
 

 

  

Abstract—Due to recent advances in semiconductor technologies, 

storage class RAMs (SCRAMs) such as FRAM and PRAM are 

emerging rapidly. Since SCRAMs are nonvolatile and byte-accessible, 

there are attempts to use these SCRAMs as part of nonvolatile buffer 

caches. A nonvolatile buffer cache provides improved consistency of 

file systems by absorbing write I/Os as well as improved performance. 

In this paper, we discuss the optimality of cache replacement 

algorithms in nonvolatile buffer caches and present a new algorithm 

called NBM (Nonvolatile-RAM-aware Buffer cache Management). 

NBM has three salient features. First, it separately exploits read and 

write histories of block references, and thus it estimates future 

references of each operation more precisely. Second, NBM guarantees 

the complete consistency of write I/Os since all dirty data are cached in 

nonvolatile buffer caches. Third, metadata lists are maintained 

separately from cached blocks. This allows more efficient management 

of volatile and nonvolatile buffer caches based on read and write 

histories, respectively. Trace-driven simulations show that NBM 

improves the I/O performance of file systems significantly compared 

to the NVLRU algorithm that is a modified version of LRU to hold 

dirty blocks in nonvolatile buffer caches. 

 

Keywords—Buffer cache, Caching, LRU, Nonvolatile RAM, 

Replacement algorithm, Storage class RAM.  

I. INTRODUCTION 

ECENTLY, storage class RAMs (SCRAMs) such as MRAM 

(magnetic RAM), PRAM (phasechange RAM), and FRAM 

(ferro electro RAM) are emerging rapidly [2, 3, 4]. Since 

SCRAMs are nonvolatile and byte-accessible, there are 

attempts to use these SCRAMs as part of nonvolatile buffer 

caches [5, 7, 8]. By using SCRAMs together with traditional 

volatile RAMs as buffer cache spaces, consistency of file 

systems can be improved by absorbing write I/Os to the 

SCRAMs. Since file systems generally tend to perform write 
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I/Os to the RAM component and flush them to secondary 

storage periodically due to performance reasons, there is an 

interval of time in which consistency of the file system is 

compromised. By performing writes to nonvolatile buffer cache 

instead of volatile buffer cache, this period of inconsistency is 

removed, and consistency can be maintained completely [5]. 

In this paper, we discuss the optimality of cache replacement 

algorithms in nonvolatile buffer caches and present a new 

algorithm called NBM (Nonvolatile-RAM-aware Buffer cache 

Management). The storage architecture of NBM consists of the 

secondary storage media and two kinds of buffer caches, namely 

volatile buffer cache and nonvolatile buffer cache. The 

secondary storage is basically composed of hard disks, but 

NAND flash memory or other storage media can be used. The 

volatile buffer cache is composed of usual DRAM, and the 

nonvolatile buffer cache is composed of SCRAM such as 

PRAM, FRAM, or MRAM. Our buffer cache replacement 

algorithm has three salient features. First, it separately exploits 

the read history and the write history of block references, and 

thus it estimates future references of each operation more 

precisely. Second, our algorithm guarantees the complete 

consistency of write I/Os since all dirty data are cached in 

nonvolatile buffer caches. Third, metadata lists are maintained 

separately from cached blocks. That is, we use two lists to 

maintain the recency history of references, namely the LRR 

(least recently read) list and the LRW (least recently written) 

list. However, blocks in these lists are not necessarily identical 

to those blocks in the volatile and nonvolatile buffer caches, 

respectively. In reality, metadata of an evicted block from the 

buffer cache can be maintained in the list. This separation 

allows more efficient management of volatile and nonvolatile 

buffer cache spaces. Trace-driven simulations show that the 

proposed algorithm improves the I/O performance of files 

systems significantly.  

The remainder of the paper is organized as follows. Before 

describing our algorithm, we present the formal definition of 

nonvolatile buffer caching problems and give an offline optimal 

algorithm in Section 2. Then, we explain the system architecture 

and present a new buffer cache replacement algorithm on this 

architecture in Section 3. Section 4 shows experimental results 

obtained through trace-driven simulations to assess the 

effectiveness of the proposed scheme. Finally we conclude this 

paper in Section 5. 
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II. BUFFER CACHING PROBLEMS IN STORAGE CLASS RAMS 

Before describing nonvolatile buffer caching, we first review 

the traditional buffer caching problems. Let S be the size of 

buffer cache, r the total number of references, and h the number 

of hit references. Then, the buffer cache manager needs to store 

the currently requested block without exceeding S. In this paper, 

we focus on non-lookahead, demand fetching algorithms. If the 

number of blocks in the buffer cache is larger than S, the 

replacement algorithm selects a victim and purges it from the 

buffer cache. The goal of the algorithm is to maximize the 

number of blocks referenced directly from the buffer cache after 

all the requests have been processed. The hit ratio, calculated by 

h/r, is an appropriate performance metric to measure the 

performance of the replacement algorithm. In the traditional 

volatile buffer cache environments, Belady’s MIN algorithm is 

known to be optimal with respect to the hit ratio [1]. The MIN 

algorithm replaces the block that will be referenced furthest in 

the future. MIN is not a practical algorithm because one cannot 

know future references in real systems. However, MIN provides 

the upper bound of performance to the research community 

pursuing good online algorithms. 

Now, let us look at the nonvolatile buffer caching problems. 

We assume that both volatile and nonvolatile buffer caches are 

used together. We also assume that all writes are performed in 

nonvolatile buffer cache. Hence, consistency is always 

guaranteed. Writes to secondary storage occurs only when a 

block is evicted from the nonvolatile buffer cache. Additionally, 

we assume that all clean blocks reside in volatile buffer cache. 

This assumption may be released in practical terms, but similar 

to previous researches we include it in theoretical analysis [5].   

Let SNV be the size of nonvolatile buffer cache, SV be the size 

of volatile buffer cache, r the total number of read references, w 

the total number of write references, and h the number of hit 

references. Unlike traditional buffer caching problems, it is 

known that the hit ratio, calculated by h/(r+w), is not a good 

performance metric for nonvolatile buffer caching 

environments. Instead, the performance metric should be 

changed to the number of disk I/Os [5]. This is because even a 

hit may cause I/O operations. For example, if a write reference 

comes and the requested block exists in the volatile buffer cache 

but not in the nonvolatile buffer cache, it is apparently a hit. 

However, this incurs a write operation to nonvolatile buffer 

cache. If there is no empty slot in the nonvolatile buffer cache, 

we need to evict a dirty block from the nonvolatile buffer cache, 

which essentially incurs an I/O operation.  

The problem is then to reduce the total number of I/O 

operations. For read operations, blocks in both volatile and 

nonvolatile buffer caches can be referenced. However, for write 

operations, we should only use nonvolatile buffer cache for the 

consistency reason. Thus, if a write request arrives and the 

requested block does not exist in the nonvolatile buffer cache, 

the replacement algorithm should make a room in the 

nonvolatile buffer cache for that request. If the number of blocks 

in the nonvolatile buffer cache is larger than SNV, the 

replacement algorithm selects a victim and purges it, which 

eventually incurs a write I/O. However, if a read request arrives, 

a cache hit from either volatile or nonvolatile cache does not 

incur an I/O operation.  

With these different situations, the optimality of the 

replacement algorithm also changes for nonvolatile buffer 

caching environments. An optimal algorithm, we call NV-MIN, 

behaves as follows. We do not provide the formal optimality 

proof of this algorithm, but it can be shown intuitively. Note that 

this algorithm is enhanced from MIN+ presented by Lee et al 

[5]. When a read miss occurs, NV-MIN chooses a victim block 

by the following scenario. For simplicity, we call nonvolatile 

buffer cache NVRAM, and volatile buffer cache VRAM. If 

there is an empty slot in VRAM or there is a slot whose next 

reference is write in VRAM, NV-MIN caches the new block 

here. Otherwise, NV-MIN evicts the block that will be 

read-referenced furthest in the future among those in VRAM.  

   When a write miss occurs in NVRAM, NV-MIN behaves as 

follows. Note that this case includes the case that a 

write-referenced block already exists in VRAM but not in 

NVRAM. If there exists an empty slot in NVRAM, NV-MIN 

caches the requested block in this slot. (In this case, if the block 

already exists in VRAM, NV-MIN removes it from VRAM.) 

Otherwise, NV-MIN replaces the block that will be 

write-referenced furthest in the future and writes it to the disk. If 

the evicted block will be read-referenced again in the future, it 

may be copied to VRAM according to the following scenario. If 

there exists an empty slot in VRAM or if there exists a block 

whose next request is write in VRAM, NV-MIN caches the 

evicted block to this slot. Otherwise, NV-MIN compares two 

blocks, namely the block that will be read-referenced furthest in 

 

Table 1. Comparison of DRAM, SRAM, NAND flash memory, and three types of SCRAMs. 

 

Media characteristics MRAM FRAM PRAM SRAM DRAM NAND flash  

Nonvolatility Yes Yes Yes No No Yes 

Write latency per byte 10~50ns 30~100ns 100ns~ 30~70ns 50ns~ 10µs~ 

Read latency per byte 10~50ns 30~100ns 20~80ns 30~70ns 50ns 50ns 

Max. erase cycle 10
16
 10

12
~10

16
 10

12
 10

15
 10

15
 10

6
 

Energy consumption ~30µW ~10µW ~30µW ~300mW ~300mW 30mW 
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the future among those in VRAM and the evicted block from 

NVRAM, and evicts the block that will be read-referenced 

further in the future.  

III. A NEW ALGORITHM 

A. System Architecture  

The system architecture in this paper is described in Fig. 1. 

The storage system consists of the secondary storage media and 

two kinds of buffer caches, namely volatile buffer cache and 

nonvolatile buffer cache. The secondary storage is basically 

composed of hard disks, but NAND flash memory or other 

storage media can be used. The volatile buffer cache is 

composed of usual DRAM, and the nonvolatile buffer cache is 

composed of SCRAM such as PRAM, FRAM, or MRAM. All 

writes to buffer caches are performed in nonvolatile buffer 

cache. Hence, all dirty blocks reside in NVRAM and thus 

consistency is always guaranteed. Writes to secondary storage 

happens only when an eviction from NVRAM occurs. 

Hybrid hard disks (HHD) [9] also have an NVRAM layer 

between DRAM and secondary storage. However, the NVRAM 

layer in HHD cannot be used as a system buffer cache since it is 

composed of flash memory and thus it is not byte-accessible. 

Moreover, NVRAM in this paper is equivalently used with 

traditional DRAM except that it is non-volatile, whereas 

NVRAM in HHD mainly serves as a write buffer. 

 

B. Algorithm Details  

In this subsection, we present the NVRAM-aware buffer 

cache management (NBM) algorithm. NBM separately exploits 

the read history and the write history of block references to 

estimates future references of each operation precisely. To do 

this, NBM uses two lists to maintain the recency history of 

references, namely the LRR (least recently read) list and the 

LRW (least recently written) list. Note that blocks in these two 

lists are not necessarily identical to those blocks in the volatile 

and nonvolatile buffer caches, respectively. This separated 

management of metadata and actual data allows more efficient 

management of volatile and nonvolatile buffer cache spaces. 

For example, if a block is recently read and written, the 

metadata of the block can exist in both LRR and LRW lists, but 

actual data is only maintained in the nonvolatile buffer cache. 

Thus, some blocks in the LRR list may not exist in the volatile 

buffer cache. This allows volatile buffer cache to hold more 

blocks, leading to more read-hits. Nevertheless, we maintain the 

read history of the block in the LRR list because the block may 

return to the volatile buffer cache if it is evicted from the 

nonvolatile buffer cache. Fig. 3 depicts the pseudocode of the 

NBM algorithm. 
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Fig. 1 System architecture of NBM. 
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Fig. 2 Data structures used in the NBM algorithm. 
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Fig. 3 Pseudocode of NBM. 

 

 

 

NBM (block p, operation op)   /* p is requested block */  

{     if (p is in the buffer cache) /* cache hit */ 

{     if (op is read)  

               {     if (p∉read_list) add p at the tail of read_list; 

                     else move p to the tail of read_list; 

             else   /* write */  

{     if (p∉write_list) add p at the tail of write_list;      

                     else move p to the tail of write_list; 

if (p is not in NVRAM)  

{     if (no free block in NVRAM) replace_NVRAM ();  

move p from VRAM to NVRAM; 

} 

               } 

}  

else /* cache miss */  

        {     if (op is read) 

               {     if (no free block in VRAM) replace_VRAM ();  

add p to VRAM; 

add p at the tail of read_list; 

               } 

else    /* write */ 

{     if (no free block in NVRAM) replace_NVRAM ();  

add p to NVRAM; 

add p at the tail of write_list;      

        } 

        }  

}  

 

replace_VRAM () 

{     evict the least recently read block p in VRAM; 

        evict the read history of p from read_list; 

}  

 

replace_NVRAM () 

{     select the least recently written block p in NVRAM; 

evict the write history of p from write_list; 

        if (p∈read_list) 

        {     if (p is more recently read than the least recently read block q in VRAM) 

              {    evict q from VRAM; 

evict the read history of q from read_list; 

                    move p from NVRAM to VRAM; 

               } 

} 

else evict p from NVRAM; 

} 
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IV. EXPERIMENTAL RESULTS 

We have conducted trace-driven simulations to compare the 

performance of buffer cache management algorithms in terms of 

total number of I/O operations. We used traces collected by 

Roselli et al. [6] from the Hewlett-Packard series 700 

workstations running HP-UX. These traces are categorized into 

three environments, namely INS (instructional workload), RES 

(research workload), and WEB (Web server workload). Details 

of these traces are summarized in Table 2. 

For comparison, we have designed and implemented NVLRU, 

which is a modified version of the traditional LRU algorithm. 

NVLRU holds dirty blocks in NVRAM, conserving file system 

consistency without periodical flush. Whenever it needs to 

accommodate a new dirty block but there is no free block in 

NVRAM, it selects and evicts the least recently used dirty block 

from NVRAM. 

Figs. 4, 5 and 6 show the performance of NBM in terms of the 

total number of I/O operations normalized by NVLRU. NBM 

outperforms NVLRU especially when the system is under heavy 

NVRAM pressure. This is due to the major drawback of the 

NVLRU algorithm. NVLRU holds dirty blocks that are recently 

read but rarely written in NVRAM because it maintains LRU 

list based on not only write references but also read references 

for dirty blocks in NVRAM. On the other hand, NBM 

efficiently identifies dirty but rarely written blocks using LRW 

list which tracks write reference history only. 

Moreover, NBM further reduces total I/O count when the 

VRAM space is sufficiently large. As explained earlier, for 

every NVRAM replacement victim, NBM decides to move the 

block from NVRAM to VRAM if it is recently read. This helps 

the system buffer cache to hold all the recently read blocks 

while consuming less NVRAM space. However, if VRAM is 

under heavier memory pressure than NVRAM is, moving a 

block from NVRAM to VRAM can result in worse read hit 

ratio. 

NBM shows little performance improvement for workloads 

that rarely reads from dirty blocks. For such workloads, using 

LRU or LRW for NVRAM blocks makes no difference. Hence, 

NBM and NVLRU work similarly. This can be observed well in 

Fig. 6. 

Figs. 7, 8 and 9 show read I/O counts and write I/O counts. For 

every workload we have considered, the two algorithms showed 

almost the same write I/O counts. NBM does flush before 

moving a dirty block from NVRAM to VRAM to conserve file 

system consistency. For this reason, NBM issues write I/O as 

much as NVLRU does. In Fig. 7, we can see reduced read I/O 

counts by adopting NBM. This change is highlighted in memory 

settings with small NVRAM. As the amount of NVRAM grows, 

most of dirty blocks that are currently being used can be held in 

NVRAM even with simpler algorithms, leaving no room to 

improve the system performance. At some points, NBM 

performs even slightly worse than NVLRU in terms of read I/O 

count. These cases can be observed in certain memory size 

settings where VRAM is under relatively heavier memory 

pressure than NVRAM. 

 

V. CONCLUSION 

In this paper, we introduced the NBM algorithm that uses 

both VRAM and NVRAM as buffer caches. To reserve 

consistency in such systems, dirty blocks are stored in NVRAM 

and actual write I/O operations occur only when there is not 

enough free NVRAM space. 

To fully utilize NVRAM space, when selecting a NVRAM 

block to replace, NBM efficiently identifies the least recently 

written block regardless of its read references by using LRW list. 

In addition to this, NBM can decides to move the victim block 

from NVRAM to VRAM depending on its read reference 

history which is recorded in LRR list, rather than discarding the 

block after flushing. Consequently, NBM fills NVRAM up only 

with the most recently written blocks among dirty blocks while 

maintaining all the recently read blocks in the buffer cache. 

Through trace-driven simulations, we have shown that the 

NBM algorithm outperforms NVLRU in terms of the total 

number of I/O operations especially in systems with small 

NVRAM and large VRAM. 

 

 

 

Table 2. Summary of traces used in our experiments. 

 

 trace INS RES WEB 

Total 861168 393571 371019 

Reads 733549 336963 329377 

Writes 127619 56608 41642 
System calls 

Read:Write 5.75 5.95 7.91 

VRAM 106 68 316 Memory usage 

(MB) NVRAM 152 133 136 

Read clean block 1173289 39819 2035430 

Read dirty block 162212 94099 84766 
Read access 

pattern 
Ratio 7.23 4.22 24.01 
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Fig. 4 Total I/O count in INS workload. 
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Fig. 5 Total I/O count in RES workload. 
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Fig. 6 Total I/O count in WEB workload. 
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Fig. 7 Comparison of two algorithms in terms of read I/O count and write I/O count in INS workload. 
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Fig. 8 Comparison of two algorithms in terms of read I/O count and write I/O count in RES workload. 
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Fig. 9 Comparison of two algorithms in terms of read I/O count and write I/O count in WEB workload. 
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