
 

 

  

Abstract— The development time in industrial informatics 

systems, within industry environments, is a very important 

issue for competitiveness. The usage of adequate target-

specific programming languages is very important because 

they can facilitate and improve developers’ productivity, 

allowing solutions to be expressed in the idiom and at the level 

of abstraction of the problem’s domain. 

In this paper we present a target-specific programming 

language, which was designed to improve the design cycle of 

code generation, for an industrial embedded system. The 

native assembly code, the new language structure and their 

constructs, are presented in the paper. The proposed target-

specific language is expressed using words and terms that are 

related to the target’s domain and consequently it is now easier 

to program, understand and to validate the desired code. It is 

also demonstrated the language efficiency by comparing some 

code described using the new language against the previous 

used code. The design cycle is improved with the usage of the 

target-specific language because both description and debug 

time are significantly reduced with this new software tool. This 

is also a case of university-industry partnership. 

 

Keywords—Compilers and Interpreters, Embedded Systems, 

Industrial Systems, Programming Languages, Software Design and 

Development.  

I. INTRODUCTION 

HE number of companies producing software has grown 

constantly and the need of software increases more and 

more every day. The importance of cost efficiency relationship 

and creation value in software development as well as in 

software process and product improvement is a central feature; 

companies have noticed that competition is increasing and 

cost-efficiency companies have perhaps more competitive 

advantage in global markets than ever [1]. The development 

time in industrial informatics systems, in industry 

environments, is a very important issue for competitiveness. 

Companies that develop solutions for industry usually deal 

with several levels of abstractions, from high level languages 

to assembly. As we move towards the high to low level 

languages the effort is greater and the developers generally 

 
 

want to work with more abstract levels. However, it is very 

common for these companies to handle with specific 

embedded devices, that require specific programming 

languages, mainly low level programming languages. Although 

low-level languages have the advantage that they can be 

written to take advantage of any peculiarities in the 

architecture of the microprocessor/microcontroller, increasing 

its efficiency, writing a low-level program takes a substantial 

amount of time, as well as a clear understanding of the inner 

workings of the processor itself. It requires a deep 

understanding of the microprocessor concepts to produce 

reliable and maintainable programs. These skills can only be 

expected from professional software developers. 

As is corroborated by Preuer [2], restricting the focus to a 

specific problem domain allows the application of domain-

specific concepts and techniques that enable domain experts to 

develop software without being professional programmers. In 

this scenario Domain-Specific Languages (DSL) and Target-

Specific Languages (TSL) can play an important role in 

facilitating the software developers’ task increasing their 

productivity. DSL and TSL are programming languages for 

solving problems in a particular domain. They are much more 

expressive in their domain and allow faster development of 

programs allowing solutions to be expressed in the idiom and 

at the level of abstraction of the problem’s domain. DSL and 

TSL provide several advantages over general purpose 

programming languages, namely [3] concrete expression of 

domain knowledge, direct involvement of the domain expert, 

expressiveness, modest implementation cost, reliability, 

training costs and design experience. These types of 

programming languages are usually small, more declarative 

than imperative and more attractive than general-purpose 

languages because of easier programming, systematic reuse, 

better productivity, reliability, maintainability and flexibility. 

DSL and TSL bring programming closer to application 

domains and have the capability to significantly improve the 

productivity and quality of software engineering in the focused 

domain. 

In this paper we describe a TSL to improve developer’s 

productivity in industrial embedded systems in the scope of 

University-Industry collaboration. Preliminary tests show that 

the TSL decreases the development time and increases 

developers’ productivity. 

Tiny Programming Language to Improve 

Assembly Generation for Automation 

Equipments 

José Metrôlho, Mónica Costa, Fernando Reinaldo Ribeiro 

T

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

10



 

 

 The remainder of this paper is structured as follows: in 

Section 2, we introduce the target environment and in Section 

3 we describe the native language of the hardware. In Section 

4 we present the formalism of the TSL and in Section 5 we 

present preliminary tests. Finally, Section 6 concludes this 

paper with a discussion of the pre and pos systems 

implementation and pointed out some directions of future 

work. 

II. RELATED WORK 

Research on domain and target specific programming 

languages, for industrial informatics systems in industry 

environments, has received considerable attention with many 

projects addressing the issues such as: how to facilitate and 

improve the developers’ productivity and how to improve the 

cost efficiency and value creation in software development.  

Ojala [1, 4] discusses the concepts, principles and practical 

methods of economic-driven software engineering and outlines 

us to understand better the content of value-based approach. 

This is done in part by presenting a conceptual analysis of the 

economic-driven view of software development, including cost 

estimation and cost accounting, and in part by discussing the 

cost efficiency and value characteristics of software processes, 

products and their improvement. 

Babcicky [5] developed a special purpose programming 

language which is an object-oriented language, semantically 

heavily inspired by SIMULA, which became known as 

TESLA (TEst Scripting LAnguage). It has an ALGOL 

originated block structure with sub-blocks, procedures and 

classes with inheritance, dot notation for accessing object 

attributes and methods and the customary set of statement 

types, including the connection statement. The author also lists 

some benefits and drawbacks of the effort related to the 

development of a new language and points out some important 

aspects that should be taken into account, namely the difficulty 

of achieve a final solution at the first attempt and also the 

language and system promotion in a way to gain programmers 

support and acceptance. 

Prähofer et al. [6, 7] present the language Monaco, which is 

a domain-specific language for programming reactive control 

programs. The main purpose of the language is to bring 

automation programming closer to the domain experts and end 

users. Important design goals therefore have been to keep the 

language simple and allow writing programs which are close to 

the perception of domain experts.  

In [8] F. Wenzel and R.-R. Grigat introduce a framework 

for developing image processing algorithms. Its design is 

targeted at the needs of developers who should be able to 

focus on their specific tasks as much as possible instead of 

technical side effects that arise in software development. They 

point out two aspects of their approach. First developers are 

not required to gain knowledge of foreign domains like GUI 

programming. Secondly the source code for new methods can 

be kept in a future-proof way. 

Although there exist several works and projects that studied 

and proposed new programming languages for specific 

domains, each one presents their own particularities because 

they want to be well fitted to a particular environment with 

specific users, interests and specific equipments. In this work 

the proposed TSL is targeted to a company that develops 

industrial informatics solutions for other companies, mainly to 

the automotive industry. The company presents its own 

organizational culture and uses specific equipments, and one 

important design goal of the new language is to facilitate and 

improve developers’ productivity allowing solutions to be 

expressed in the idiom and at the level of abstraction of the 

problem’s domain.  

III. WHY DO WE NEED A TARGET-SPECIFIC LANGUAGE 

PROGRAMMING 

The challenge proposed by the target company is related to 

the improvement of developers’ productivity with respect to 

the process of programming their hardware modules which are 

currently programmed through a low level language that is 

very time consuming and require a deep understanding of their 

concepts. 

The possibility of develop a new programming language 

was carefully analyzed and the main question that needed to be 

clarified was: is it worthwhile to develop a specific 

programming language? 

Clearly there were the general benefits of using target 

specific programming languages, that are presented in previous 

section (e.g. expressiveness, modest implementation cost, 

reliability, training costs and design experience), but some 

other aspects were taking into consideration before deciding 

develop a new and specific programming language. Develop a 

new programming language poses some risks related to: the 

complexity of language design and implementation; learning 

effort associated with using a new programming language and 

high startup costs (due to the complexity of design and 

implementation) notwithstanding the fact that usually allows 

applications to be developed more cheaply afterwards [9] (see 

figure 1).  

 

Fig. 1 The payoff of DSL methodology (adapted from [10]). 

On the other hand, creating a target-specific language can be 

worthwhile if the language allows a particular type of 

problems or solutions to them to be expressed more clearly 

than pre-existing languages. This is the case of this situation 

because: the introduction of a new target specific language, 

focused to a specific problem domain, allows programmers to 

develop their applications faster and thus increasing their 

productivity; by having a syntax that is understandable to non-

programmers, it may allow domain experts to program 

applications themselves [9]. 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

11



 

 

IV. THE TARGET ENVIRONMENT 

Due to confidential constraints we will not present details 

about the module used by the company. This company 

develops industrial informatics solutions for other companies, 

mainly to the automotive industry. But in general terms, and to 

introduce the theme, we can inform that the target module (see 

figures 2 and 3) is used to actuate over relays and has several 

internal units like timers and I/O ports that can be configured 

using a dedicated assembly language. Some module features 

are: 6 Digital I/O pins; 3 Transistor Outputs; 1 Relay outputs; 

2 Analog inputs; 1 counter and 8 32 bit timer with a time 

resolution of 1 ms. 

The hardware module has characteristics of a modular 

system and multiple modules can be connected in bus 

topology. This characteristic makes it ideal for wiring tests 

either in the prototype stage (cable design, allowing 

adjustments in the location of components) either in the 

production phase (test various options of a cable, like left or 

right steering-wheel), because they offer flexibility to the test 

table in terms of layout. Another functionality of the module is 

the component mechanical/electromechanical reliability test. 

The module can be used to many operations like to 

enable/disable outputs, as well as the reading of digital inputs 

and perform different wiring tests, for example the number of 

cycles that a relay is flawless. The main functionalities of the 

module are: continuity tests; measurement of 

resistance/capacity; activation of outputs and reading 

inputs/outputs. 

 

Fig. 2 Hardware module. 

 

Fig. 3 Hardware module installed in the test table. 

Those modules have a set of registers whose bits have 

particular meanings. These registers can be of different types: 

read, write or read/write. A feature of the assembly language is 

that any time the designer wants to read or write something, he 

must knew the register number and each the bits meaningful. 

This demands a lot of manual readings and becomes repetitive 

for some applications. 

Another feature is that the necessary instructions to build 

applications are scarce and all well defined. As example a read 

or write relay operation is almost the same, but requires 

knowing the name of the register and to know the bit number 

that must be set or reset to act according the desired action. 

Additionally the code is only readable and understandable by 

developers that have knowledge about that particular 

assembly. A language that could be more intuitive and make 

code more documented and understandable was desired.  

This leads to the idea that a high-level programming 

language, more adapted to the field, can be designed with 

proper and intuitive constructs, like in this case relay(on), or 

relay(off) avoiding details and constants that are well known 

and thus improving developers’ productivity. 

The development of applications, before the new tool 

described in this paper, was done by writing assembly code 

that is uploaded to the modules by a proprietary application. 

This fosters a deep knowledge about the assembly and about 

the registers and the meaning of its bits. To develops 

applications with a low time to market a more abstract tool is 

needed, this s the goal of our approach. This paper describes a 

tiny language designed and implemented to allow quicker 

developing time and also generated assembly code 

documented and indented properly to foster faster detection of 

software bugs. 

V. THE NATIVE LANGUAGE 

Here we present some of the assembly language features. 

The following piece of code (see figure 4) shows a sample of 

the type of details and structure which must be introduced by 

the programmer. 

 

$init 

 … 

MOVI(T0VAL,0) 

MOVI(T0MAX,1000) 

MOVI(T1VAL,0) 

MOVI(T1MAX,500) 

… 

WREG(A2,5,255) 

MOVI(A13,2) 

 

$code 

RREG(A4,6) 

ANDI(A10,A4,8) 

SRI(A10,A10,3) 

ANDI(A11,A4,16) 

SRI(A11,A11,4) 

ANDI(A12,A4,32) 

SRI(A12,A12,5) 

IFEQ(T0VAL,T0MAX) 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

12



 

 

ORI(A10,A10,2) 

MOVI(T0VAL,0) 

ENDIF 

…. 

$end 

Fig. 4 Sample of native assembly code. 

As it can be observed in Fig. 4, the user must be aware of 

the native assembly and a constant set of variables that can be 

used and must deal with information about the registers and 

also regarding timers, he/she must convert the time unit to 

milliseconds. These details are prone to generate errors.  

So this case-study has fostered the design of a tiny language 

to describe applications for an embedded device that is used in 

industrial environments. The main goals of the new language 

are, transform the design of new programs as high level as 

possible, use intuitive constructs, allow some verifications to 

avoid errors, make the code documented and automatically 

idented. In other terms, make the design time shorter with less 

design effort for the designers of applications involving that 

embedded microcontroller.   

VI. THE NEW LANGUAGE 

Here we will describe the developed tool. First we will 

present the structure and then the constructs of the new 

language. 

A. The new language structure  

The new structure has 2 sections, one for declarations and 

other for code. This is similar to the target assembly, however 

the section delimiters are now ‘{‘ as in common languages.  

Within each section the user will now avoid details and will 

focus on actions or constructs that are common to 

programmers and for designers of that kind of applications. 

The constructs were defined to make clear the programs, and 

to avoid details. The tool will then generate the proper code.. 

B. The new language constructs 

Number After studying the possible instructions and the 

final result in the module, we define a set of keywords to allow 

an easy and intuitive definition of those instructions. As 

example to control a digital output the bit 0 of the module 

register 7 must be set/reset. In assembly this is dome using the 

instruction  WREG(A0,7,1). As we can observe the user must 

put the number of the target register, a variable that transport 

the value that must be put over the bit (ex: since A0=0 then the 

bit 1 will be reset), and the number of the bit that will suffer 

the change (in this case is the 1st bit). However based on the 

“clients” feedback we notice that this output is always used for 

relay control. So, we defined a language construct “relay” with 

a single switch that makes this description easy and intuitive. 

Next we present in the left the new language construct usage 

and on the right the generated/corresponding assembly. 

 

relay(on);   →  WREG(A0,7,1) 

relay(off);   →  WREG(A1,7,1) 

 

Other examples of usage of the new language constructs and 

the corresponding assembly: 

 

var A31=2;  →  MOVI(A31, 2) 

attr A31=A5;  →  MOV(A31, A5) 

IN (0,A3);   →  RREG(A3, 8) 

         ANDI(A3, A3, 1) 

startT(0);   →  MOVI (T0VAL,0) 

defT(1,1500); →  MOVI (T1MAX,1500) 

stopT(1);    →  MOVI(T1VAL,1501) 

Fig. 5 New language constructs. 

We’ve defined a set of keywords for the language, in small 

number due to the simplicity of the assembly. The total of 

keywords is 28 and all of them are presented in the following 

table. 
TABLE I 

LANGUAGE CONSTRUCTS 

init IN 

code INOUT_R 

end INOUT_W 

var OUTPUTS_R 

attr OUTPUTS_W 

stopT INPUTS_R 

OUT INPUTS_W 

JMP IOCTL_R 

JMPI IOCTL_W 

JMPIX rele 

if delay 

elif startT 

else setT 

testTLimit defT 

 

This is also interesting because a small set of keywords 

represents a small time to learn the language. 

C. The generation chain 

To implement this code converter, from the new language to 

the target assembly, the software chain can be represented as 

in Figure 6. 

The code was developed using Java [11] and within the 

Eclipse IDE [12]. To implement the lexer and parser we used 

ANTLR (ANother Tool for Language Recognition) [13]. It 

provides a framework for constructing recognizers, 

interpreters, compilers, and translators from grammatical 

descriptions containing actions in a variety of target languages 

[13] including Java. 

 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

13



 

 

 

Fig. 6 Generation chain. 

These choices were made to obtain an independent 

application platform using free software. The integration of 

these tools to build the previously presented generation chain 

was straight and software consistency was achieved.   

As software development methodology Scrum [14] and XP 

[15] were used to achieve a short time to market application. 

The involved team was constituted by 4 members and the 

client. The client was the company representative that helps 

the team to reach the goals as exactly desired by the target 

users. The scrum’s sprint time was 1 month and the application 

has 2 releases. One after the first 2 work months and the 

second in the end of the fourth month.  

The 4 members of the team were a teacher and 3 students. 

The reached goals were the skills that students acquire in a few 

directions. The first one was the experience to deal with 

automation, compilers, language processors, programming and 

software integration. The second was the opportunity to deal 

with professional software development methodologies as 

Scrum and XP. This development environment fosters a better 

preparation of those undergraduate students and also allowed 

them to be involved on the development of an application 

useful and complex for industrial application. The course, 

were students were members, is Computer engineering on the 

Bologna format (3 years long).  

 

 
 

Fig. 7 Work evolution. 

Due to the team members’ experience, sprints were 

designed to be light what means that the tasks were planned 

with a significant time overhead. If this was made by full time 

developers the time to market could be significantly improved, 

that means that the contribution of this paper is a tiny language 

that can be easily adopted for similar requirements and be 

developed in a short period of time. 

The module has a single complex problem not solved using 

the sequential paradigm. The delay feature is implemented as a 

ladder approach. However a if-then-else cascade was 

implemented to allow this feature. However due to some 

complexity of this singular problem to this application a 

skeleton is generated and the user must fill the generated code 

on the assembly to guaranty consistency of the generated 

program. This is the only limitation that requires operator’s 

intervention. However, according to the client’s feedback, it is 

a not frequently used issue in the modules, so that has 

considered a non priority instruction. The instruction exists 

and generated the skeleton in case it is necessary. 

In terms of code specification and design, from the 

operator’s point of view, the improvement was huge due to the 

allowed abstraction. Now the operators easily program an 

application using terms that are related to the module features 

and similarly as in the manual. This allows to focus on the 

desired features of the application without care about to much 

details as the pin order o activate or turn off an relay or other 

feature of the system. 

VII. TESTS 

In terms of tests the achievement of a smaller design time 

was the main goal. To test it we ask the development team of 

the partner company to give us their feedback. The feedback 

was positive since the new tool allows reaching sooner and in 

a more proper manner the target assembly. The code becomes 

easily documented and the code is also readably. 

In terms of the generated assembly the result is the same, as 

expected. However, now the user focus on the desired goals 

and the tool translates that for proper assembly. 

In the following figures we present the code of a program in 

the new language and the resultant generated assembly. 

 

program  Exemplo{ 

 init{ 

   IN(4, A10); 

   startT(7); 

   startT(5); 

 var  A10=0; 

 var  A11=1; 

 var  A12=100; 

 rele(off); 

 defT(0, 5s);   

 startT(0); 

 defT(1,5s);   

 stopT(1); 

 defT(2, 4h);  

 startT(2); 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

14



 

 

 defT(6, 19h);  

 stopT(6); 

… 

 }  

code{    

if(tstTLimit(0)){ 

 rele(on);   

 startT(1); 

 stopT(0); 

} 

if(tstTLimit(2)){ 

rele(off); 

stopT(0); 

stopT(1); 

stopT(2); 

startT(4); 

var A10=1; 

} 

if(A10==A12){ 

 stopT(0); 

 stopT(1); 

 startT(3); 

 var A10=0; 

} 

… 

} 

} 

Fig. 8 New language code. 

As we can notice in Figure 9, the generated code is 

automatically commented and formatted. This gives the 

designer an easier method to understand code, even at the 

assembly level.  

Also the generated code in the native language is more 

extensive than the new proposed language. This means that the 

present effort is less than previously when descriptions were 

done in assembly. Also the tools detects errors and signals the 

line were they occur, this fosters better software development 

in terms of developing time and code quality. Also the reduced 

number of language constructs fosters a quick learning of the 

language descriptions features. 

 

The generated code: 

## Init Section 

$init 

# Reserved variables 

    MOVI(A0,0) 

    MOVI(A1,1) 

# Read Input 4 

    RREG(A10, 8) 

    ANDI(A10, A10, 5) 

# Initialize Timer T7 

    MOVI(T7VAL,0) 

# Initialize Timer T5 

    MOVI(T5VAL,0) 

# Initialize variable 

    MOVI(A10,0) 

# Initialize variable 

    MOVI(A11,1) 

# Initialize variable 

    MOVI(A12,100) 

# Rlay OFF 

    WREG(A0,7,1) 

# Timer T0 Max value 

    MOVI(T0MAX,5000) 

# Initialize Timer T0 

    MOVI(T0VAL,0) 

# Timer T1 Max value 

    MOVI(T1MAX,5000) 

# Stop Timer T1 

    MOVI(T1VAL,5001) 

# Timer T2 Max value 

    MOVI(T2MAX,14400000) 

# Initialize Timer T2 

    MOVI(T2VAL,0) 

# Timer T6 Max value 

    MOVI(T6MAX,68400000) 

# Stop Timer T6 

    MOVI(T6VAL,68400001) 

## Code Section 

$code 

IFEQ(T0VAL,T0MAX) 

    # Relay ON 

        WREG(A1,7,1) 

    # Initialize Timer T1 

        MOVI(T1VAL,0) 

    # Stop Timer T0 

        MOVI(T0VAL,5001) 

ENDIF  

IFEQ(T2VAL, T2MAX) 

### Relay OFF 

WREG(A0,7,1) 

# Stop Timer T0 

MOVI(T0VAL,5001) 

# Stop Timer T1 

MOVI(T1VAL,5001) 

# Stop Timer T2 

MOVI(T2VAL,14400001) 

# Initialize Timer T4 

MOVI(T4VAL,0) 

### Atribuição de valor a uma variavel 

MOVI(A10, 1) 

ENDIF 

 IFEQ(A10,A12) 

    # Stop Timer T0 

        MOVI(T0VAL,5001) 

    # Stop Timer T1 

        MOVI(T1VAL,5001) 

    # Initialize Timer T3 

        MOVI(T3VAL,0) 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

15



 

 

    # Initialize variable 

        MOVI(A10,0) 

ENDIF  

 … 

$end 

Fig. 9 Generated code. 

VIII. DISCUSSION 

To measure the impact in terms of efficiency of this new 

application and the contribution of this work, we´ve measured 

the development time of a medium application to control de 

embedded system module for automotive industry. The 

scenario was an experienced programmer in assembler to 

develop using the regular approach, without our application 

and an inexperience user in terms of assembler but with 

knowledge about the embedded features using our proposed 

language. Results were encouraging, the developed time of the 

second operator was shorter and the adjustments number 

needed to achieve the same functionalities was extremely 

smaller. Since our language does a set of verifications, to 

avoid programming mistakes, code consistency was an 

important help for the Tiny language user. Another advantage 

was the generated assembly code was automatically 

commented using the code generator and the code from de 

traditional approach was sometimes unreadable and only the 

developer understands it.   

Another noted feature was the fact that code built using the 

traditional approach reveals several redundancies that lead to 

code inefficiency. Using our code generator redundancy was 

avoided and code consistency improved. 

 

Fig. 10 Conventional methodology vs TSL based methodology 

development time 

As stated before we measure these issues in terms of 

development time by two operators (one experienced in 

programming for the target assembly and other with 

experience about the module but not a regular programmer of 

assembler for it). For both operators we’ve defined a set of 

applications, three, for different purposes and with different 

complexity. In the first case (application 1) a regular 

application code was required, and both programmers had 

know-how to develop it. In the second case (application 2) 

consisted in the development of a larger program with several 

simple instructions, with a purpose not yet experienced by both 

programmers. The third application (application 3) had more 

complex instruction, namely a large number of delays. The 

elapsed time was measured and the results are expressed in the 

Figure 10. 

Analyzing the results we can conclude that the developed tiny 

language improves the time-to-market of code for the target 

embedded system. The advantage of the language is most 

significant for long application with simple instructions. The 

advantage is not so clear in the specific case of complex 

instructions, in this case it is required that the user must also 

deal with assembly rules and specifications because only the 

skeleton is generated. However even in this case results are 

satisfactory. Another fact was the generated code quality, in 

terms of indentation and quality that exists in the generated 

code on an automatic basis. 

IX. CONCLUSION AND FUTURE WORK 

Experiments and tests show that using the new language a 

short effort and design time is needed to achieve better goals. 

The goals are the assembly code to be uploaded for embedded 

systems that is used for the automotive industry. The 

infrastructure can be easily adapted for other similar targets. 

The software is running on a platform independent basis, so 

portability would be not a problem to other environments. 

Also it was defended that these tiny languages can improve 

significantly the development time where low lower languages 

are demanded in simple applications. Development tools allow 

on a quick and inexpensive way to develop frameworks or 

application that can significantly improve the development 

time and consequently the time-to-market of the target 

systems, this case an embedded systems to be used in the 

automotive industry.  

As future work we want to implement and editor with code 

complete feature for our tool, to increase even more the 

development efficiency. This feature will allows to spare time 

at the editing stage of the code and to avoid code mistakes at 

the high level of software abstraction of this application. 

As mentioned in the paper this was also and education-

industry partnership and a case study, however future work is 

being studied also to go further and to design a graphic editor, 

therefore smaller blocs can be predefined and editable to reach 

higher abstraction and in the end a shorter development time.  

REFERENCES   

 

[1] P. Ojala, "Towards a Value-Based Approach in Software Engineering," 

in 2nd WSEAS International Conference on Computer Engineering and 

Applications, Acapulco, Mexico, 2008. 

[2] S. Preuer, "A Domain-Specific Language for Industrial Automation," in 

Conference on Software Engineering, Hamburg, Germany, 2007. 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

16



 

 

[3] D. Spinellis, "Notable design patterns for domain specific languages," 

Journal of Systems and Software, vol. 56, pp. 91-99, 2001. 

[4] P. Ojala, "Experiences of Implementing a Value-Based Approach to 

Software Process and Product Assessment," in 2nd WSEAS 

International Conference on COMPUTER ENGINEERING and 

APPLICATIONS, Acapulco, Mexico, 2008. 

[5] K. Babcicky, "Is it worthwhile to develop a new programming 

language?," in 12th WSEAS International Conference on Computers, 

Heraklion, Greece, 2008. 

[6] H. Prähofer, D. Hurnaus, R. Schatz, C. Wirth, and H. Mössenböck, 

"Monaco: A DSL Approach for Programming Automation Systems," in 

Conference on Software Engineering, Munich, Germany, 2008. 

[7] H. Prahofer, D. Hurnaus, and C. Doppler, "MONACO — A domain-

specific language supporting hierarchical abstraction and verification of 

reactive control programs," in 8th IEEE International Conference on 

Industrial Informatics, Osaka, Japan, 2010. 

[8] F. Wenzel and R.-R. Grigat, "A Framework for Developing Image 

Processing Algorithms with Minimal Overhead," in 5th WSEAS 

International Conference on SIGNAL, SPEECH and IMAGE 

PROCESSING, Corfu, Greece, 2005. 

[9] N. H. Christensen, "Domain-specific languages in software 

development and the relation to partial evaluation," in Department of 

Computer Science: University of Copenhagen, 2003. 

[10] P. Hudak, "Modular Domain Specific Languages and Tools," in 5th 

International Conference on Software Reuse, IEEE Computer Society, 

1998. 

[11] S. Microsystems, "Java," [Online] Available at: http://java.sun.com/, 

[Access date: 2009, October]. 

[12] E. Foundation, "Eclipse," [Online] Available at: 

http://www.eclipse.org/, [Access date: 2009, October]. 

[13] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific 

Languages, 2007. 

[14] K. Schwaber, Agile Project Management with Scrum (Microsoft 

Professional): Microsoft Press, 2004. 

[15] K. Beck, Extreme Programming Explained: Embrace Change: 

Addison-Wesley Professional, 1999. 

 

 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

17




