
 

 

  

Abstract—We discuss a new approach for driving avatars using 

synthetic speech generated from pure text.  Lip and face muscles are 
controlled by the information embedded in the utterance and its 

related expressiveness.  Rule-based, text-to-speech synthesis is used 

to generate phonetic and expression transcriptions of the text to be 
uttered by the avatar.  Two artificial neural networks, one for text-to-

phone transcription and the other for phone-to-viseme mapping have 

been trained from phonetic transcription data.  Two fuzzy-logic 
engines were tuned for smoothed control of lip and face movement.  

Simulations have been run to test neural-fuzzy controls using a 

parametric speech synthesizer to generate voices and a face 
synthesizer to generate facial movement.  Experimental results show 

that soft computing affords a good solution for the smoothed control 
of avatars during the expressive utterance of text. 

 

Keywords—Speech-driven avatar, phone-to-viseme conversion, 

text-to-speech synthesis, artificial neural network, fuzzy logic.  

I. FOREWORD 

ver the last ten years, interest in human-like 

conversational interfaces [1] has grown rapidly, driven by 

applications where the human-machine interface requires 

natural interaction.  Because reading the human being’s mental 

state during natural conversation improves the understanding 

of speech, synthesizing facial expression is a primary 

requirement for developing expressive talking heads [2].  

Avatars able to speak expressively have become an important 

requirement for applications such as interactive games, 

interactive web pages, communicating with the hearing 

impaired, and so forth. 

Facial gesture is a combination of verbal e non-verbal 

communication made with movements of the head and face.  

Head and eyebrow movements (blinking, frowning, rising, 

lowering, gaze direction, etc.) can be automatically generated 

from the speech [28] signal.  Lip synching systems [10], [3] 

and  automatic systems for full facial animation driven by 

speech signal [15] are implemented using softcomputing 

methods (neural networks and genetic algorithms). 

In a recent work [20], Zoric et al. develop an automatic 

system for full facial animation driven by speech, using 

universal architecture for statistically based human gesturing. 
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Such work demonstrated that also a small number of speech 

features can improve facial animation in terms of naturalness 

and communication capabilities. Using more speech 

parameters (pitch and its related dynamic) a very realistic 

facial animation process can be gained.  

Speech can be considered a single communication medium 

in which information is represented multimodally.  Information 

conveyed by speech is not only semantic or syntactic but also 

emotional, expressive, gestural and intonational. 

Synthesis by analysis [25] is an optimal approach to drive a 

talking head. The audiovisual analysis creates the face model 

of the avatar with associated a large database of mouth images. 

The phonetic transcript of text is then used to drive the mouth  

selecting and  concatenating appropriately mouth images from 

the database.   

In applications for lip-synching [24] that directly 

synchronize uttered speech with lip and face movement, the 

information embedded in speech is often lost because it is too 

difficult to extract information like emotion or gesture.  Only a 

few general speech parameters, such as amplitude and pitch 

variability, can be measured and tracked.  However, these low-

level measurements fall far short of those needed to drive an 

avatar with the full information content of uttered speech.. 

Tracking these variables leads to very good results for lip 

synchronization [3], but the avatar is driven with greatly 

impoverished expression, resulting in very limited naturalness.  

To overcame this problem, synthetic speech can be used 

instead of natural speech to drive the avatar [4]. 

Text-to-viseme may by the right approach to control an 

avatar for natural utterance [26].  The text-to-viseme process 

can translate text into the appropriate viseme and supplement 

this basic information with other related information such as 

emotion or gesture [5] , [6], [7]. 

Rule-based, text-to-viseme synthesis has been successfully 

implemented by considering emotion an additional item of 

information [8] and used for direct visual speech synthesis [9].  

Such approaches separate the tasks of speech synthesis and 

face-control synthesis, despite the fact that they are part of a 

single, integrated task in human utterance behavior. 

Artificial, neural-network-based, text-to-viseme synthesis 

has been also explored [10], [11], demonstrating that greater 

naturalness can be achieved with a soft-computing rather than 

a hard-computing approach.  Fuzzy logic has proven highly 

effective in smoothing the action of the logical control rules 

that move an avatar’s face muscles during emotional behavior 

[12]. 

This research employs both artificial neural networks and 
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fuzzy logic to generate phoneme and viseme information that 

drives face movements during the utterance of a text, as human 

do.  Its goal is to use pure text to feed the whole process, as a 

human being does when reading a text. The research tries also 

to solve the problem of reading the words of pure text aloud by 

generating both speech and the related whole-avatar face 

motion. 

Reading text aloud consists of a set of increasingly complex 

tasks.  The least complex is correctly uttering an isolated word.  

Of intermediate complexity is correctly uttering of a word in a 

sentence.  The most complex task is uttering a word according 

to the semantics of the sentence in which the word happens to 

be located in that particular instance. 

 Correct utterance of any given word as a single isolated 

word is accomplished using a set of pronunciation rules that 

can be inferred from orthographic notation, although they are 

not explicitly visible.  Such rules concern transcribing letters  

to phones, correctly positioning the tonic syllable on each 

word, how this stress applies, and controlling the duration of 

phones and syllables. 

Uttering each word in a sentence with sentence-level 

expressive requires a set of prosodic rules, primarily related to 

how punctuation marks are distributed.  This information can 

also be encoded into the pronunciation rules, thus enabling 

coherent control of pitch and duration during the course of the 

utterance.  This expressive uttering of the words in a sentence 

is the most complex task, because it is not strictly related to the 

text of the sentence, but above all to the context to which the 

sentence belongs.  Some basic expression rules can be 

classified and embedded in the pronunciation rules.  These can 

be set up to trigger when certain key words or punctuation 

marks occur in the sentence (or at the end of it, or even at the 

end of the preceding sentence). 

Information for face-movement control can be extracted 

automatically from the text according to rules extended from 

these pronunciation signals. 

II. SYSTEM ARCHITECTURE 

To design the expressive synchronized-speech and face-

synthesis system, a two-phase process framework was build.  

The whole process can be considered a general-purpose model 

for designing an integrated system of expressive, avatar-based 

speech communication in human-computer interfaces. 

The first phase involves training and tuning two artificial 

neural networks (ANNs) for text-to-phones and for phones-to-

viseme synthesis, respectively.  Two fuzzy-logic engines are 

also used to smooth speech and face-muscle control. 

Fig. 1 shows how a rule-based, text-to-phone and text-to-

expression transcriber trains the ANN-based, text-to-phone 

generator and the ANN-based text-to-viseme generator.  Using 

such a transcriber, only pure ASCII text is used to train the 

ANNs.  Ancillary data for speech and facial expressiveness is 

automatically extracted from the text by means of regular-

expression-based description rules.  The two fuzzy-logic 

engines are manually tuned using a fuzzy logic development 

environment.  This allows for editing of the fuzzy rules and the 

membership functions according to expert experience.  (The 

tuning task can be also performed by a genetic algorithm). 

 

Fig. 1 Training and tuning process of the ANNs and the fuzzy logic 
engines. 

The second phase consists of testing speech synthesis when 

executed synchronously with face motion, as shown in Fig. 2. 

 

 

 

Fig. 2 Testing process for expressive speech and face-motion control. 
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The additional components of the test process consist of a 

formant-based speech synthesizer and a viseme generator.  The 

formant-based synthesizer allows full control of speech 

parameters, so any modulation of speech can be achieved.  The 

viseme generator allows control of facial movement and 

expression during utterance. 

III. RULES FOR TRANSCRIBING INTO PHONES AND EXPRESSIONS 

Transcribing text into phonemes and expressions [17] 

consists of a series of processing steps that are applied to the 

text.  The text is first preprocessed to convert non-alphabetical 

elements such as numbers, letters pronounced singly as in 

words spelled aloud, abbreviations, and special ASCII 

symbols into the corresponding expanded text.  Punctuation 

and word boundaries are processed by a set of rules that 

encodes the expression.  Each word in the text is converted 

into phone-and-expression stream using a language-specific set 

of rules.  

The rules have the following format: 

 

BDAC =)(  (1) 

where:   

 

where A is the the text transformed into the phonetic utterance 

and facial expression B if the text to which it belongs matches 

A in the sequence CAD.  C is a pre-context string and D is a 

post-context string. 

To compile the rules, the following classes of elements 

were defined: 

 

 

   

        [!]  |    (^) | ($)   

    [#]  |    ([AEIOUY]+) 

    [:]     |    ([^AEIOUY]*) 

    [+]  |    ([EIY])  

    [$]    |    ([^AEIOUY]) 

    [.]     |    ([BDGJMNRVWZ]) 

    [^]    |    ([NR]) 

 

 

       [! ] any non-alphabetical character 

       [#] single or multiple vowels 

       [:]  zero or more than one consonant 

       [+] one front vowel 

       [$] one consonant 

       [.] one voiced consonant 

       [^] N or R consonant 
 

 

 

 

 

(2) 

For each class, a regular expression is used to encode the 

rules in compact fashion.  

The salient rules for encoding {p} are as follows (note that 

the dash in a phone slot represents its boundaries and that 

numbers preceding the phone indicate duration): 

 

  

 

     !(P)!=/1p/1i/ 

(P)!=/1p/4h/4-/ 

(PA)STE=/1p/1eI/1j/ 

!(PHOTO)=/1f/1o/1w/1t/2o/2w/ 

!(PHYS)=/1f/2I/1z/ 

(PH)=/1f/ 

(PPH)=/1f/ 

(PEOP)=/1p/1i/1p/ 

!(POE)T=/1p/1o/1E/ 

(POUR)=/1p/1o/13/ 

(POW)=/1p/1O/1u/ 

(PP)=/1p/ 

!(PRETT)=/1p/1r\/2I/1t/ 

(PRO)VE=/1p/1r\/1u/ 

(PROO)F=/1p/1r\/1u/ 

(PRO)=/1p/1r\/1o/ 

(PSEUDO)=/1s/2u:/2d/3o/3w/ 

(PSYCH)=/1s/2a/2a/3j/1k/ 

!(PS)=/1s/ 

!(PT)=/1t/ 

CEI(PT)=/1t/ 

(PUT)!=/1p/1U/1t/4-/ 

!(P)=/1p/2H_f/ 

(P)=/1p/ 

 

 

 

 

 

 

 

 

 

 

 

(3) 

 

We have based the transcription standard on X-SAMPA 

[29] (right context). The phonetic information is combined 

with other voice data to control a series of parameters such as 

duration, stress, etc. The following is the set of symbols used 

to encode the phonetic information: 
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X Sampa-like Sample word 

 @  (a)bout 

 {  m(a)p 

 {:  m(a)d 

 e  sc(e)lte 

 E  b(e)lla 

 E_r  b(e)nché 

 i  v(i)sti 

 a  (o)dd 

 u  p(u)nto 

 o  p(o)ngo 

 O  (o)rto 

 O_r  c(o)priletto 

 I  h(i)t 

 A  f(a)ther 

 p  (p)ongo 

 pp  ca(pp)otto 

 p:p  stra(pp)o 

 _h  p()ail 

 h  (h)eart 

 H_f  chic(k)en 

 H_n  uh-(h)uh 

 H_v  ba(h) 

 H_c  d()oes 

 ?  Clin(t)on 

 4  ie(r)i 

 r  (r)aro 

 r:4  ca(rr)o 

 4r  co(rr)esse 

 44  dà (r)agione 

 r\  (r)ed 

 R  (r)oi 

 R\  D(r)ang 

 J  a(ñ)o 

 F  go(n)fio 

 9  n(eu)f 

 oU  b(oa)t 

 V  c(u)t 

 U  f(oo)t 

 Q  cl(o)ck 

 y  t(u) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4) 

IV. TRAINING THE ANNS TO TRANSCRIBE 

The two ANNs used to transcribe text into phones and 

expressions and to convert phones and expressions into 

visemes both have three-layer, feed-forward, backpropagation 

architectures (FFBP-ANN).  

 

 

Fig. 3 Architecture of the FFBP-ANN 

 

The first ANN [16] transcribes phones and expressions from 

text input.   Its output is the input for the second ANN, whose 

output is viseme encoding. 

A linear activation function controls connections at the input 

and the hidden layer nodes.  A non-linear (sigmoid) activation 

function connects hidden-layer nodes to the output-layer.  The 

non-linear activation function is: 
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si=
1

1+e
− I

i

I i= ∑
j

w ij s j
 

 

(5) 

 

where:   

 

 

s is the output of the i-th unit 

Ei is the total input 

wij is the weight from the j-th to i-th unit 

 

 

The first ANN’s input is a text window of nine consecutive 

characters. This window slides from right to left.  Current 

output encodes the phone and the expression that correspond 

to the middle character in the input-layer string, taking into 

account the pre-context and post-context of the current input 

character. 

 

Fig. 4 Sliding window 

 

 

 

 

 

 

 

 

The text-to-phone/expression transcription system is used to 

train the ANN to transcribe text to phones and expression.  

This generates ANN input-output training patterns for a large 

variety of texts.  The ANN thus learns to read unknown text 

with expression.  The second ANN is trained in analogous 

fashion, but only after the first ANN has been fully trained.  

The first ANN’s output is used as input for the second ANN, 

employing the same sliding-window strategy.  A basic viseme 

set is used as reference to train the ANN during the error back-

propagation process. 

V. SMOOTHING SPEECH AND MOVEMENT WITH FUZZY LOGIC 

The two trained ANNs can drive the speech synthesizer and 

the avatar face.  However, in order to utter speech and move 

the face more naturally, the ANNs’ output needs smoothing 

before it is applied to the speech synthesizer and to the 

avatar’s face controller.  This smoothing is accomplished with 

fuzzy logic in two steps.  Two separate fuzzy subsystems 

convert the ANN-output expression state into control levels, 

first for speech dynamics and then for face muscles.  Crisp 

information (intensity, level, etc.) about expression was 

transformed into fuzzy rules.  The resulting crisp control level 

comes from an appropriate defuzzifying process. 

The two fuzzy subsystems are identically structured.  They 

differ only in their settings (i.e., the knowledge base).  Each 

consists of a fuzzifying front end, a rule-based inference 

engine, and a defuzzifying back end. 

The first step in the fuzzy-engine tuning process consists of 

modeling crisp intensity and level information into fuzzy 

measurements. This is done by modeling seven fuzzy sets: 

imperceptibly low, very low, moderately low, medium, 

moderately high, very high, and extremely high. 

Triangular and trapezoidal membership functions are used 

to implement these fuzzy sets. The shape and relations among 

these are reported qualitatively in Figure 5.  Tuning is 

accomplished by an expert who uses a fuzzy-logic 

development environment to simulate and evaluate the 

resulting membership degrees for each crisp input. 

The second step consists of editing and tuning a set of 

inference rules such as: 

 

z THENy  AND x IF  (6) 

 

where x and y are membership grades for the intensity and 

level of speech and facial expression we intend to smooth 

before they are applied as controls.  z is the degree of control 

to be applied. 
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Fig. 5 Fuzzy modeling of speech synthesis and facial control inputs. 

 

 

Fig. 6 Singleton membership functions to defuzzify the output 
control level. 

 

 

 

 

The third step consists of defuzzifying output control.  This 

is done by converting degrees of control into crisp control with 

set of singleton membership functions  (fig. 6) and a weighted-

average (center of gravity): 

 

 

 

)/()( BAAxBControl +=  (7) 

 

 

VI. SPEECH SYNTHESIS MODEL 

Several solutions can be used to synthesize speech when 

text-to-speech (TTS) transcription is available. Concatenative 

synthesis [13] is currently used for TTS applications, but 

formant-based synthesis  is more interesting for embedded 

applications because it can potentially synthesize any voice 

and can be modulated according to emotional information.  

The speech-synthesizer model we refer to emulates the 

human vocal tract. The reason for this choice is that unlimited 

utterances need to be generated with extensive audio such as 

singing, yawning, cough, laugh, etc. 

This speech-synthesis model achieves naturalness by 

producing speech with dynamically controlled processing 

elements: filters, generators, and modulators.  Coarticulation, 

phonetic articulation-rate, and inflection (pitch) can all be 

controlled, statically or dynamically.  Speech type (male, 

female, child, etc.) and alterations (bass, baritone) are also 

controllable. 

Formant-based speech synthesis [22] is an extremely  

accurate model for human speech modelling because it models 

the sound source and the formant frequencies of each speech 

sound that the avatar needs to utter.   This model essentially 

consists of a set of virtual synthetic human vocal cords (a 

glottis) and of the articulators that go with it. 

Both these components are parameter-controllable, so that 

no speech sounds need to be pre-recorded to accomplish the 

synthesis.  Therefore such a speech synthesizer represents the 

avatar’s embedded phonetic apparatus. 

High quality speech can be generated if appropriate input 

parameters are supplied to the speech synthesizer. Natural 

utterance is obtained with parallel formant synthesis 

controlling appropriately the first three formants (F1, F2, and 

F3) in terms of bandwidth and excitation sources. 

Such control is generated by the fuzzy logic engine that 

produce control trajectories for natural coarticulation of 

phones sequences generated by the text-to-phone ANN engine. 

 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 2, Volume 4, 2010

66



 

 

 

Fig. 7 Formant-based speech synthesizer. 

 

The speech synthesizer (fig. 7) consists mainly of two 

primary sound-source generators, one for voiced sounds and 

one for unvoiced sounds.  Multiple amplitude control is also 

implemented because different sound sources (voice, 

aspiration, frication, etc.) need to be combined to generate a 

complete speech sound (e.g. voiced consonants and unvoiced 

noisy sounds). Pitch is controlled in terms of fundamental 

frequency F0 and variability, according to expression 

information embedded in the text to be uttered.  A set of filters 

that operate as resonators can\ be programmed to profile the 

distribution of formants for each sound that needs to be 

synthesized. 

VII. FACE SYNTHESIS MODEL 

Facial synthesis by analysis is a promising approach to the 

problem of automatically controlling an expressive talking 

head.  A good means of analysis might use markers to read 

facial movements during utterance [14].  A more advanced 

method might refer to algorithm-based extraction of semantic 

description of the face and the components that make up its 

movement [23] to replay such movement in synthesized form. 

We use a two-dimensional face synthesizer to apply speech 

intensity parameters that control two different components of 

facial modeling: lip and face modifications during expressive 

utterance.  These are controlled in terms of mouth opening and 

in terms of the strength of expression-control muscles. 

The face-animation system used here has a viseme editor 

that directly models the set of visemes to be associated with a 

character.  The tongue and lips can be designed by tuning the 

controls related to mouth position, to lip parameters, and to the 

strength of mouth-opening muscles.  Each viseme is associated 

with the related phone that will be uttered by the speech 

synthesizer. 

The fuzzy, smoothed control produces variable dynamics 

during the utterance of stationary speech units such as 

phonemes and allophones.  This dynamic control is used to 

modulate the amplitude of lip-opening strength, resulting in 

more natural movement.  Expression-control muscles are also 

dynamically controlled to produce modifications, such as: 

stretching or relaxing face muscles, frowning with eyebrows, 

wrinkling the forehead, flaring or contracting the nostrils. 

Fuzzy smoothed control of facial expression is used also to 

blend facial expression with speech expression, above all when 

an emotion is not compatible with the uttered speech. In such 

cases the fuzzy control acts as a morpher. 

VIII. CONCLUSION 

This research was designed to overcome the problem of  

synchronizing audio information with video representation of 

the face of a speaking avatar, avoiding the mismatch between 

audio stream and face movement.  Its was also intended to 

fully automate the process of controlling face animation during 

the utterance, starting from pure text and completely 

independent of any human speaker. 

Preliminary results of this research demonstrate that soft 

computing offers a good solution for the smoothed avatar 

control during the expressive utterance of text.  Using pure text 

as input information, correct expressive utterance of each word 

(letter sequence) was achieved.  Furthermore, the related 

expressive avatar face movements were synchronized. The 

next step will apply a similar approach to automatically 

extracting high-level expression information related to word 

sequence. 

The importance of high-level expression, as demonstrated in 

other research [18], [27] into using talking avatars in 

commercial applications (e-commerce), as well as into general 

communication processes [21], encourages an extension of the 

proposed text-to-speech-driven face towards an emotional 

text-to-speech-driven avatar that would also include body 

movement, mainly head and harms movement.  To this end, 

more extensive use of softcomputing methods will be made, 

since most emotional end gesture information is embedded in 

the text to be uttered by the avatar [19].  A neural network can 

be trained to analyze the text to be uttered and to classify 

gestures and emotions embedded in the text. 
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