

Abstract—Due to recent advances in semiconductor technologies,

storage class RAMs (SCRAMs) such as FRAM and PRAM are

emerging rapidly. Since SCRAMs are nonvolatile and byte-accessible,

there are attempts to use these SCRAMs as part of nonvolatile buffer

caches. A nonvolatile buffer cache provides improved consistency of

file systems by absorbing write I/Os as well as improved performance.

In this paper, we discuss the optimality of cache replacement

algorithms in nonvolatile buffer caches and present a new algorithm

called NBM (Nonvolatile-RAM-aware Buffer cache Management).

NBM has three salient features. First, it separately exploits read and

write histories of block references, and thus it estimates future

references of each operation more precisely. Second, NBM guarantees

the complete consistency of write I/Os since all dirty data are cached in

nonvolatile buffer caches. Third, metadata lists are maintained

separately from cached blocks. This allows more efficient management

of volatile and nonvolatile buffer caches based on read and write

histories, respectively. Trace-driven simulations show that NBM

improves the I/O performance of file systems significantly compared

to the NVLRU algorithm that is a modified version of LRU to hold

dirty blocks in nonvolatile buffer caches.

Keywords—Buffer cache, Caching, LRU, Nonvolatile RAM,

Replacement algorithm, Storage class RAM.

I. INTRODUCTION

ECENTLY, storage class RAMs (SCRAMs) such as MRAM

(magnetic RAM), PRAM (phasechange RAM), and FRAM

(ferro electro RAM) are emerging rapidly [2, 3, 4]. Since

SCRAMs are nonvolatile and byte-accessible, there are

attempts to use these SCRAMs as part of nonvolatile buffer

caches [5, 7, 8]. By using SCRAMs together with traditional

volatile RAMs as buffer cache spaces, consistency of file

systems can be improved by absorbing write I/Os to the

SCRAMs. Since file systems generally tend to perform write

Manuscript received October 31, 2008. Revised version received December

31, 2008. This work has been supported by the Korea Research Foundation

Grant funded by the Korean Government (KRF-2008-314-D00344).

Junseok Park is with the School of Computer Science and Engineering,

Seoul National University, 56-1 Shillim-dong, Kwanak-gu, Seoul, 151-742,

Republic of Korea (e-mail: redo@oslab.snu.ac.kr).

Hyunkyoung Choi is with the Department of Computer Science and

Engineering, Ewha University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul,

120-750, Republic of Korea (e-mail: bluechk@nate.com).

Hyokyung Bahn is with the Department of Computer Science and

Engineering, Ewha University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul,

120-750, Republic of Korea (corresponding author to provide phone:

82-2-3277-2368; fax: 82-2-3277-2306; e-mail: bahn@ewha.ac.kr).

Kern Koh is with the School of Computer Science and Engineering, Seoul

National University, 56-1 Shillim-dong, Kwanak-gu, Seoul, 151-742, Republic

of Korea (e-mail: kernkoh@oslab.snu.ac.kr).

I/Os to the RAM component and flush them to secondary

storage periodically due to performance reasons, there is an

interval of time in which consistency of the file system is

compromised. By performing writes to nonvolatile buffer cache

instead of volatile buffer cache, this period of inconsistency is

removed, and consistency can be maintained completely [5].

In this paper, we discuss the optimality of cache replacement

algorithms in nonvolatile buffer caches and present a new

algorithm called NBM (Nonvolatile-RAM-aware Buffer cache

Management). The storage architecture of NBM consists of the

secondary storage media and two kinds of buffer caches, namely

volatile buffer cache and nonvolatile buffer cache. The

secondary storage is basically composed of hard disks, but

NAND flash memory or other storage media can be used. The

volatile buffer cache is composed of usual DRAM, and the

nonvolatile buffer cache is composed of SCRAM such as

PRAM, FRAM, or MRAM. Our buffer cache replacement

algorithm has three salient features. First, it separately exploits

the read history and the write history of block references, and

thus it estimates future references of each operation more

precisely. Second, our algorithm guarantees the complete

consistency of write I/Os since all dirty data are cached in

nonvolatile buffer caches. Third, metadata lists are maintained

separately from cached blocks. That is, we use two lists to

maintain the recency history of references, namely the LRR

(least recently read) list and the LRW (least recently written)

list. However, blocks in these lists are not necessarily identical

to those blocks in the volatile and nonvolatile buffer caches,

respectively. In reality, metadata of an evicted block from the

buffer cache can be maintained in the list. This separation

allows more efficient management of volatile and nonvolatile

buffer cache spaces. Trace-driven simulations show that the

proposed algorithm improves the I/O performance of files

systems significantly.

The remainder of the paper is organized as follows. Before

describing our algorithm, we present the formal definition of

nonvolatile buffer caching problems and give an offline optimal

algorithm in Section 2. Then, we explain the system architecture

and present a new buffer cache replacement algorithm on this

architecture in Section 3. Section 4 shows experimental results

obtained through trace-driven simulations to assess the

effectiveness of the proposed scheme. Finally we conclude this

paper in Section 5.

Buffer Caching Algorithms for Storage

Class RAMs

Junseok Park, Hyunkyoung Choi, Hyokyung Bahn, and Kern Koh

R

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

41

II. BUFFER CACHING PROBLEMS IN STORAGE CLASS RAMS

Before describing nonvolatile buffer caching, we first review

the traditional buffer caching problems. Let S be the size of

buffer cache, r the total number of references, and h the number

of hit references. Then, the buffer cache manager needs to store

the currently requested block without exceeding S. In this paper,

we focus on non-lookahead, demand fetching algorithms. If the

number of blocks in the buffer cache is larger than S, the

replacement algorithm selects a victim and purges it from the

buffer cache. The goal of the algorithm is to maximize the

number of blocks referenced directly from the buffer cache after

all the requests have been processed. The hit ratio, calculated by

h/r, is an appropriate performance metric to measure the

performance of the replacement algorithm. In the traditional

volatile buffer cache environments, Belady’s MIN algorithm is

known to be optimal with respect to the hit ratio [1]. The MIN

algorithm replaces the block that will be referenced furthest in

the future. MIN is not a practical algorithm because one cannot

know future references in real systems. However, MIN provides

the upper bound of performance to the research community

pursuing good online algorithms.

Now, let us look at the nonvolatile buffer caching problems.

We assume that both volatile and nonvolatile buffer caches are

used together. We also assume that all writes are performed in

nonvolatile buffer cache. Hence, consistency is always

guaranteed. Writes to secondary storage occurs only when a

block is evicted from the nonvolatile buffer cache. Additionally,

we assume that all clean blocks reside in volatile buffer cache.

This assumption may be released in practical terms, but similar

to previous researches we include it in theoretical analysis [5].

Let SNV be the size of nonvolatile buffer cache, SV be the size

of volatile buffer cache, r the total number of read references, w

the total number of write references, and h the number of hit

references. Unlike traditional buffer caching problems, it is

known that the hit ratio, calculated by h/(r+w), is not a good

performance metric for nonvolatile buffer caching

environments. Instead, the performance metric should be

changed to the number of disk I/Os [5]. This is because even a

hit may cause I/O operations. For example, if a write reference

comes and the requested block exists in the volatile buffer cache

but not in the nonvolatile buffer cache, it is apparently a hit.

However, this incurs a write operation to nonvolatile buffer

cache. If there is no empty slot in the nonvolatile buffer cache,

we need to evict a dirty block from the nonvolatile buffer cache,

which essentially incurs an I/O operation.

The problem is then to reduce the total number of I/O

operations. For read operations, blocks in both volatile and

nonvolatile buffer caches can be referenced. However, for write

operations, we should only use nonvolatile buffer cache for the

consistency reason. Thus, if a write request arrives and the

requested block does not exist in the nonvolatile buffer cache,

the replacement algorithm should make a room in the

nonvolatile buffer cache for that request. If the number of blocks

in the nonvolatile buffer cache is larger than SNV, the

replacement algorithm selects a victim and purges it, which

eventually incurs a write I/O. However, if a read request arrives,

a cache hit from either volatile or nonvolatile cache does not

incur an I/O operation.

With these different situations, the optimality of the

replacement algorithm also changes for nonvolatile buffer

caching environments. An optimal algorithm, we call NV-MIN,

behaves as follows. We do not provide the formal optimality

proof of this algorithm, but it can be shown intuitively. Note that

this algorithm is enhanced from MIN+ presented by Lee et al

[5]. When a read miss occurs, NV-MIN chooses a victim block

by the following scenario. For simplicity, we call nonvolatile

buffer cache NVRAM, and volatile buffer cache VRAM. If

there is an empty slot in VRAM or there is a slot whose next

reference is write in VRAM, NV-MIN caches the new block

here. Otherwise, NV-MIN evicts the block that will be

read-referenced furthest in the future among those in VRAM.

 When a write miss occurs in NVRAM, NV-MIN behaves as

follows. Note that this case includes the case that a

write-referenced block already exists in VRAM but not in

NVRAM. If there exists an empty slot in NVRAM, NV-MIN

caches the requested block in this slot. (In this case, if the block

already exists in VRAM, NV-MIN removes it from VRAM.)

Otherwise, NV-MIN replaces the block that will be

write-referenced furthest in the future and writes it to the disk. If

the evicted block will be read-referenced again in the future, it

may be copied to VRAM according to the following scenario. If

there exists an empty slot in VRAM or if there exists a block

whose next request is write in VRAM, NV-MIN caches the

evicted block to this slot. Otherwise, NV-MIN compares two

blocks, namely the block that will be read-referenced furthest in

Table 1. Comparison of DRAM, SRAM, NAND flash memory, and three types of SCRAMs.

Media characteristics MRAM FRAM PRAM SRAM DRAM NAND flash

Nonvolatility Yes Yes Yes No No Yes

Write latency per byte 10~50ns 30~100ns 100ns~ 30~70ns 50ns~ 10µs~

Read latency per byte 10~50ns 30~100ns 20~80ns 30~70ns 50ns 50ns

Max. erase cycle 10
16
 10

12
~10

16
 10

12
 10

15
 10

15
 10

6

Energy consumption ~30µW ~10µW ~30µW ~300mW ~300mW 30mW

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

42

the future among those in VRAM and the evicted block from

NVRAM, and evicts the block that will be read-referenced

further in the future.

III. A NEW ALGORITHM

A. System Architecture

The system architecture in this paper is described in Fig. 1.

The storage system consists of the secondary storage media and

two kinds of buffer caches, namely volatile buffer cache and

nonvolatile buffer cache. The secondary storage is basically

composed of hard disks, but NAND flash memory or other

storage media can be used. The volatile buffer cache is

composed of usual DRAM, and the nonvolatile buffer cache is

composed of SCRAM such as PRAM, FRAM, or MRAM. All

writes to buffer caches are performed in nonvolatile buffer

cache. Hence, all dirty blocks reside in NVRAM and thus

consistency is always guaranteed. Writes to secondary storage

happens only when an eviction from NVRAM occurs.

Hybrid hard disks (HHD) [9] also have an NVRAM layer

between DRAM and secondary storage. However, the NVRAM

layer in HHD cannot be used as a system buffer cache since it is

composed of flash memory and thus it is not byte-accessible.

Moreover, NVRAM in this paper is equivalently used with

traditional DRAM except that it is non-volatile, whereas

NVRAM in HHD mainly serves as a write buffer.

B. Algorithm Details

In this subsection, we present the NVRAM-aware buffer

cache management (NBM) algorithm. NBM separately exploits

the read history and the write history of block references to

estimates future references of each operation precisely. To do

this, NBM uses two lists to maintain the recency history of

references, namely the LRR (least recently read) list and the

LRW (least recently written) list. Note that blocks in these two

lists are not necessarily identical to those blocks in the volatile

and nonvolatile buffer caches, respectively. This separated

management of metadata and actual data allows more efficient

management of volatile and nonvolatile buffer cache spaces.

For example, if a block is recently read and written, the

metadata of the block can exist in both LRR and LRW lists, but

actual data is only maintained in the nonvolatile buffer cache.

Thus, some blocks in the LRR list may not exist in the volatile

buffer cache. This allows volatile buffer cache to hold more

blocks, leading to more read-hits. Nevertheless, we maintain the

read history of the block in the LRR list because the block may

return to the volatile buffer cache if it is evicted from the

nonvolatile buffer cache. Fig. 3 depicts the pseudocode of the

NBM algorithm.

DRAM

Secondary storage

read

write

DISK

NVRAM

Nonvolatile buffer cache

Volatile buffer cache

replacement

Fig. 1 System architecture of NBM.

 Nonvolatile buffer cacheVolatile buffer cache

SNVSV

Buffer
cache area

Metadata
history list

Least-Recently-Written (LRW) listLeast-Recently-Read (LRR) list

Read referenced Write referenced

head of the list (LRU position)

tail of the list (MRU position)

head of the list (LRU position)

tail of the list (MRU position)

Fig. 2 Data structures used in the NBM algorithm.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

43

Fig. 3 Pseudocode of NBM.

NBM (block p, operation op) /* p is requested block */

{ if (p is in the buffer cache) /* cache hit */

{ if (op is read)

 { if (p∉read_list) add p at the tail of read_list;

 else move p to the tail of read_list;

 else /* write */

{ if (p∉write_list) add p at the tail of write_list;

 else move p to the tail of write_list;

if (p is not in NVRAM)

{ if (no free block in NVRAM) replace_NVRAM ();

move p from VRAM to NVRAM;

}

 }

}

else /* cache miss */

 { if (op is read)

 { if (no free block in VRAM) replace_VRAM ();

add p to VRAM;

add p at the tail of read_list;

 }

else /* write */

{ if (no free block in NVRAM) replace_NVRAM ();

add p to NVRAM;

add p at the tail of write_list;

 }

 }

}

replace_VRAM ()

{ evict the least recently read block p in VRAM;

 evict the read history of p from read_list;

}

replace_NVRAM ()

{ select the least recently written block p in NVRAM;

evict the write history of p from write_list;

 if (p∈read_list)

 { if (p is more recently read than the least recently read block q in VRAM)

 { evict q from VRAM;

evict the read history of q from read_list;

 move p from NVRAM to VRAM;

 }

}

else evict p from NVRAM;

}

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

44

IV. EXPERIMENTAL RESULTS

We have conducted trace-driven simulations to compare the

performance of buffer cache management algorithms in terms of

total number of I/O operations. We used traces collected by

Roselli et al. [6] from the Hewlett-Packard series 700

workstations running HP-UX. These traces are categorized into

three environments, namely INS (instructional workload), RES

(research workload), and WEB (Web server workload). Details

of these traces are summarized in Table 2.

For comparison, we have designed and implemented NVLRU,

which is a modified version of the traditional LRU algorithm.

NVLRU holds dirty blocks in NVRAM, conserving file system

consistency without periodical flush. Whenever it needs to

accommodate a new dirty block but there is no free block in

NVRAM, it selects and evicts the least recently used dirty block

from NVRAM.

Figs. 4, 5 and 6 show the performance of NBM in terms of the

total number of I/O operations normalized by NVLRU. NBM

outperforms NVLRU especially when the system is under heavy

NVRAM pressure. This is due to the major drawback of the

NVLRU algorithm. NVLRU holds dirty blocks that are recently

read but rarely written in NVRAM because it maintains LRU

list based on not only write references but also read references

for dirty blocks in NVRAM. On the other hand, NBM

efficiently identifies dirty but rarely written blocks using LRW

list which tracks write reference history only.

Moreover, NBM further reduces total I/O count when the

VRAM space is sufficiently large. As explained earlier, for

every NVRAM replacement victim, NBM decides to move the

block from NVRAM to VRAM if it is recently read. This helps

the system buffer cache to hold all the recently read blocks

while consuming less NVRAM space. However, if VRAM is

under heavier memory pressure than NVRAM is, moving a

block from NVRAM to VRAM can result in worse read hit

ratio.

NBM shows little performance improvement for workloads

that rarely reads from dirty blocks. For such workloads, using

LRU or LRW for NVRAM blocks makes no difference. Hence,

NBM and NVLRU work similarly. This can be observed well in

Fig. 6.

Figs. 7, 8 and 9 show read I/O counts and write I/O counts. For

every workload we have considered, the two algorithms showed

almost the same write I/O counts. NBM does flush before

moving a dirty block from NVRAM to VRAM to conserve file

system consistency. For this reason, NBM issues write I/O as

much as NVLRU does. In Fig. 7, we can see reduced read I/O

counts by adopting NBM. This change is highlighted in memory

settings with small NVRAM. As the amount of NVRAM grows,

most of dirty blocks that are currently being used can be held in

NVRAM even with simpler algorithms, leaving no room to

improve the system performance. At some points, NBM

performs even slightly worse than NVLRU in terms of read I/O

count. These cases can be observed in certain memory size

settings where VRAM is under relatively heavier memory

pressure than NVRAM.

V. CONCLUSION

In this paper, we introduced the NBM algorithm that uses

both VRAM and NVRAM as buffer caches. To reserve

consistency in such systems, dirty blocks are stored in NVRAM

and actual write I/O operations occur only when there is not

enough free NVRAM space.

To fully utilize NVRAM space, when selecting a NVRAM

block to replace, NBM efficiently identifies the least recently

written block regardless of its read references by using LRW list.

In addition to this, NBM can decides to move the victim block

from NVRAM to VRAM depending on its read reference

history which is recorded in LRR list, rather than discarding the

block after flushing. Consequently, NBM fills NVRAM up only

with the most recently written blocks among dirty blocks while

maintaining all the recently read blocks in the buffer cache.

Through trace-driven simulations, we have shown that the

NBM algorithm outperforms NVLRU in terms of the total

number of I/O operations especially in systems with small

NVRAM and large VRAM.

Table 2. Summary of traces used in our experiments.

 trace INS RES WEB

Total 861168 393571 371019

Reads 733549 336963 329377

Writes 127619 56608 41642
System calls

Read:Write 5.75 5.95 7.91

VRAM 106 68 316 Memory usage

(MB) NVRAM 152 133 136

Read clean block 1173289 39819 2035430

Read dirty block 162212 94099 84766
Read access

pattern
Ratio 7.23 4.22 24.01

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

45

60000

70000

80000

90000

100000

110000

120000

130000

140000

4 8 16 32 64 128 256 512

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(a) with 4MB of NVRAM

60000

70000

80000

90000

100000

110000

120000

130000

140000

4 8 16 32 64 128 256 512

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(b) with 8MB of NVRAM

60000

70000

80000

90000

100000

110000

120000

4 8 16 32 64 128 256 512

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(c) with 16MB of NVRAM

60000

65000

70000

75000

80000

85000

90000

95000

100000

105000

110000

4 8 16 32 64 128 256 512

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(d) with 32MB of NVRAM

Fig. 4 Total I/O count in INS workload.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

46

50000

60000

70000

80000

90000

100000

110000

120000

2 4 8 16 32 64

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(a) with 2MB of NVRAM

50000

60000

70000

80000

90000

100000

110000

2 4 8 16 32 64

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(b) with 4MB of NVRAM

50000

60000

70000

80000

90000

100000

110000

2 4 8 16 32 64

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(c) with 8MB of NVRAM

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

2 4 8 16 32 64

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(d) with 16MB of NVRAM

Fig. 5 Total I/O count in RES workload.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

47

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

16 32 64 128 256 512

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(a) with 8MB of NVRAM

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

16 32 64 128 256 512

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(b) with 16MB of NVRAM

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

16 32 64 128 256 512

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(c) with 32MB of NVRAM

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

16 32 64 128 256 512

T
o
ta
l
I/
O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(d) with 64MB of NVRAM

Fig. 6 Total I/O count in WEB workload.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

48

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 8 16 32 64 128 256 512

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

10000

20000

30000

40000

50000

60000

4 8 16 32 64 128 256 512

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(a) with 4MB of NVRAM

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

4 8 16 32 64 128 256 512

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4 8 16 32 64 128 256 512

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(b) with 8MB of NVRAM

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

4 8 16 32 64 128 256 512

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

35000

40000

4 8 16 32 64 128 256 512

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(c) with 16MB of NVRAM

0

10000

20000

30000

40000

50000

60000

70000

80000

4 8 16 32 64 128 256 512

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

35000

4 8 16 32 64 128 256 512

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(d) with 32MB of NVRAM

Fig. 7 Comparison of two algorithms in terms of read I/O count and write I/O count in INS workload.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

49

0

10000

20000

30000

40000

50000

60000

70000

80000

2 4 8 16 32 64

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 4 8 16 32 64

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(a) with 2MB of NVRAM

0

10000

20000

30000

40000

50000

60000

70000

80000

2 4 8 16 32 64

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 4 8 16 32 64

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(b) with 4MB of NVRAM

0

10000

20000

30000

40000

50000

60000

70000

2 4 8 16 32 64

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

35000

40000

2 4 8 16 32 64

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(c) with 8MB of NVRAM

0

10000

20000

30000

40000

50000

60000

70000

2 4 8 16 32 64

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

35000

2 4 8 16 32 64

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(d) with 16MB of NVRAM

Fig. 8 Comparison of two algorithms in terms of read I/O count and write I/O count in RES workload.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

50

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

16 32 64 128 256 512

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

35000

16 32 64 128 256 512

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(a) with 8MB of NVRAM

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

16 32 64 128 256 512

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

35000

16 32 64 128 256 512

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(b) with 16MB of NVRAM

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

16 32 64 128 256 512

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

5000

10000

15000

20000

25000

30000

16 32 64 128 256 512

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(c) with 32MB of NVRAM

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

16 32 64 128 256 512

R
e
a
d
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

16 32 64 128 256 512

W
r
it
e
 I
/O
 c
o
u
n
t

VRAM size (MB)

NVLRU

NBM

(d) with 64MB of NVRAM

Fig. 9 Comparison of two algorithms in terms of read I/O count and write I/O count in WEB workload.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

51

ACKNOWLEDGMENT

We would like to thank Drew Roselli, Jacob R. Lorch,

Thomas E. Anderson for providing us with their system call

traces.

REFERENCES

[1] L. Belady, “A Study of Replacement of Algorithms for a Virtual Storage

Computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[2] Magnetic RAM (MRAM) Product & Technology,

http://www.memorystrategies.com/report/focused/mram.htm, 2008.

[3] Ferroelectric Memories, http://www.memorystrategies.

com/report/focused/ Ferroelectric.htm, 2007.

[4] A Memory Strategies Focus Report: Focus on Phase Change Memory and

Resistance RAMs,

http://www.memorystrategies.com/report/focused/phasechange.htm,

2008.

[5] K. Lee, I. Doh, J. Choi, D. Lee, S. H. Noh, “Write-aware buffer cache

management scheme for nonvolatile RAM,” Proceedings of the third

conference on IASTED International Conference: Advances in

Computer Science and Technology, Phuket, Thailand, pp. 29-35, 2007.

[6] D. Roselli, J. R. Lorch, and T. E. Anderson, “A Comparison of File

System Workloads,” In Proceedings of the 2000 USENIX Annual

Technical Conference (USENIX-00), Berkeley, CA, pp. 41-54, 2000.

[7] T. R. Haining and D. D. E. Long, “Management policies for non-volatile

write caches,” Proceedings of the IEEE International Performance,

Computing and Communications Conference, pp. 321-328, 1999.

[8] S. Akyurek and K. Salem, “Management of Partially Safe Buffers,” IEEE

Transactions on Computers, vol. 44, no. 3, pp. 394-407, 1995.

[9] T. Bisson, S. A. Brandt, and D. D. Long, “A hybrid diskaware spin-down

algorithm with I/O subsystem support,” Proceedings of the 26th IEEE

International Performance, Computing and Communications

Conference, 2007.

[10] H. Yamahara, F. Harada, H. Takada, H. Shimakawa, “Dynamic

Threshold Determination for Stable Behavior Detection,” WSEAS

Transactions on Computers, vol. 7, no. 4, pp. 196-206, 2008.

[11] H. Wei, C. Tianzhou, S. Qingsong, J. Ning, “A Data Centered Approach

for Cache Partitioning in Embedded Real-Time Database System,”

WSEAS Transactions on Computers, vol. 7, no. 4, pp. 140-146, 2008.

[12] A. Tarek, “A New Approach for Multiple Element Binary Search in

Database Applications,” NAUN International Journal of Computers,

volume 1, no. 4, pp. 269-279, 2007.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

52

