
 

 

  

Abstract—Widely used Data Warehousing (DW) and Business 

Intelligence (BI) technologies are mostly based on complex and long-

running queries. It is very important for users to have information 

about query execution progress. Percent-done progress indicators are 

a technique that graphically shows query execution time (total and 

remaining) or degree of completion. In this paper we propose a 

method that constructs model of a percent-done progress indicators 

based on adaptive approach. During the learning phase, the method 

analyzes the influence of averaged system state on the SQL query 

response time using data mining algorithms. The results of this phase 

are models representing query behavior under dynamic server 

workload. Built models are used during the production phase for the 

estimation of query execution time. Experimental evaluation 

confirms the effectiveness of created models. 

 

Keywords—long-running query, progress indicator, query 

response time  

I. INTRODUCTION 

N recent years Data Warehousing (DW) and Business 

Intelligence (BI) technologies [3] have grown as new 

hardware and software solutions lowered cost and simplified 

implementation [4]. DW applications have focused on 

strategic decision support, leading to complex and often long-

running queries - but in the same time the real-time enterprise 

initiatives imply interactive analysis that requires fast query 

response times. Many different tools and techniques are 

discussed and implemented to improve DW performances, but 

the importance of the user-system interaction (interface) is 

often neglected - especially details like progress indicators 

(estimators). 

Even two decades ago, Myers [12] analyzed the importance 

of progress indicators on the user experience in graphical user 

interfaces. He concluded that users have a strong preference 

for the progress indicators during long tasks because they 

enhance the attractiveness and effectiveness of programs that 
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incorporate them. Progress indicators give the users enough 

information at a quick glance to estimate how much of the task 

(not necessarily in database context) has been completed and 

when the task will be finished.  

Nielsen [13] concluded that progress indicators have three 

main advantages: they reassure the user that the system has not 

crashed but is working on his or her problem; they indicate 

approximately how long the user can be expected to wait, thus 

allowing the user to do other activities during long waits; and 

they finally provide something for the user to look at, thus 

making the wait less painful. This latter advantage should not 

be underestimated and is one reason for recommending a 

graphic progress bar instead of just stating the expected 

remaining time in numbers. 

Unfortunately, today’s database systems provide only basic 

feedback to users about the query execution progress, 

especially regarding impact of the database server throughput 

on query response time. 

II. RELATED WORK 

Computer system response time is generally defined as the 

number of seconds it takes from the moment users initiate an 

activity until the computer begins to present results on the 

display or printer [16]. There are still no industry standards for 

acceptable application response time.  

The basic considerations about response times in the context 

of Human-Computer Interaction (HCI) has been discussed 

about thirty years ago, when Miller [10] described three 

important threshold levels of human attention. 

Same limits were confirmed for the web based application 

in [13]: 

- 0.1 second - the limit for having the user feel that the 

system is reacting instantaneously, meaning that no special 

feedback is necessary, except to display the result. 

- 1.0 second - the limit for the user's flow of thought to 

stay uninterrupted, even though the user will notice the 

delay. Normally, no special feedback is necessary during 

delays of more than 0.1 but less than 1.0 second, but the 

user does lose the feeling of operating directly on the data. 

- 10 seconds - the limit for keeping the user's attention 

focused on the dialogue. For longer delays, users will want 

to perform other tasks while waiting for the computer to 

finish, so they should be given feedback indicating when the 
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computer expects to be done. System indicators should give 

them information that the system is working on his or her 

problem. They indicate approximately how long the user 

can be expected to wait, allowing him or her to do other 

activities during longer delays. Feedback during the delay is 

especially important if the response time is likely to be 

highly variable, since users will then not know what to 

expect. 

Progress indicators in the database query processing context 

were discussed in the several recent works. Chaudhuri et al. 

[1], [2] introduced the concept of decomposing a query plan 

into a number of segments delimited by blocking operators. 

Query progress is estimated with the number of getnext() calls 

made by operators - but only in the context of an isolated 

system (where there is no other activity besides the execution 

of the query). Authors also discussed what the important 

parameters are, and under what situations robust progress 

estimation can be expected. 

Similar approach was presented by Luo et al. [5], [6]. In 

order to support the progress indicators, authors divided a 

query plan into one or more segments and focused on the 

individual segments rather than the entire query plan, but again 

for the isolated single query. In the next work [7] they 

extended model with the multi-query progress indicator, which 

explicitly considers concurrently running queries and even 

queries predicted to arrive in the future when producing its 

estimates. Authors also demonstrated how to apply the 

resulting multi-query progress indicators to several workload 

management problems. 

Mishra et al. [11] also presented framework for progress 

estimation of the operators and query segments using the 

getnext() model of query progress, with the similar limitations 

as mentioned before. Proposed method can estimate 

progressively the output size of various relational operators 

and pipelines, minimal overhead on query execution. These 

include binary and multiway joins as well as typical grouping 

operations and combinations thereof.  

Majority of existing approaches relies on estimating 

intermediate cardinalities of operators in the query plan, but 

also requires communication with database engine during the 

query execution - which can be demanding or even 

unsupported. 

III.  ADAPTIVE PROGRESS INDICATOR 

In general, percent-done progress indicators are a technique 

for graphically showing how much of a long task has been 

completed [12]. 

A. General Properties of Progress Indicators 

Desirable properties of progress indicators were mentioned 

in [1]: 

- Accuracy: the estimated percentage of work completed 

by the query at any point during its execution should be 

close to the actual percentage of work completed by the 

query at that point; 

- Fine granularity: it follows from the above accuracy 

requirement that the estimator should be able to provide 

estimates at sufficiently fine granularity over the duration of 

the query’s execution; 

- Low overhead: an essential requirement for a progress 

estimator to be practical is that it should impose low 

overhead on the actual execution of the query. 

- Leveraging feedback from execution: as query 

execution progresses, more information based on 

(intermediate) results of execution can become available. 

Ideally, an estimator should be able to take full advantage of 

such information; 

- Monotonicity: since the actual execution of the query 

progresses monotonically, ideally, the estimated progress 

should be also be monotonically increasing from the start of 

query execution to its finish.  

While the first three properties are unquestionable, insisting 

on the last two features can produce compelling problems 

during the implementation phase. Leveraging feedback from 

the execution - based on the intermediate results - relies on 

(often problematic and/or undocumented) communication with 

RDBMS during the query execution. 

Monotonicity is logical requirement in the context of the 

isolated single query environment, but the real-life examples 

show that database server workloads and resource utilization 

change considerably over time - resulting in the varying 

response times for identical queries. Furthermore, server's 

throughput can be dramatically changed (increased or 

decreased) during the long-running query execution - so 

corresponding response time predictions (as a function of the 

instantaneous server workload) also vary widely (but not 

always monotonically). 

B. Model and Implementation 

Considerations and options related to quantitative 

information for generic progress indication displays has been 

discussed in [8]: 

- Providing quantitative progress information, or only a 

busy indicator, such as an hour glass; 

- Presenting progress in terms of percentages, or as a 

count of completed items. For example: 90% complete or 5 

out of 6 steps complete; 

- Measuring time vs. steps. For example: 30 seconds vs. 2 

steps; 

- Considering the amount remaining or time elapsed. For 

example: 10% done or 10% remaining; 

- Displaying progress of the current step, or overall 

progress. For example: Step 1 is 90% complete or 90% 

complete overall; 

-  Displaying rate information. For example: 3K/second; 

- Accuracy of estimates. For example: displaying 5 

seconds when it is really 10 minutes; 

- Precision of estimates. For example: 3.4% remaining vs. 

about 10% remaining.  

Authors also discussed implementation requirements for 

process progress in a relatively smooth, linear fashion. 

Accurate progress estimation is often difficult to achieve; in 
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these cases initial estimate and ongoing re-estimates are 

required. Therefore, it needs to be considered how accurate an 

initial estimate can be and whether periodic re-estimates are 

required. This needs to be balanced with the performance 

overhead of such estimates. 

 

 
Fig. 1 Simple progress indicator 

 

Simple progress indicator (Fig. 1) - in the query processing 

environment - must inform users at least about elapsed and 

remaining query processing duration. 
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Fig. 2 Learning phase 

 

 

Influence of the system load and the system throughput on 

the response time, as well as a possibility of the accurate 

response time prediction - as a function of actual system state 

(CPU, memory and disk subsystem activity) during 1s interval, 

immediately before the observed query activation - has been 

already analyzed in [9]. 

In this work we consider another approach for constructing 

model representing SQL query behavior under dynamic server 

workload. During the learning phase (Fig. 2) system state is 

again monitored within 1s intervals, but during the complete 

query execution. In the next step collected averaged system 

states (represented with the averaged attributes) and measured 

response times are taken as an input into different data mining 

algorithms [14], [18]. Already using linear regression (1) we 

can build usable models:  

1.1118 +

 hdD * 5.5608 + wait * 4.1851 +

 sys * 147.4438 + us * 6.7706 + cs * 0.0295 -

sy  * 0.0058 -in  * 0.0832 +sr  * 0.0047 -

fr  * 0.1446 - po * 0.2081 - free * 0.0497 +

 avm * 0.0002 - b * 8.0555_ =durationquery

  (1) 

where attribute selection method - for presented referent 

query - choose subsequent attributes (among more than 30 

monitored attributes): 

b  - average number of kernel threads placed in the 

VMM wait queue;  

avm - active virtual pages; 

free  - size of the virtual pages free list; 

po - pages paged out to paging space; 

fr   - pages freed (page replacement); 

sr   - pages scanned by page-replacement algorithm; 

in  - device interrupts; 

sy  - system calls; 

cs  - kernel thread context switches; 

us  - user time; 

sys - system time; 

wait - processor idle time during which the system  

had I/O request(s); 

hdD - activity of HD(s) with data tablespaces. 

Better results can be expected with more elaborate methods, 

e.g. M5P (Model Trees) [15] [17]. 

M5P is a regression tree algorithm designed for continuous 

classes. First, an ordinary classification tree is constructed, 

with the standard deviation reduction used as node impurity 

function. Then the tree is pruned (controlling a tradeoff 

between prediction and tree size), with a stepwise linear 

regression model fitted to each node at every stage (rather than 

to simply predict the mean).  

A final stage is to use a smoothing process [17] to 

compensate for the sharp discontinuities that will inevitably 

occur between adjacent linear models at the leaves of the 

pruned tree, particularly for some models constructed from a 

small number of training instances. The smoothing procedure 

described by Quinlan [15] first uses the leaf model to compute 

the predicted value, and then filters that value along the path 
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back to the root, smoothing it at each node by combining it 

with the value predicted by the linear model for that node. 

The tree could be simplified adding a restriction about the 

minimum number of instances (default 4) covered by each leaf 

node (larger value will generate a simpler tree but less 

accurate). 
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Fig. 3 M5P decision tree 

 

In the M5P decision tree example shown in Fig. 3, the M5P 

algorithm created 9 leaves (rules, linear models): 

 

575.3043 +

 idle * 4.1649 -

 avm * 0.0001- =duration 

LM4

589.2693 +

 idle * 4.1649 -

 avm * 0.0001- =duration 

LM3

589.3916 +

idle * 4.1649 -

 avm * 0.0001- =duration 

LM2

587.4366 +

 idle * 4.1649 -

 avm * 0.0001- =duration 

LM1

 

582.1818 +

 idle * 5.9054 -

 po * 0.0552 -

 avm * 0.0001- =duration 

LM9

585.8962 +

 idle * 5.9547 -

 po * 0.0552 -

 avm * 0.0001- =duration 

LM8

563.7388 +

 hdD * 1.9082 -

 idle * 5.1319 -

 po * 0.0574 -

 avm * 0.0001- =duration 

LM7

563.8036 +

 hdD * 1.4934 -

 idle * 5.1319 -

 po * 0.0599 -

 avm * 0.0001- =duration 

LM6

564.3411 +

 hdD * 1.4934 -

 idle * 5.1319 -

 po * 0.0599 -

 avm * 0.0001- =duration 

LM5

 
As it can be noticed, model tree usually uses only a small 

subset of the available attributes. Besides already mentioned 

thirteen attributes (1), two new attributes appear in linear 

models LM1-LM9: 

idle - processor idle time; 

po - pages paged out to paging space. 

In order to capture the actual system's behavior under 

various conditions, at least three structurally different queries 

must be analyzed - leading to at least three parallel models. 

Each model predicts response time, while overall prediction is 

result of averaging.   

 Chosen referent queries must represent server load 

faithfully. This requirement can be fulfilled by analyzing DB 

logs and query frequency, using prior knowledge about 

application structure, or by detecting and analyzing users' 

behavior patterns. 

The learning phase must be conducted during several days 

or weeks. All test queries have been executed more than 50 

times each - during all characteristic periods related to the 

rhythm of typical users' activities. Also all attributes presenting 

system state were recorded during test queries executions. 

(2) 
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Fig. 4 Production phase 

 

Built models are used during the production phase (Fig. 4). 

In regular intervals (default value is 1s) the remaining 

production query execution time is estimated as a function of 

averaged system state (till observed moment) represented with 

chosen attributes. Response time prediction with three (or 

more) different models has a smoothing effect and the relative 

prediction error decreases considerably (compared with single 

models).  

Unknown queries from the production phase can be 

associated and compared with referent queries from the 

learning phase through the estimated cost (supplied by Cost 

Based Optimizer (CBO)). 

System state monitoring (in regular intervals) and models 

implementation during production phase fulfill low-overhead 

requirement. 

C. Experimental Evaluation 

Different long-running queries were observed in the 

environment of the real database server (up to 200 concurrent 

users). 

Fig. 5 shows distribution of the response times for one of 

analyzed queries. Response times vary between 92s and 472s, 

with typical response time of 110s (measured in single-query 

environment, during the periods of low system workload and 

with minimized influence of database cache memory). It is 

obvious that progress indicator models built within the single-

query environment cannot be applied effectively because 

prediction error can be increased considerably. 

 

 
Fig. 5 Query response time distribution 

 

 
Fig. 6 Predicted response times during query first execution 

 

Fig. 6 shows results of the implementation of the proposed 

adaptive approach based on the predictions made by three 

models built during the learning phase. Measured (actual) 

response time is 226s. Ideal response time (110s) - as a result 

of the measurements in the single-query environment - is also 

specified. It can be noticed that predicted response times vary 
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considerably with server workload fluctuations. Initial 

predictions (during the first 30s of query execution) are 

underestimated as a consequence of the higher server 

throughput (lower server workload). Variations of the 

predicted response time can be (once more) smoothed using 

moving averages. 

 

 
Fig. 7 Actual and predicted query progress 

 

Behavior of the corresponding progress indicator is 

presented in Fig. 7, where it is again obvious that progress 

indicator built on the (ideal) single-query model is 

unacceptable.  

Predicted query execution progress based on proposed 

adaptive model reasonably estimates real query progress. 

Query will be marked as 100% finished after 194s (what 

corresponds to 86% of real query progress). This result is quite 

acceptable taking into account that the single-query model 

proclaims query completed after only 49% of real query 

progress - what can be very confusing and frustrating for the 

users. 

Fig. 8 and 9 show identical query execution under different 

conditions (increased server workload). Measured (actual) 

response time is 362s. In this case adaptive model lead to 

somewhat increased predicted response times, resulting again 

in pessimistic predicted query progress: when query 

processing is completed adaptive progress indicator shows 

93% completion. Again, this result is acceptable - taking into 

account that response time is 230% longer than under ideal 

conditions. 

 

 

 
Fig. 8 Predicted response times during query second execution 

 

 
Fig. 9 Actual and predicted query progress 

 

Fig. 10 and 11 show prolonged (440s) query execution as a 

result of even lower server throughput. Measured (actual) 

response time is 440s. Adaptive model again results in an 

optimistic predicted query progress: query will be marked as 

100% finished after 395s (what corresponds to 90% of real 

query progress). This result is again entirely acceptable 
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because the single-query model proclaims this query 

completed after only 25% of real query progress. 

 

 
Fig. 10 Predicted response times during query third execution 

 

 
Fig. 11 Actual and predicted query progress  

 

In the first and the third example even monotonicity 

requirement is generally fulfilled, unlike the second example 

where pronounced increase of server workload (in several 

moments) leads to decrement of predicted query completion 

(e.g. from 22% to 20%). Applied algorithm can be easily 

adapted to handle this situation, but maybe more pragmatic 

approach is to inform user (via progress indicator decrement - 

maybe accentuated with color) about (notable) increase of 

server workload. 

    Monotonicity problem can also be attenuated or solved 

with the size of the update increment (for example, 1 second 

versus 10 seconds). A larger increment can reduce the 

appearance of non-linear progress [8]. 

 

 
Fig. 12 Progress prediction in 10 seconds steps 

 

Fig. 12 shows same query progress prediction already 

presented in Fig. 9, but now in 10 seconds steps. There are no 

more decrements of predicted query completion.  

Also, progress in terms of percentages starts with the 

amount corresponding to 10 seconds duration (that is 3% for 

Fig. 12) - which is different from 0% because users become 

impatient when the display remains trapped at 0% for a long 

time (10 seconds or more). 

IV. CONCLUSION 

Proposed method for dynamic/adaptive progress indicator is 

based on the tracking of the system state changes (represented 

with adequate attributes). This algorithm constructs adaptive 

progress indicator models using data mining methods during 

the learning phase, analyzing influence of averaged system 

state (represented with attributes describing CPU, memory and 

disk subsystem activity) on the query response time.  

The first method that we used was simple linear regression, 

and it produces usable models. Using of other data mining 

algorithms, such as M5P, we can expect better and more 
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reliable models.  

Existence of the learning phase can perhaps present a 

problem in some environments, but - on the other hand - the 

fact that there is no need for detailed knowledge about server 

configuration or query structure can be an important 

achievement. 

Practical user experience and experimental evaluation 

shows that adaptive progress indicators can enhance the 

effectiveness of programs that incorporate them, and users' 

experience and productivity.  
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