM dropping function used in Example 1.

depending on the shape of the dropping function — in our
worst case the delay is more than two times larger than in the
best case.

Secondly, as one can notice, more favourable are dropping
functions with steep, increasing shapes. For flat or decreasing
dropping functions we obtain larger delays.

’ dropping function H loss ratio \ queueing delay ‘

RED, (21) 0.10000 2.1606
REM, (22) 0.10000 1.9349
constant, (23) 0.10000 3.1850
decreasing, (24) 0.10000 4.2908
TABLE I
THE LOSS RATIO AND THE MEAN QUEUEING DELAY FOR FOUR DROPPING
FUNCTIONS.
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Fig. 3. The constant dropping function used in Example 1.
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Fig. 4. The decreasing dropping function used in Example 1.

B. Example 2

In the second example we will consider the following class
of linear dropping functions (see Fig. 5):

n < 10,

n > 10, (25)

a-n if
d(m{ 1 if

where a is a parameter. We will check the queueing perfor-
mance depending on a.

In Fig. 6 the dependence of the average waiting time on a
is presented, in Fig. 7 the dependence of the loss ratio on a
is presented while in Fig. 8 the dependence of the standard
deviation of the waiting time on a is depicted.

It is not a surprise that the waiting decreases with a while
the loss ratio increases with a. Now, interesting problems arise
when we want to optimize the performance of the queueing

14
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Fig. 5. Dropping functions used in Example 2.

system with respect to both of these characteristics. For
instance, assume we want to minimize the following objective
function:

fola) =EW - LR,

under constrain:

LR < 15%. (26)

To solve this optimization problem, we first have to solve
the equation:

LR(a) =0.15. 27
Using (10) and (1) we obtain
a = 0.06972,

(see also Fig. 7 for comparison).

In Fig. 9 function fy(a) is depicted in interval [0, 0.06972].
As we can see, fy(a) is not monotonic and reaches a maximum
around 0.025. Under constrain (26), the minimum is reached
for a = 0. Naturally, for other constrains the optimal a may
be different.

V. CONCLUSIONS

In this paper we dealt with a queueing model in which a
packet can be dropped with probability that depends on the
queue size observed upon arrival of this packet. The study
was motivated by the active queue management algorithms
for Internet routers, which often exploits such packet dropping
mechanism. In particular, the Laplace transform of the distri-
bution of the waiting time has been calculated and illustrated
via numerical examples.

Acknowledgements: The material is based upon work sup-
ported by the Polish National Science Centre under Grant No.
N N516 479240.
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Fig. 6. The average waiting time as a function of a in Example 2.
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Fig. 7. The loss ratio as a function of a in Example 2.

REFERENCES

[1] Chydzinski, A. Delay Analysis for an AQM Queue with Dropping
Function. Proc. of International Conference on Data Networks, Com-
munications, Computers, Sliema, Malta, September 7-9, pp. 53-57,
2012.

[2] Bohacek, S.; Shah, K.; Arce, G.R.; Davis, M. Signal processing chal-
lenges in active queue management. IEEE Signal Processing Magazine,
Vol. 21, Iss. 5, Pages: 69-79, Sept. 2004.

[3] Floyd, S.; Jacobson, V. Random early detection gateways for conges-

(4]

[3]

(6]

tion avoidance. IEEE/ACM Transactions on Networking, Volume 1,
Issue 4, Page(s): 397 — 413, 1993.

Rosolen, V.; Bonaventure, O., and Leduc, G. A RED discard strategy
for ATM networks and its performance evaluation with TCP/IP traffic.
SIGCOMM Comput. Commun. Rev. 29, 3, Jul. 1999.

Floyd, S.; Gummadi, R. and Shenker, S. Adaptive RED: An algorithm
for increasing the robustness of RED, Tech. Rep.: ACIRI, 2001,
http://icir.org/floyd/red.html

Feng, W.; Shin, K. G.; Kandlur, D. D.; Saha, D. The BLUE active
queue management algorithms. IEEE/ACM Transactions on Network-



Fig. 8.

Fig. 9.

(71

(8]

[9]

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 1, Volume 7, 2013

2.75 |

2.5 |

2.25 |

1.75 ¢

STDDEV. WAITING TIME

1.25 ¢

0 0.02

0.04

a

The standard deviation of the waiting time as a function of a in Example 2.

0.06 0.08 0.1

0.26

0.25 ¢

0.24

0.23

0.22

LOSS RATIO AND DELAY PRODUCT

0 0.01 0.02

The loss ratio and delay product as a function of a in Example 2.

ing. Page(s): 513 — 528, Volume: 10, Issue: 4, Aug 2002.

Athuraliya, S.; Low, S. H.; Li, V. H.; Qinghe Yin. REM: active queue
management, IEEE Network. On page(s): 48-53, Volume: 15, Issue: 3,
May 2001.

Hollot, C. V.; Misra, V.; Towsley, D.; Weibo Gong. Analysis and
design of controllers for AQM routers supporting TCP flows, IEEE
Transactions on Automatic Control. On page(s): 945-959, Volume: 47,
Issue: 6, Jun 2002.

Kunniyur, S. S.; Srikant, R. An adaptive virtual queue (AVQ) algorithm
for active queue management. IEEE/ACM Transactions on Networking.

0.03

[10]

[11]

[12]

0.04 0.05 0.06 0.07

Page(s): 286-299, Volume: 12, Issue: 2, April 2004.

Mrozowski, P. and Chydzinski, A. Stability of AQM algorithms in low
congestion scenarios, International Journal of Applied Mathematics and
Informatics, Volume 3, Issue 1, pp. 9-16, Nov 2009.

Mrozowski, P. and Chydzinski, A. Interactions between AQM routers in
the Internet, International Journal of Systems Applications, Engineering
& Development, Vol. 3, Issue 3, pp. 85-92, Nov 2009.

Chrost, L., Brachman. A and Chydzinski, A. On the performance of
AQM algorithms with small buffers, Communications in Computer and
Information Science, Vol. 39, pp. 168-173, (2009)



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 1, Volume 7, 2013

Chydzinski, A. and Brachman, A. Performance of AQM Routers in the
Presence of New TCP Variants, Proc. of International Conference on
Advances in Future Internet, pp. 88- 93, Venice, July (2010)

Mrozowski, P. and Chydzinski, A. On the Stability of AQM Algo-
rithms, Proc. of Applied Computing Conference (ACC’09), pp. 282-
287, Athens, September 2009.

Mrozowski, P. and Chydzinski, A. On the Deployment of AQM
Algorithms in the Internet, Proc. of Applied Computing Conference
(ACC’09), pp. 276-281, Athens, September 2009.

Adamczyk, B. and Chydzinski, A. On the optimization of the inter-
flow fairness in the Internet, Theoretical and Applied Informatics, in
press, scheduled for Vol. 3/2012, 2012.

Wu, W, Ren, Y., Shan, X. A self-configuring PI controller for active
queue management. In Asia-Pacific Conference on Communications
(APCC), Japan, 2001.

Wydrowski, B. and Zukerman, M. GREEN: an active queue manage-
ment algorithm for a self managed Internet, in: Proceeding of IEEE
International Conference on Communications ICC2002, vol. 4, pp.
2368-2372, April, 2002.

Heying, Z., Liu, B. and Wenhua, D. Design of a robust active
queue management algorithm based on feedback compensation, in:
Proceedings of ACM/SIGCOMM 2003, pp. 277-285. 2002.

Aweya J. 1, Ouellette M., Montuno D.Y. Multi-level active queue
management with dynamic thresholds. Computer Communications.
Volume 25, Number 8, pp. 756771, 2002.

Fatta, G., Hoffmann, F., Re, G. L., Urso, A. A genetic algorithm for
the design of a fuzzy controller for active queue management, IEEE
Transactions on Systems, Man and Cybernetics, Part C: Applications
and Reviews. On page(s): 313-324, Volume: 33, Issue: 3, Aug. 2003.

Chatranona, G., Labradorb, M.A. and Banerjee, S. A survey of TCP-
friendly router-based AQM schemes. Computer Communications. v27.
pp. 1424-1440, 2004.

Ren, F, Lin, C. and Wei, B. A robust active queue management
algorithm in large delay networks. Computer Communications 28(5):
Pages: 485493, 2005.

Lakshmikantha, A., Beck, C. L., Srikant, R. Robustness of real and
virtual queue-based active queue management schemes, IEEE/ACM
Transactions on Networking. On page(s): 81— 93, Volume: 13, Issue:
1, Feb. 2005.

Hong, Y., Yang, O. W. W. Adaptive AQM controllers for IP routers
with a heuristic monitor on TCP flows: Research Articles, International
Journal of Communication Systems, v.19 n.1, pp.17-38, 2006.

Chang, X., Muppala, J. K. A stable queue-based adaptive controller for
improving AQM performance, Computer Networks: The International
Journal of Computer and Telecommunications Networking, v.50 n.13,
pp. 2204-2224, 2006.

Wang, C., Liu, J., Li, B. Sohraby, K, Hou, T. LRED: A Robust and
Responsive AQM Algorithm Using Packet Loss Ratio Measurement.
IEEE Transactions on Parallel and Distributed Systems, v.18 n.l,
pp-29-43, 2007.

Hariri, B., Sadati, N. NN-RED: An AQM mechanism based on neural
networks. Electronics Letters. Volume: 43, Issue: 19, On page(s): 1053—
1055, 2007.

Sun, J. and Zukerman, M. An Adaptive Neuron AQM for a Stable
Internet, Proc. Networking’07, LNCS 4479, 2007.

http://www.isi.edu/nsnam/ns/
http://www.opnet.com/solutions/network_rd/modeler.html
http://www.omnetpp.org/

Chrost, L. and Chydzinski, A. On the Evaluation of the Active
Queue Management Mechanisms. Proc. of International Conference
on Evolving Internet INTERNET’09), pp. 113-118, Cannes, August
20009.

17

[34]

[35]

[36]

[37]

[38]

[39]

[40]

At

Bonald, T., May, M. and Bolot, J.-C. Analytic evaluation of RED
performance. Page(s): 1415-1424, Proc. INFOCOM, 2000.

Hao, W. and Wei, Y. An Extended GIX /M/1/N Queueing Model
for Evaluating the Performance of AQM Algorithms with Aggregate
Traffic. Page(s): 395-414, Proc. ICCNMC, LNCS 3619, 2005.

Chydzinski, A., Chrost, L. Analysis of AQM queues with queue-size
based packet dropping, International Journal of Applied Mathematics
and Computer Science, Vol. 21, No. 3, 567577, 2011.

Chydzinski, A. Towards a Stable AQM via Dropping Function Shaping,
Proc. of International Conference on Networks 10, pp. 93-97, Les
Menuires, April 2010.

Chydzinski, A. Optimization problems in the theory of queues with
dropping functions, Proc. of HET-NETS’10 (Performance Modelling
and Evaluation of Heterogeneous Networks), pp. 121-132, Zakopane,
January 14th - 16th, 2010.

Takagi, H. Queueing analysis - Finite Systems. North-Holland Amster-
dam, 1993.

Abate, J., Choudhury, G. L. and Whitt W. An introduction to numerical
transform inversion and its application to probability models. Chapter
in Computational Probability, pp. 257-323, W. Grassman (ed.), Kluwer,
Boston, 2000.

Andrzej Chydzinski received his MS (in applied
mathematics), PhD (in computer science) and DSc
(in computer science) degrees from the Silesian
University of Technology, Gliwice, Poland, in 1997,
2002 and 2008, respectively. He is currently a pro-
fessor in the Institute of Informatics of this uni-
versity. His academic and professional interests are
with computer networking, in particular with per-
formance evaluation of computer networks, Future
| Internet design, active queue management in Internet
routers, mathematical modelling, queueing theory

and discrete-event network simulators. Prof. Chydzinski authored and co-
authored 3 books, about 40 conference papers and about 40 journal articles,
including papers in Telecommunication Systems, Performance Evaluation,
Pattern Recognition, Microprocessors and Microsystems, Queueing Systems,
Stochastic Models, Mathematical Problems in Engineering, Applied Mathe-
matical Modelling and other. He is also reviewing articles for several high-
quality journals, including Annals of Operations Research, Applied Mathemat-
ical Modelling, Queueing Systems, Mathematical Problems in Engineering,
International Journal of Applied Mathematics and Computer Science, Journal
of Network and Computer Applications, Performance Evaluation and other.
Prof. Chydzinski is a Technical Program Committee member for several
conferences. He was (and is) a leader of several scientific projects founded by
Polish state and European Union. Since January 2011 he has been an IEEE
Senior Member.





