

Abstract—Improvement and modernization of the universities

courses should be every year’s task. This task is especially needed for
computer programming courses where new technologies are coming
very often. In the first classes of study at the university many students
have hard time in programming courses. It is because they comes
from different secondary schools and they have different experience
of computer programming which is often not enough for university
courses or they hadn’t programming at secondary schools at all. We
did small questionnaire at the Faculty of Electrical Engineering and
Information Technology of Slovak University of Technology in
Bratislava to know how student evaluate our programming courses
and what they want to improve.

Keywords—Diversity, learning, programming, computer skills,

students, suggestions.

I. INTRODUCTION
EMAND for high quality engineers is at high level today.
For example Germany needs more than 30000 engineers

[1,2,3]. Modern engineers must have good theoretical
knowledge and practical experience. Employability skills are
needed to get, keep and do well on job [4]. One of many skills
that are necessary in praxis for our students is know how to do
computer programming [5] or software engineering.

Many teachers agree, that many students have problems
dealing with the learning of computer programming [6,7].
Teaching style of computer programming is usually individual
for each student, therefor is almost impossible to choose right
style for computer programming course. Great help with this
problem are many information sources (like books, Internet or
technological clubs usually named HackerSpaces) that
students can use for computer programming during learning
process [8].

Manuscript received August 10, 2011: This work was supported by VEGA
agency under contract number 1/0592/10, and KEGA agency under contract
number 032STU-4/2011.

Michal Blaho is with the FEEIT, Slovak University of Technology,
Ilkovičova 3, 812 19 Bratislava, Slovak Republic (phone: 00421-2-60291405;
e-mail: michal.blaho@stuba.sk).

Martin Foltin is with the FEEIT, Slovak University of Technology,
Ilkovičova 3, 812 19 Bratislava, Slovak Republic (e-mail:
martin.foltin@stuba.sk).

Peter Fodrek is with the FEEIT, Slovak University of Technology,
Ilkovičova 3, 812 19 Bratislava, Slovak Republic (e-mail:
peter.fodrek@stuba.sk).

Ján Murgaš is with the FEEIT, Slovak University of Technology,
Ilkovičova 3, 812 19 Bratislava, Slovak Republic (e-mail:
jan.murgas@stuba.sk).

What we can do to improve out teaching of computer
programming is to incorporate modern learning strategies or
methods into listed process [9]. Collaborative learning [10,11]
can be very helpful for this process because group of students
is forced to work together to achieve same goal. This type of
study is similar to teamwork [12,13]. For students it is also
beneficial to gain other professional skill like leadership,
communication and global awareness. Students search all
contents online therefor e-learning is perfect way to obtain
their interest in learning. Study materials are also accessible
from any location so they can learn almost everything
everywhere [14,15]. Students are also to achieve skills from
using team coordination software packages known as time
tracking systems. They also achieve skills from using source
code management systems.

Even most modern learning methods would not be helpful if
we are not able to say that methods are effective and suitable
for majority of the students. It is very important to ask
students what they think about our courses every year [16,17].
Sometimes students have very good ideas to improve our
courses via their answers in questionnaires.

This paper is divided into several sections. In the second
section we are to write about questionnaire at our faculty. In
the third section we point to diversity of student that come in
to study at university and their experiences. In the following
section we are to write about computer programming teaching
at our faculty. In the fifth section we give our suggestions to
improve computer programming teaching process for our and
other universities. In next section we are to write about
interesting courses and last section contains suggestions from
students to improve computer programming teaching process
at our faculty.

II. QUESTIONNAIRE
In automatic control there are two main ways how to

control systems. Open loop controller doesn’t observe how
system reacts to input. This control system cannot correct any
error that it could make. On the other side the feedback control
measures system output to enable to correct errors. It is clear
that we mention to apply this knowledge also in education. In
fact we do it without planning to do so. If we focus only on
modern technologies and adapt lectures to use them we would
have current topics but we will not know how students react to
applying them. That is why there is important to ask students
how they accept our courses methods and content. We could
correct any errors we made because we achieve feedback. This

Students perspective on improving
programming courses

Michal Blaho, Martin Foltin, Peter Fodrek, Ján Murgaš

D

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

17

task is very important and we should do this at end of term for
every year.

We wanted know how students evaluate their computer
programming courses at out faculty generally. Small
questionnaire was prepared for them with several questions
about their background, computer skills and their suggestions
dealing with computer programming. Many students at the
faculty had interest to improve quality of computer
programming teaching process. In a first day of our
questionnaire through Facebook social network and university
information system we had over 500 submissions (almost 20%
of our students). We cannot underestimate student’s opinions
and their interest for improving courses and the final effect of
their satisfaction for us teachers.

The questionnaire was free for any students but we wanted
to know class of their study. On the figure 1 you can see
distribution of students based on the class of their study. Most
students are from first class of study (almost 30%) and third
class of study (about 20%). Smallest amount of students were
from last class of study but this student was experienced and
gave us really good suggestions for this reason.

Fig.1 Student’s class of study distribution

III. STUDENTS DIVERSITY
Students came from different parts of the country to study at

the universities. They have been studying at various secondary
schools with various focuses on topics. We have more than
250 secondary grammar schools which are focused on general
knowledge with about 90 000 students in Slovak republic. We
also have more than 500 secondary technological schools with
focus on engineering with about 180 000 students in Slovak
republic.

The one of the most common problems in early terms on
faculties is this student’s diversity. Because they studied at the
different schools they have different basis in mathematics,
physics, computer programming, technology, etc. The
teacher’s job is to reduce gap between students in the part of
the knowledge necessary for studying at the faculty.

Before we start asking questions about computer
programming teaching at the faculty we wanted to know
student’s background in computer skills and computer
programming achieved at the secondary schools. We focus
mainly on operating system usage and computer programming
languages.

A. Operating systems
Almost every student basically from primary school starts

dealing with a computer. In our praxis (industrial informatics)
variety of operating systems is used, for example Unix based
systems in embedded systems or real-time control. It was in
our interest to find out what operating systems students had
deal with before study at faculty.

The operating system with vast majority of the market share
is Microsoft Windows. It is also well known between students
and 99.7% answered that they are familiar with this operating
system. Open source Unix based operating systems are
growing in popularity because they are free and have near
same functionality as Microsoft Windows. Students know
these systems and 46% are familiar with Unix based operating
systems like GNU/Linux distributions as Ubuntu, OpenSuse
or Debian. Apple operating systems are known for support for
students and study process. In our country they aren’t much
spread because the expenses but 10% of the students have
experience with this operating system. Other operating
systems are used by 3% of the students.

B. Programming experience
Students come to university from different secondary

schools and have different knowledge background as we
mentioned before. We have found this fact in our courses
(mainly in computer programing) when some students can
understand lectures and practices easily and some have large
level of problems. The difference between students is often
enormous. We were curious how students are prepared from
secondary schools and if they had been to learn computer
programming after all. If they have been learning computer
programming by them is another question.

1) Computer programming at school
Teaching informatics in secondary schools is certainty. But

the question is, if the secondary schools learn how to design
computer programs. On the question, if students had course of
computer programming 90% answered positive. The rest 10%
haven’t got any programming courses yet.

This doesn’t mean, that 90% of the students understand
principles of computer programming well and are good at
algorithm design understanding. Many of them had various
teachers with various learning methods or programming
topics. Some secondary schools prefer different programming
languages then others. We try to find out in our questionnaire
what programming languages they have been learned in
secondary school.

The most popular language for teaching programming at
secondary schools is Pascal. About 71% students have learned
this language. Delphi is similar to the Pascal, which is
introductory to objective programming and has better
graphical user interface capabilities. Delphi is familiar to 10%
of the students. Modern programming courses (mainly at
universities) starts programming courses with C or C++.
About 25% of students learned those languages at secondary
schools so they have good chance to pass exams.
Technological secondary schools teach low-level
programming language Assembly. More than 30% of students
learned this language that is used for programming
microcontrollers in industrial informatics. More and more
secondary schools start to learn more and more popular web

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

18

technologies like Html, Php or Javascript. Students like this
technologies because they are relatively easy to learn. About
21% have been learning web technologies at secondary
school. The most popular and used objective language Java
has learned only 1% of students. This is depicted in figure 2.

Fig. 2 Programming at secondary schools

2) Programming in free time

You don’t necessary learn what you want to learn at
secondary school. Many students are curious and therefor
learn some computer programming languages by them self.
These students often achieve better results and have deeper
understanding of computer programming languages rather
than students to learn only at school. They wanted to learn, but
they don’t need it, which make the difference.

As a contrast to the school programming free time
programming has different distribution of students that learned
programming language. Near half of the students (42%)
learned web technologies in their free time. It is because the
web technologies are simple to learn and are interpreted and
student can see results of their work right away. The next
favorite programing languages for the students are C/C++,
near 27%. Pascal is also popular but not as much (11%). Java
is the last known popular language with 10%. Students know
that Java is very often used in praxis so they want to learn this
programming language, but objective oriented programming
isn’t as easy as web technologies for example. Other
mentioned languages in previous part achieved less than 10%.
On the next figure you can see distribution of programming
languages that student learned in their free time.

Fig. 3 Programming in free time

3) Comparison
If we compare what students learned at the secondary

school and what they learned in their own free time, we will
see what languages and programming paradigm they know
best. Secondary schools learn mostly procedural programming
(Pascal, C/C++). Technical secondary schools also learn
assembly language because it is needed for technical praxis.
More and more secondary schools start to learn web
technologies. Students focus mostly on web technologies
because they can learn them easily. They also like to learn
procedural (C/C++) and objective oriented programming
(Java).

IV. PROGRAMMING AT FACULTY
As we mentioned before, students with different knowledge

of programming are coming to the faculty. The first few terms
can be hard for students that hadn’t programming courses at
the secondary school.

A. Problems in courses
We wanted to know how students see difficulty of the

programming courses at the university. We ask them, how big
problems they had in computer programming courses.

Answers were divided into five groups by problems degree.
Major problem had almost 10% of the students. They wasn’t
capable understand most of the lectures or practices. Above
average problems had 21% students. Average problems had
almost 35%. These problems are usual on every course.
Problems beyond average had 20%. About 13,5% of the
students hadn’t any problems during computer programming
courses. These students came to faculty well prepared for
computer programming courses.

The distribution of answers is standard Gaussian like
distribution as you can see on figure 4. For this reason we
asked this question universally and it applies to all
programming classes at the faculty.

Fig. 4 Degree of problems

Next we ask student which courses of the computer

programming language caused them major problems. We
chose five programming languages that most students learned.
Students had biggest problems with C/C++ programming
language courses (more than 40%). This language was to
teach in first few terms of study and it is hard for students that

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

19

hadn’t any programming course at secondary school to past
them.

Next big group of students selected Matlab courses (about
35%). Matlab is not hard language and it is very similar to
C/C++ and also provides capability to objective program
constructions. The problem is that many Matlab courses
associate theory (for example statistic, numerical methods,
control systems) with construction of scripts or schemas and
therefor it is hard for students to learn them and apply them
using Matlab.

Smaller group of students find hard to learn Java
programming language (just about 13%). Many students that
find structural programming easy have hard time to switch to
object oriented programming and doesn’t understand when is
beneficiary to use its constructions. They prefer write
programs as set of functions. This is because they were not to
teach about different paradigms of the computer programming
before our courses. They think that there is only way of the
computer programming, but this is false assumption.

About the same amount of students like in Java case find
hard to program in assembly language. Low-level programing
is different than the classical programing and student who can
program in C/C++ or Java can have trouble here. The main
problem here is lower level of abstraction then in another
languages. Assembly language is directly connected concrete
hardware.

Smallest group of students (about 3%) had problems with
web technologies. On the figure 5 you can see percentages of
the problems for computer programming courses.

Fig. 5 Problematic courses

In the next question we ask students what computer

programming courses didn’t make student trouble at all. Again
the possibilities were C/C++, Java, Assembly language, web
technologies and Matlab.

As in previous question most students selected C/C++
programming language (about 45%). This half of students on
the other side had experience with procedural programming
mostly in C/C++ or Pascal. Therefor this course was easy for
them even it was in first few terms of study. This was not
predicted because C/C++ programming languages are often
mentioned as very hard programming languages to learn. As
we can find out our students have experience with similar
languages. This can help students achieve better results in
these curses at all.

Also Matlab course had many students thouth that this
course was relatively easy to them (more than 36%) to learn.
These students could very easely connect theoretical study
with practical computer programming and simulations. Some
students from technical secondary schools had been to learn
Matlab in special courses.

The third course with no problem for student was assembly
language (more than 28%). Most of these students was also
from technical secondary schools where students produce
programs using this programming language so they didn’t
have problem with this course.

Web technologies courses didn’t make any problems for
almost 27%. We mentioned one reason for that and it is
because they are relatively easy to learn. Another reason for
this you can see on figure 2 and 3 where most learned
programming languages for secondary school students in free
time were these technologies.

The last most popular programming course was Java course
(about 20%). As we mentioned for student is hard to switch to
object oriented programming, but semantics is similar to
C/C++ and therefor it is easy to learn for others.

Fig. 6 Non problematic courses

B. Flipped Gaussian like distribution
Dehnadi and Bornat [7] point out that student can be divided

into two general groups of students. For one group of the
students it is extremely difficult to learn computer
programming. For other group of the students it is much easier
to learn computer programming at all. This group was
successful in programming and found it easy. This can be plot
on distribution figure of exam grades. One peak is in right half
where are placed students with no problem with computer
programming. Other peak is on left where are placed students
with serious problems in computer programming learning and
they fail at exam test. Between this two groups there is placed
minority of the average students.
 Their mental models cause this. For computer programming
there is need for so called consistent group. Consistent group
means that all the members of this group use same model of
mental translation of the problem. Same model means that
they used same type of the solving process for every problem
they deal with. It is only assumption of the success in the
computer programming courses to be member of the
consistent group even if the solving process is not suitable for
solved problem.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

20

Fig. 7 Unix programming results

Exam results from some courses confirm Dehnadi and

Bornat theory. We looked at results from last year’s courses
about UNIX based system programming and Java
programming. In Unix programming course (figure 7, FN or
FX means absence at exams or failure) student results have
two peaks. One major group is over A, B grades and another
above E and fail students. The smallest group of student is
above C and D grades. This course was evaluated as one of the
most difficult courses to learn by students. Therefor we were
not predicted such high rate of the students achieving left peak
results.

Fig. 8 Java programming results

Java programing course (figure 8) have three major peaks of

results. Figures show, that students had in fact problems with
passing course or fail at exams. We can see this results in
other way. If we forget about grades B and D grades we will
see that figure has only one peak and is about E grade.
Therefor this course was very hard for most of all students.

V. OUR SUGGESTIONS
It is hard to suggest universal methodology for teaching

computer programming. In our case it look like following
suggestions may help to improve teaching and learning
processes.

A. Experienced students
For experienced students we consider students that could

pass final exam at the beginning of the course. In first terms of
study number of these student isn’t big but grow as years of
study increase. Talented students with practical experience are

usually these students. Many of them already work on small
project part time. We could give individual project to
experienced students so they wouldn’t have to spend time on
lectures and practices on basics topics that they already are
able to use.

In later years of study students work on small project outside
the faculty as we mentioned before. We could use these
students for preparing modern lectures and practices on topics
that they work with in their praxis. For example in web
technologies some students have sometime better knowledge
of open source projects or frameworks than lecturer. Lecturer
with help of these students could incorporate this knowledge
into few lectures and it would be also interesting for other
students. Experienced student could lecture about this topics
too and gain their own presentations skills. This helps them in
the future carrier. Self-presentation is main disadvantages of
the most skilled computer programmers in our country. This is
because students have no spoken exams but all exams in their
study are in the written form.

Last suggestion is to use experienced students as personal
consultants for less prepared students. The main advantage of
this is that they will probably explain some different topics
from another perspective than the lecturer. This approach can
be also risky and we must supervise them because they could
do some practices for less prepared student. This principal is
processed at our faculty yet. It is caused by the fact that our
students are no enough competitive and there is no advantage
from being best students of the class. This is cause by no
university fee at standard duration of the study at the public
universities at our country.

B. Weaker students
Suggestions for experienced students could remove the left

peak from figures about programming results. The peak is
removed only for lectures and practices but will be shown
again at grade results (we must assign grades to experienced
student as well). But now we can redesign course to better-fit
less prepared students requirements. Some might say that we
are lowering standards but the amount of topics should not
change. What will change is only form of explanation.

We could use modern methodologies of education like
collaborative learning suggested and they are practically
proved by many teachers. With collaborative learning student
can explain some topics to each other and see topics from
another perspective than teacher’s perspective. We could use
modern communication media like Facebook social
networking for this purpose. Collaborative learning is also
bind with teamwork where small group of student work to
achieve same goal. Work in team can cause small competition
where weaker student want to improve so he/she would not be
worst in the group. It also can be used to teach team
collaboration technologies and software repositories. These
technologies was started to explain to some of our students
last year and will be improved in the next year.

For weaker students is important to have rich amount of
study materials. It should be our responsibility to prepare
them. Today almost every student search study materials with
search engines on the Internet. Therefor online content should
be certainty for us. Classification may to be done offline not
online at the practices as it is done now. This means that

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

21

students upload their programs to server and lectors may study
programs at home.

Continuous evaluation is also beneficial for learning
purpose. If we evaluate them only on one or two test we
wouldn’t see what cause them problems. If we evaluate and
point their work every week then we will see what is major
cause of problems for them. With knowing all of their
problems we could react to them on the next lecture in first
few minutes for example.

VI. INTERESTING TOPICS
After questions about secondary school programing and

programing at the faculty we asked students what other topics
we could focus on. We let them chose from:

• Algorithm basics
• Law for informatics
• Team work
• Work with multiple operating systems

On the next figure you can see percentage of students that

would like to study these topics.

Fig. 9 Students are interested about

About 45% of all students demands better algorithm basics.

These are mainly the students that didn’t have programming
courses at secondary schools. For them is hard to learn new
programming language and write basics algorithms. Many
courses learn only semantics but small amount of topic are
covered from algorithm design perspective. This bring us to
the idea that we need teach algorithm design in first few terms
probably independent on programming language.

Algorithm design depends on higher-level mathematics that
students never had been learned before university classes.
Therefor adding algorithm design to the curriculum will force
us to add much more mathematics courses to it. But
mathematics is highly unpopular for secondary school
graduates. Adding mathematics to the curriculum lowers level
of the students that will be interested to study at our faculty.
Need of mathematics for computer programming is mainly
described in D. E. Knuth’s book named Art of programming.

We often work with informatics law and we even don’t
know enough about it. It is mainly pressing “Accept” button
for us by installing new software. It would seem that 15% of
students is small number but this topic is interesting for future

software engineers. They want to know what various licenses
mean (for example the GNU General Public License - GNU
GPL) and what can do with software legally. Protecting
created application from them is also necessary to know. We
are preparing translate of the textbook Legal aspects of the
information technology to the Slovak language. This textbook
is introduction to the author’s law and copyright law for
information technology experts.

In large software projects there are programmers divided
into teams, which works on the different task together. At
programming courses many times students work alone. That is
good for learning basics but is not enough for praxis. Students
demanded courses about versioning and a revision control
systems for example subversion, which are widely used in
team programming. Another topics are computer
programming management and job scheduling. This improves
time scheduling for project tasks and together with Gantt
graphs are very helpful in large projects. These topics
demanded about 50% of all students. As we mentioned we
started to teach very basics of these technologies last year but
not at desired level. We plan to raise level of these
technologies to teach during coming years.

As you seen in question about operating systems the most
known operating system is Microsoft Windows. This
operating system is unfortunately dominant in most of courses
involves computers. But 50% of students are willing to learn
also different types of operating systems. Then they will be
able to work as network administrators, which are mostly done
using UNIX based systems.

VII. STUDENTS OPINIONS AND SUGGESTIONS
The last part of our questionnaire wasn’t question but we

wanted to know what students want to say generally about
programming teaching at our faculty. We divided students
opinions and suggestions into following sections.

A. More or less programming?
The first group of students haven’t got any programming

courses because their specialization didn’t offer any, but they
still wanted to learn how to program.

More programming courses for non-informatics
specializations because today many employers demand them.

Another answers leaded to courses of economy. Students
suggested that they have to teach too many of them. They
would be replaced by more useful programming courses for
their praxis. On the other side some student doesn’t like to
program and think that we should be focused on other
engineering courses.

There is too much informatics but less and less electronics or
measurements in electrical engineering.

B. Modern courses
The next group of student wanted to modernize the

programming courses. Better students can really good see
what is used in praxis especially if they begin part-time work
meanwhile study.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

22

We learn old topics and a lot of courses are theoretical with
no connection to praxis.

Students want more practical examples rather than theoretical
lectures. Examples help students to better understand the
topics and help them when students want to try what they
learned.

More study materials and examples, not only presentations.

As we written in section about diversity of students some
student didn’t had computer programming courses at their
secondary schools. Therefor these students wanted to have
better basis of algorithm designs and different approach to
them.

Not everyone that came from secondary school with basic
knowledge of programming. Teacher should notice that
students aren’t often on the same level.

Few students demanded to use more open source projects as
tools and operating systems during lectures. He argues about
price and maintains cost and difficulty advantage for them.

Use operating systems and tools that can student use with no
charge legally.

Last small group of the students wanted to learn much more
about computer networks design and server management.
They mentioned that this is widely used and wanted
competence for the graduates.

I want to be learned much more about computer networks and
server management and maintenance.

C. Connection to praxis
As we mentioned some students work in companies during

study. They see what they do and what we teach. Therefor
they want more tools, which are necessary in praxis. Most
suggested tools were subversion for teamwork. Another useful
technique is programming management and job scheduling.
Also modern developing environments would be used during
teaching process. This may be too expensive for us to buy
commercial tools to teach this. Therefor we are forced to use
much more open source tools with customization to our needs.
Lecturers alone can do this customization.

I would like to have basics of teamwork on projects with SVN
or Eclipse and Subclipse.

Another demand was to connect lectures to their courses in
their specialization or some visits to real-world companies. It
is not enough companies that allow us to come to their offices
and manufacturing buildings to show students their
technologies.

It would be good if as part of practice we would go on
excursion to some company and see what it works there what
we learn at the faculty.

D. Evaluation
Small group of students like to change evaluation of task.
Very surprising were statements that we would take more of
originality check of student programs made for classification.
Some students copy part of program from another student to
achieve more points. Group of students wants better control
for originality.

Actively prevent plagiary.

Experienced students are often bored on courses for beginners
and they demanded harder tasks. It is too hard for less
prepared students to solve harder tasks. We also cannot divide
students to the groups with similar level of knowledge because
students are to choose time of their practices individually.

More tasks, but with better consulting.

E. Teachers and students personality
Students are very sensitive to teacher’s personality. They

usually see if we are in good or bad mood and how we behave
to them. In question about what programming courses did
student problem they answered also this

Problem isn’t anything if student have kind teacher.

One student wants that we could learn soft skill like writing
mail or communication with others. But this is not case to
teach at computer programming courses.

VIII. CONCLUSION
In this paper we written about how could students affects

our improvement of some university courses. The easiest way
is to ask them through small questionnaires. Student want to
improve what they learned and our questionnaire was proving
it while one fifth of all faculty students answered.

For most problems in first few years is responsible diversity
of the students. Student came to universities form different
types of secondary schools where different types of teachers
learning different types of computer programming languages.
At some secondary schools student even hadn’t any
programming courses at all. Few students learned some
programming language by them self.

We must alter our courses to decrease differences between
students especially during first few terms. The flipped
Gaussian like distribution is proving that student can be
divided into two general groups. One group is extremely easy
to teach and other is extremely difficult to teach for us. This
can bee seen also on the popularity of the courses when almost
half of the students found programming course easy and other
half found it very hard.

We can alter our courses based of this fact that we approach
to experienced and less prepared students separately. On the
same course experienced students could have harder advanced
topics that are suitable for them and then we could work more
with worse prepared students.

We must also consider new interesting courses for student
that we don’t learn often but are extensively used in praxis like
programming and informatics law, teamwork or versioning

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

23

and a revision control. Finally we must listen what students
want and incorporate as they have good suggestions for our
courses.

REFERENCES
[1] J. Kinast, Ch. Reiermann, M. Sauga, Labor Paradox in Germany: Where

Have the Skilled Workers Gone? [online], Spiegel online, SPIEGELnet
GmbH 2007 cit: 11.05.2011 available at
<http://www.spiegel.de/international/business/0,1518,490031,00.html>

[2] C. Barry, Germany Needs 34,000 Engineers, Product Design &
Developlemnt [online] Advantage Business Media, 2010, cit:
11.05.2011, available at <http://www.pddnet.com/news-germany-needs-
34000-engineer-112410/>

[3] AFP, Westerwelle: Germany needs foreign workers, The Local [online],
The Local Europe GmbH, 2010, cit: 11.05.2011, available at
<http://www.thelocal.de/national/20100804-28957.html>

[4] A. Zaharim, Y. M. Yusoff, M. Z. Omar, A. Mohamed, N. Muhamad,
Engineering Employability Skills Required By Employers In Asia,
Proceedings of the 6th WSEAS International Conference on
ENGINEERING EDUCATION, Rodos, Greece, ISBN: 978-960-474-
100-7

[5] N. Khamis, S. Idris, Issues and Solutions in Assessing Object-oriented
Programming Skills in the Core Education of Computer Science and
Information Technology, 12th WSEAS International Conference on
COMPUTERS, Heraklion, Greece, July 23-25, 2008, ISBN: 978-960-
6766-85-5

[6] S. Garner, The Cloze Procedure and the Learning of Programming, 8th
WSEAS International Conference on COMPUTERS, Athens, Greece,
2004

[7] S. Dehnadi, R. Bornat, The camel has two humps (working title)
[online], Middlesex University, UK, 2006 cit:11.05.2011 available at
<http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf>

[8] C. J. Costa, M. Aparicio, R. Pierce, Evaluating Information Sources for
Computer Programming Learning and Problem Solving, Proceedings of
the 9th WSEAS International Conference on APPLIED COMPUTER
SCIENCE, 2009, pp. 218-223

[9] RADU HANZU-PAZARA, EUGEN BARSAN, Teaching techniques –
modern bridges between lecturers and students, 7th WSEAS
International Conference on ENGINEERING EDUCATION
(EDUCATION '10), Corfu Island, Greece July 22-24, 2010, ISBN: 978-
960-474-202-8

[10] D. T. D. Phuong, F. Harada, H. Takada, H. Shimakawa, Collaborative
Learning Environment with Convincing Opinions for Novice
Programmers, 5th WSEAS / IASME International Conference on
ENGINEERING EDUCATION (EE'08), Heraklion, Greece, July 22-24,
2008

[11] J.A. Marin-Garcia, J. L. MAURI, Teamwork with University
Engineering Students. Group Process Assessment Tool, Proceedings of
the 3rd WSEAS/IASME International Conference on Educational
Technologies, Arcachon, France, October 13-15, 2007, pp. 391 – 396

[12] J. A. Betancur, C. Rodríguez, I. Ezparragoza, An undergraduate
collaborative design experience among institutions in the Americas,
Proceedings of the 8th WSEAS International Conference on Engineering
Education (EDUCATION '11), Proceedings of the 2nd International
Conference on Education and Educational Technologies 2011
(WORLD-EDU '11), Corfu Island, Greece July 14-16, 2011, ISBN: 978-
1-61804-021-3

[13] J. A. Marin-Garcia, J. L. Mauri, Teamwork with University Engineering
Students. Group Process Assessment Tool, Proceedings of the 3rd
WSEAS/IASME International Conference on Educational Technologies,
Arcachon, France, October 13-15, 2007

[14] D. Rigas, K. Ayad, Guidelines for Edutainment in E-learning Systems,
10th WSEAS International Conference on SOFTWARE ENGINEERING,
PARALLEL and DISTRIBUTED SYSTEMS (SEPADS '11), Cambridge,
UK February 20-22, 2011, ISBN: 978-960-474-277-6

[15] P. Pocatilu, F. Alecu, M. Vetrici, Using Cloud Computing for E-learning
Systems, Proceedings of the 8th WSEAS International Conference on
DATA NETWORKS, COMMUNICATIONS, COMPUTERS (DNCOCO
'09), Morgan State University, Baltimore, USA November 7-9, 2009,
ISBN: 978-960-474-134-2

[16] S. C. Cismas, Questionnaire for Implementing Open Distance Learning
for English in Engineering, Proceedings of the 9th WSEAS International
Conference on DISTANCE LEARNING and WEB ENGINEERING,
Budapest Tech, Hungary September 3-5, 2009, ISBN: 978-960-474-115-
1

[17] A. Trifonova, E. Georgieva, M. Ronchetti, Determining Students’
Readiness for Mobile Learning, Proceedings of the 5th WSEAS
International Conference on E-ACTIVITIES, Venice, Italy, November
20-22, 2006,

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

24

