

Abstract—Widely used Data Warehousing (DW) and Business

Intelligence (BI) technologies are mostly based on complex and long-

running queries. It is very important for users to have information

about query execution progress. Percent-done progress indicators are

a technique that graphically shows query execution time (total and

remaining) or degree of completion. In this paper we propose a

method that constructs model of a percent-done progress indicators

based on adaptive approach. During the learning phase, the method

analyzes the influence of averaged system state on the SQL query

response time using data mining algorithms. The results of this phase

are models representing query behavior under dynamic server

workload. Built models are used during the production phase for the

estimation of query execution time. Experimental evaluation

confirms the effectiveness of created models.

Keywords—long-running query, progress indicator, query

response time

I. INTRODUCTION

N recent years Data Warehousing (DW) and Business

Intelligence (BI) technologies [3] have grown as new

hardware and software solutions lowered cost and simplified

implementation [4]. DW applications have focused on

strategic decision support, leading to complex and often long-

running queries - but in the same time the real-time enterprise

initiatives imply interactive analysis that requires fast query

response times. Many different tools and techniques are

discussed and implemented to improve DW performances, but

the importance of the user-system interaction (interface) is

often neglected - especially details like progress indicators

(estimators).

Even two decades ago, Myers [12] analyzed the importance

of progress indicators on the user experience in graphical user

interfaces. He concluded that users have a strong preference

for the progress indicators during long tasks because they

enhance the attractiveness and effectiveness of programs that

M. Milicevic is with the Department of Electrical Engineering and

Information Technology, University of Dubrovnik, 20000 Dubrovnik, Croatia

(e-mail: mario.milicevic@unidu.hr).

K. Zubrinic is with the Department of Electrical Engineering and

Information Technology, University of Dubrovnik, 20000 Dubrovnik, Croatia

(e-mail: krunoslav.zubrinic@unidu.hr).

I. Zakarija is with the Department of Electrical Engineering and

Information Technology, University of Dubrovnik, 20000 Dubrovnik, Croatia

(e-mail: ivona.zakarija@unidu.hr).

incorporate them. Progress indicators give the users enough

information at a quick glance to estimate how much of the task

(not necessarily in database context) has been completed and

when the task will be finished.

Nielsen [13] concluded that progress indicators have three

main advantages: they reassure the user that the system has not

crashed but is working on his or her problem; they indicate

approximately how long the user can be expected to wait, thus

allowing the user to do other activities during long waits; and

they finally provide something for the user to look at, thus

making the wait less painful. This latter advantage should not

be underestimated and is one reason for recommending a

graphic progress bar instead of just stating the expected

remaining time in numbers.

Unfortunately, today’s database systems provide only basic

feedback to users about the query execution progress,

especially regarding impact of the database server throughput

on query response time.

II. RELATED WORK

Computer system response time is generally defined as the

number of seconds it takes from the moment users initiate an

activity until the computer begins to present results on the

display or printer [16]. There are still no industry standards for

acceptable application response time.

The basic considerations about response times in the context

of Human-Computer Interaction (HCI) has been discussed

about thirty years ago, when Miller [10] described three

important threshold levels of human attention.

Same limits were confirmed for the web based application

in [13]:

- 0.1 second - the limit for having the user feel that the

system is reacting instantaneously, meaning that no special

feedback is necessary, except to display the result.

- 1.0 second - the limit for the user's flow of thought to

stay uninterrupted, even though the user will notice the

delay. Normally, no special feedback is necessary during

delays of more than 0.1 but less than 1.0 second, but the

user does lose the feeling of operating directly on the data.

- 10 seconds - the limit for keeping the user's attention

focused on the dialogue. For longer delays, users will want

to perform other tasks while waiting for the computer to

finish, so they should be given feedback indicating when the

Dynamic Approach to the Construction of

Progress Indicator for a Long Running SQL

Queries

Mario Milicevic, Krunoslav Zubrinic, Ivona Zakarija

I

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

489

computer expects to be done. System indicators should give

them information that the system is working on his or her

problem. They indicate approximately how long the user

can be expected to wait, allowing him or her to do other

activities during longer delays. Feedback during the delay is

especially important if the response time is likely to be

highly variable, since users will then not know what to

expect.

Progress indicators in the database query processing context

were discussed in the several recent works. Chaudhuri et al.

[1], [2] introduced the concept of decomposing a query plan

into a number of segments delimited by blocking operators.

Query progress is estimated with the number of getnext() calls

made by operators - but only in the context of an isolated

system (where there is no other activity besides the execution

of the query). Authors also discussed what the important

parameters are, and under what situations robust progress

estimation can be expected.

Similar approach was presented by Luo et al. [5], [6]. In

order to support the progress indicators, authors divided a

query plan into one or more segments and focused on the

individual segments rather than the entire query plan, but again

for the isolated single query. In the next work [7] they

extended model with the multi-query progress indicator, which

explicitly considers concurrently running queries and even

queries predicted to arrive in the future when producing its

estimates. Authors also demonstrated how to apply the

resulting multi-query progress indicators to several workload

management problems.

Mishra et al. [11] also presented framework for progress

estimation of the operators and query segments using the

getnext() model of query progress, with the similar limitations

as mentioned before. Proposed method can estimate

progressively the output size of various relational operators

and pipelines, minimal overhead on query execution. These

include binary and multiway joins as well as typical grouping

operations and combinations thereof.

Majority of existing approaches relies on estimating

intermediate cardinalities of operators in the query plan, but

also requires communication with database engine during the

query execution - which can be demanding or even

unsupported.

III. ADAPTIVE PROGRESS INDICATOR

In general, percent-done progress indicators are a technique

for graphically showing how much of a long task has been

completed [12].

A. General Properties of Progress Indicators

Desirable properties of progress indicators were mentioned

in [1]:

- Accuracy: the estimated percentage of work completed

by the query at any point during its execution should be

close to the actual percentage of work completed by the

query at that point;

- Fine granularity: it follows from the above accuracy

requirement that the estimator should be able to provide

estimates at sufficiently fine granularity over the duration of

the query’s execution;

- Low overhead: an essential requirement for a progress

estimator to be practical is that it should impose low

overhead on the actual execution of the query.

- Leveraging feedback from execution: as query

execution progresses, more information based on

(intermediate) results of execution can become available.

Ideally, an estimator should be able to take full advantage of

such information;

- Monotonicity: since the actual execution of the query

progresses monotonically, ideally, the estimated progress

should be also be monotonically increasing from the start of

query execution to its finish.

While the first three properties are unquestionable, insisting

on the last two features can produce compelling problems

during the implementation phase. Leveraging feedback from

the execution - based on the intermediate results - relies on

(often problematic and/or undocumented) communication with

RDBMS during the query execution.

Monotonicity is logical requirement in the context of the

isolated single query environment, but the real-life examples

show that database server workloads and resource utilization

change considerably over time - resulting in the varying

response times for identical queries. Furthermore, server's

throughput can be dramatically changed (increased or

decreased) during the long-running query execution - so

corresponding response time predictions (as a function of the

instantaneous server workload) also vary widely (but not

always monotonically).

B. Model and Implementation

Considerations and options related to quantitative

information for generic progress indication displays has been

discussed in [8]:

- Providing quantitative progress information, or only a

busy indicator, such as an hour glass;

- Presenting progress in terms of percentages, or as a

count of completed items. For example: 90% complete or 5

out of 6 steps complete;

- Measuring time vs. steps. For example: 30 seconds vs. 2

steps;

- Considering the amount remaining or time elapsed. For

example: 10% done or 10% remaining;

- Displaying progress of the current step, or overall

progress. For example: Step 1 is 90% complete or 90%

complete overall;

- Displaying rate information. For example: 3K/second;

- Accuracy of estimates. For example: displaying 5

seconds when it is really 10 minutes;

- Precision of estimates. For example: 3.4% remaining vs.

about 10% remaining.

Authors also discussed implementation requirements for

process progress in a relatively smooth, linear fashion.

Accurate progress estimation is often difficult to achieve; in

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

490

these cases initial estimate and ongoing re-estimates are

required. Therefore, it needs to be considered how accurate an

initial estimate can be and whether periodic re-estimates are

required. This needs to be balanced with the performance

overhead of such estimates.

Fig. 1 Simple progress indicator

Simple progress indicator (Fig. 1) - in the query processing

environment - must inform users at least about elapsed and

remaining query processing duration.

RESPONSE

TIME

TEST

QUERY

SYSTEM

STATE

OLTP SYSTEM

MACHINE

LEARNING

RESPONSE TIME

MODEL

0

10 20 40 5030

10

20

Thickness
X-Axis

1

1 1

1

Fig. 2 Learning phase

Influence of the system load and the system throughput on

the response time, as well as a possibility of the accurate

response time prediction - as a function of actual system state

(CPU, memory and disk subsystem activity) during 1s interval,

immediately before the observed query activation - has been

already analyzed in [9].

In this work we consider another approach for constructing

model representing SQL query behavior under dynamic server

workload. During the learning phase (Fig. 2) system state is

again monitored within 1s intervals, but during the complete

query execution. In the next step collected averaged system

states (represented with the averaged attributes) and measured

response times are taken as an input into different data mining

algorithms [14], [18]. Already using linear regression (1) we

can build usable models:

1.1118 +

 hdD * 5.5608 + wait * 4.1851 +

 sys * 147.4438 + us * 6.7706 + cs * 0.0295 -

sy * 0.0058 -in * 0.0832 +sr * 0.0047 -

fr * 0.1446 - po * 0.2081 - free * 0.0497 +

 avm * 0.0002 - b * 8.0555_ =durationquery

 (1)

where attribute selection method - for presented referent

query - choose subsequent attributes (among more than 30

monitored attributes):

b - average number of kernel threads placed in the

VMM wait queue;

avm - active virtual pages;

free - size of the virtual pages free list;

po - pages paged out to paging space;

fr - pages freed (page replacement);

sr - pages scanned by page-replacement algorithm;

in - device interrupts;

sy - system calls;

cs - kernel thread context switches;

us - user time;

sys - system time;

wait - processor idle time during which the system

had I/O request(s);

hdD - activity of HD(s) with data tablespaces.

Better results can be expected with more elaborate methods,

e.g. M5P (Model Trees) [15] [17].

M5P is a regression tree algorithm designed for continuous

classes. First, an ordinary classification tree is constructed,

with the standard deviation reduction used as node impurity

function. Then the tree is pruned (controlling a tradeoff

between prediction and tree size), with a stepwise linear

regression model fitted to each node at every stage (rather than

to simply predict the mean).

A final stage is to use a smoothing process [17] to

compensate for the sharp discontinuities that will inevitably

occur between adjacent linear models at the leaves of the

pruned tree, particularly for some models constructed from a

small number of training instances. The smoothing procedure

described by Quinlan [15] first uses the leaf model to compute

the predicted value, and then filters that value along the path

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

491

back to the root, smoothing it at each node by combining it

with the value predicted by the linear model for that node.

The tree could be simplified adding a restriction about the

minimum number of instances (default 4) covered by each leaf

node (larger value will generate a simpler tree but less

accurate).

idle

idle

avm

avm

LM1

idle

fre

hdD

po

LM2 LM3

LM4

LM5 LM6 LM8 LM9

LM7

<= 41 > 41

<= 1208168 > 1208168

<= 1332929 > 1332929

<= 53 > 53

<= 2533 > 2533

<= 6.7 > 6.7

<= 60 > 60<= 453 > 453

Fig. 3 M5P decision tree

In the M5P decision tree example shown in Fig. 3, the M5P

algorithm created 9 leaves (rules, linear models):

575.3043 +

 idle * 4.1649 -

 avm * 0.0001- =duration

LM4

589.2693 +

 idle * 4.1649 -

 avm * 0.0001- =duration

LM3

589.3916 +

idle * 4.1649 -

 avm * 0.0001- =duration

LM2

587.4366 +

 idle * 4.1649 -

 avm * 0.0001- =duration

LM1

582.1818 +

 idle * 5.9054 -

 po * 0.0552 -

 avm * 0.0001- =duration

LM9

585.8962 +

 idle * 5.9547 -

 po * 0.0552 -

 avm * 0.0001- =duration

LM8

563.7388 +

 hdD * 1.9082 -

 idle * 5.1319 -

 po * 0.0574 -

 avm * 0.0001- =duration

LM7

563.8036 +

 hdD * 1.4934 -

 idle * 5.1319 -

 po * 0.0599 -

 avm * 0.0001- =duration

LM6

564.3411 +

 hdD * 1.4934 -

 idle * 5.1319 -

 po * 0.0599 -

 avm * 0.0001- =duration

LM5

As it can be noticed, model tree usually uses only a small

subset of the available attributes. Besides already mentioned

thirteen attributes (1), two new attributes appear in linear

models LM1-LM9:

idle - processor idle time;

po - pages paged out to paging space.

In order to capture the actual system's behavior under

various conditions, at least three structurally different queries

must be analyzed - leading to at least three parallel models.

Each model predicts response time, while overall prediction is

result of averaging.

 Chosen referent queries must represent server load

faithfully. This requirement can be fulfilled by analyzing DB

logs and query frequency, using prior knowledge about

application structure, or by detecting and analyzing users'

behavior patterns.

The learning phase must be conducted during several days

or weeks. All test queries have been executed more than 50

times each - during all characteristic periods related to the

rhythm of typical users' activities. Also all attributes presenting

system state were recorded during test queries executions.

(2)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

492

Fig. 4 Production phase

Built models are used during the production phase (Fig. 4).

In regular intervals (default value is 1s) the remaining

production query execution time is estimated as a function of

averaged system state (till observed moment) represented with

chosen attributes. Response time prediction with three (or

more) different models has a smoothing effect and the relative

prediction error decreases considerably (compared with single

models).

Unknown queries from the production phase can be

associated and compared with referent queries from the

learning phase through the estimated cost (supplied by Cost

Based Optimizer (CBO)).

System state monitoring (in regular intervals) and models

implementation during production phase fulfill low-overhead

requirement.

C. Experimental Evaluation

Different long-running queries were observed in the

environment of the real database server (up to 200 concurrent

users).

Fig. 5 shows distribution of the response times for one of

analyzed queries. Response times vary between 92s and 472s,

with typical response time of 110s (measured in single-query

environment, during the periods of low system workload and

with minimized influence of database cache memory). It is

obvious that progress indicator models built within the single-

query environment cannot be applied effectively because

prediction error can be increased considerably.

Fig. 5 Query response time distribution

Fig. 6 Predicted response times during query first execution

Fig. 6 shows results of the implementation of the proposed

adaptive approach based on the predictions made by three

models built during the learning phase. Measured (actual)

response time is 226s. Ideal response time (110s) - as a result

of the measurements in the single-query environment - is also

specified. It can be noticed that predicted response times vary

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

493

considerably with server workload fluctuations. Initial

predictions (during the first 30s of query execution) are

underestimated as a consequence of the higher server

throughput (lower server workload). Variations of the

predicted response time can be (once more) smoothed using

moving averages.

Fig. 7 Actual and predicted query progress

Behavior of the corresponding progress indicator is

presented in Fig. 7, where it is again obvious that progress

indicator built on the (ideal) single-query model is

unacceptable.

Predicted query execution progress based on proposed

adaptive model reasonably estimates real query progress.

Query will be marked as 100% finished after 194s (what

corresponds to 86% of real query progress). This result is quite

acceptable taking into account that the single-query model

proclaims query completed after only 49% of real query

progress - what can be very confusing and frustrating for the

users.

Fig. 8 and 9 show identical query execution under different

conditions (increased server workload). Measured (actual)

response time is 362s. In this case adaptive model lead to

somewhat increased predicted response times, resulting again

in pessimistic predicted query progress: when query

processing is completed adaptive progress indicator shows

93% completion. Again, this result is acceptable - taking into

account that response time is 230% longer than under ideal

conditions.

Fig. 8 Predicted response times during query second execution

Fig. 9 Actual and predicted query progress

Fig. 10 and 11 show prolonged (440s) query execution as a

result of even lower server throughput. Measured (actual)

response time is 440s. Adaptive model again results in an

optimistic predicted query progress: query will be marked as

100% finished after 395s (what corresponds to 90% of real

query progress). This result is again entirely acceptable

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

494

because the single-query model proclaims this query

completed after only 25% of real query progress.

Fig. 10 Predicted response times during query third execution

Fig. 11 Actual and predicted query progress

In the first and the third example even monotonicity

requirement is generally fulfilled, unlike the second example

where pronounced increase of server workload (in several

moments) leads to decrement of predicted query completion

(e.g. from 22% to 20%). Applied algorithm can be easily

adapted to handle this situation, but maybe more pragmatic

approach is to inform user (via progress indicator decrement -

maybe accentuated with color) about (notable) increase of

server workload.

 Monotonicity problem can also be attenuated or solved

with the size of the update increment (for example, 1 second

versus 10 seconds). A larger increment can reduce the

appearance of non-linear progress [8].

Fig. 12 Progress prediction in 10 seconds steps

Fig. 12 shows same query progress prediction already

presented in Fig. 9, but now in 10 seconds steps. There are no

more decrements of predicted query completion.

Also, progress in terms of percentages starts with the

amount corresponding to 10 seconds duration (that is 3% for

Fig. 12) - which is different from 0% because users become

impatient when the display remains trapped at 0% for a long

time (10 seconds or more).

IV. CONCLUSION

Proposed method for dynamic/adaptive progress indicator is

based on the tracking of the system state changes (represented

with adequate attributes). This algorithm constructs adaptive

progress indicator models using data mining methods during

the learning phase, analyzing influence of averaged system

state (represented with attributes describing CPU, memory and

disk subsystem activity) on the query response time.

The first method that we used was simple linear regression,

and it produces usable models. Using of other data mining

algorithms, such as M5P, we can expect better and more

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

495

reliable models.

Existence of the learning phase can perhaps present a

problem in some environments, but - on the other hand - the

fact that there is no need for detailed knowledge about server

configuration or query structure can be an important

achievement.

Practical user experience and experimental evaluation

shows that adaptive progress indicators can enhance the

effectiveness of programs that incorporate them, and users'

experience and productivity.

REFERENCES

[1] S. Chaudhuri, V. Narassaya, R. Ramamurthy, “Estimating Progress of

Execution for SQL Queries”, SIGMOD, 2004.

[2] S. Chaudhuri, R. Kaushik, R. Ramamurthy, “When Can We Trust

Progress Estimators for SQL Queries”, SIGMOD, 2005.

[3] C. Dell'Aquila, F. Di Tria, E. Lefons, F. Tangorra, “Business

Intelligence Systems: a Comparative Analysis”, WSEAS Transactions on

Information Science & Applications, Issue 5, Vol. 5, 2008, pp. 612-621

[4] K. Fertalj, N.Vucetic, “Challenge of Knowledge Management: From

Theory to Practice”, Proceedings of the 4th WSEAS/IASME Int. Conf. on

System Science and Simulation in Engineering, Tenerife, Spain, , 2005,

pp. 204-210.

[5] G. Luo, J. Naughton, C. Ellman, M. Watzke, “Increasing the Accuracy

and Coverage of SQL Progress Indicators”, ICDE, 2004.

[6] G. Luo, J. Naughton, C. Ellman, M. Watzke, “Toward a Progress

Indicator for Database Queries”, SIGMOD, 2004.

[7] G. Luo, J. Naughton, P. Yu, “Multi-query SQL Progress Indicators”,

EDBT, 2006.

[8] P. McInerney, J. Li, “Progress indication: Concepts, design, and

implementation”, IBM developerWorks [Online], Available:

http://www.ibm.com/developerworks/web/library/us-progind/

[9] M. Milicevic, M. Baranovic, V. Batos, “QoS control based on query

response time prediction”, WSEAS Transactions on Computers 8, Vol.

4, 2005, pp. 882-889.

[10] R. B. Miller, “Response time in man-computer conversational

transactions”, Proceedings of AFIPS Fall Joint Computer Conference,

Vol. 33, 1968, pp. 267-277.

[11] C. Mishra, N. Koudas, “A Lightweight Online Framework For Query

Progress Indicators”, 23rd International Conference on Data

Engineering, 2007, pp. 1292-1296.

[12] B. A. Myers, “The importance of percent-done progress indicators for

computer-human interfaces”, Proceedings of ACM CHI'85 Conf., 1985,

pp.11-17.

[13] J. Nielsen, Usability Engineering, Morgan Kaufmann, San Francisco,

1994.

[14] A. K. Paharia, Y. Bhawsar, D. Singh, “Data Mining: As an imperative

tool for Discovering Knowledge”, Proceedings of the 6th WSEAS Int.

Conference on Computational Intelligence, Man-Machine Systems and

Cybernetics, Tenerife, 2007, pp. 375-378.

[15] J. R. Quinlan, “Learning with continuous classes”, Proceedings of

AI'92, ed., Sterling Adams, Singapore 1992., pp. 343-348.

[16] B. Shneiderman, Designing the User Interface: Strategies for Effective

Human-Computer Interaction, 3rd ed., Addison-Wesley, Reading, MA,

1998.

[17] Y. Wang, I. H. Witten, “Induction of model trees for predicting

continuous classes”, Proceedings of the Poster Papers of the European

Conference on Machine Learning, Prague 1997., pp.128-137.

[18] I. H. Witten, E. Frank, Data Mining: Practical machine learning tools

with Java implementations, Morgan Kaufmann, 2000.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

496

